Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of SiO2 on the Stark splitting enlargement of Yb3+ in phosphate glass

Wang Peng Wang Chao Hu Li-Li Zhang Li-Yan

Effect of SiO2 on the Stark splitting enlargement of Yb3+ in phosphate glass

Wang Peng, Wang Chao, Hu Li-Li, Zhang Li-Yan
PDF
Get Citation
  • Up to now, high-energy large-scale Yb3+ laser has still faced to the fact that no proper gain media are available, though researchers made a more than ten year effort for it. Yb: fluorophosphate glass is the only material used in a laser system, reaching an output of more than 10 TW. As is well known, the thermal blocking of Yb3+ laser is a bottleneck in laser operation, which is closely related to the Stark splitting of Yb3+ in a gain medium. Conventional Yb: phosphate glass has the advantages in Yb3+ concentration, lifetime and cross section over silicate glass, however, its small Stark splitting is the main drawback that induces difficulties in realizing laser output at room temperature. Yb: phosphate glass will be a good gain medium for high power Yb3+ laser if the Stark splitting is improved. This study focuses on the enlargement of the Yb3+ Stark splitting in phosphate glass by introducing SiO2, thereby achieving a large Stark splitting property compared with the phosphate glass. The glass 60P2O5-7.5Al2O3-15K2O-17.5BaO-1Yb2O3 is used as the base glass, and the modified glass denoted as PS is obtained by doping a certain amount of SiO2. Such a glass is prepared by the conventional melting-quenching method. Lorentz fitting is performed to the absorption and fluorescence spectra for determining the Stark splitting scheme. Raman spectrum is used for the auxiliary judgment of the attributions of the different spectroscopic bands. Then the results are confirmed by the barycenter law of Yb3+ ion. Investigations show that the addition of SiO2 can enlarge the Stark splitting obviously from the original 670 to 771 cm-1 in PS3. Scalar crystal field parameter N_{J} and asymmetry degree around Yb3+ are also increased due to SiO2 incorporation. Meanwhile, spectroscopic properties of PS series glasses, such as fluorescence effective line width (Δλeff) and fluorescence lifetime (τf), are moderately enhanced. The glass transition temperature is improved greatly, which is very valuable for high power Yb3+ laser. These results suggest that the introduction of a second network former is an effective way to enlarge the Stark splitting of Yb3+ in phosphate glass. Next, our investigation will focus on preparing the high-homogeneity SiO2 modified phosphate glasses and the corresponding laser experiments.
      Corresponding author: Zhang Li-Yan, jndxzly@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61177083).
    [1]

    Boulon G 2008 J. Alloy. Compd . 451 1

    [2]

    Hornung M, Keppler S, Bödefeld R, Kessler A, Liebetrau H, Körner J, Hellwing M, Schorcht F, Jäckel O, Sävert A, Polz J, Arunachalam A K, Hein J, Kaluza M C 2013 Opt. Lett. 38 718

    [3]

    Lin S B, Wang P F, She J B, Guo H T, Xu S N, Yu C L, Liu C X, Peng B 2014 Chin. Phys. B 23 097801

    [4]

    Sun Y J, Lee C K, Xu J L, Zhu Z J, Wang Y Q, Gao S F, Xia H P, You Z Y, Tu C Y 2015 Photon. Res. 3 A97

    [5]

    Li J F, Gao P, Zheng L H, Su L B, Xu J, Liang X Y 2015 Chin. Opt. Lett. 13 011403

    [6]

    Röser F, Loeser M, Albach D, Siebold M, Grimm S, Brand D, Schwuchow A, Langner A, Schötz G, Schönfeld D, Schramm U 2015 Opt. Mater. Express 5 704

    [7]

    Wang J L, Wang X L, He B R, Zhu J F, Wei Z Y, Wang Y G 2015 Chin. Phys. B 24 097601

    [8]

    Tian W L, Zhu J F, Wang Z H, Wang J L, Wei Z Y 2014 Chin. Opt. Lett. 12 031401

    [9]

    Pirzio F, Cafiso S D D D, Kemnitzer M, Kienle F, Guandalini A, Au J A D, Agnesi A 2015 J. Opt. Soc. Am. B 32 2321

    [10]

    Zhao H, Major A 2013 Opt. Express 21 31846

    [11]

    Aballea P, Suganuma A, Druon F, Hostalrich J, Georges P, Gredin P, Mortier M 2015 Optica 2 288

    [12]

    Fries C, Weitz M, Theobald C, Menar PVLO, Bartschke J, L'huillier J A 2015 Conference on Solid State Lasers XXIV-Technology and Devices San Francisco, February 7, 2015 93421O-1

    [13]

    Dai S X, Sugiyama A, Hu L L, Liu Z P, Huang G S, Jiang Z H 2002 J. Non-Cryst. Solids 311 138

    [14]

    Koch R, Clarkson W A, Hanna D C, Jiang S, Myers M J, Rhonehouse D, Hamlin S J, Griebner U, Schönnagel H 1997 Opt. Commun. 134 175

    [15]

    Haumesser P H, Gaumé R, Viana B, Antic-Fidancev E, Vivien D 2001 J. Phys.-Condens. Mat. 13 5427

    [16]

    Zhang L Y, Xue T F, He D B, Guzik M, Boulon G 2015 Opt. Express 23 1505

    [17]

    Yang B H, Liu X Q, Wang X, Zhang J J, Hu L L, Zhang L Y 2014 Opt. Lett. 39 1772

    [18]

    Guyot Y, Canibano H, Goutaudier C, Novoselov A, Yoshikawa A, Fukuda T, Boulon G 2006 Opt. Mater. 28 1658

    [19]

    Auzel F 2001 J. Lumin. 93 129

    [20]

    Robinson C C, Fournier J T 1970 J. Phys. Chem. Solids 31 895

    [21]

    Gan F X 1995 J. Non-Cryst. Solid. 184 9

    [22]

    Gan F X 1982 Optical Glass (Vol. 1) (Beijing:Science Press) p63 (in Chinese) [干福熹 1982 光学玻璃(上卷)(北京:科学出版社) 第63页]

    [23]

    Lee E T Y, Taylor E R M 2006 Opt. Mater. 28 200

  • [1]

    Boulon G 2008 J. Alloy. Compd . 451 1

    [2]

    Hornung M, Keppler S, Bödefeld R, Kessler A, Liebetrau H, Körner J, Hellwing M, Schorcht F, Jäckel O, Sävert A, Polz J, Arunachalam A K, Hein J, Kaluza M C 2013 Opt. Lett. 38 718

    [3]

    Lin S B, Wang P F, She J B, Guo H T, Xu S N, Yu C L, Liu C X, Peng B 2014 Chin. Phys. B 23 097801

    [4]

    Sun Y J, Lee C K, Xu J L, Zhu Z J, Wang Y Q, Gao S F, Xia H P, You Z Y, Tu C Y 2015 Photon. Res. 3 A97

    [5]

    Li J F, Gao P, Zheng L H, Su L B, Xu J, Liang X Y 2015 Chin. Opt. Lett. 13 011403

    [6]

    Röser F, Loeser M, Albach D, Siebold M, Grimm S, Brand D, Schwuchow A, Langner A, Schötz G, Schönfeld D, Schramm U 2015 Opt. Mater. Express 5 704

    [7]

    Wang J L, Wang X L, He B R, Zhu J F, Wei Z Y, Wang Y G 2015 Chin. Phys. B 24 097601

    [8]

    Tian W L, Zhu J F, Wang Z H, Wang J L, Wei Z Y 2014 Chin. Opt. Lett. 12 031401

    [9]

    Pirzio F, Cafiso S D D D, Kemnitzer M, Kienle F, Guandalini A, Au J A D, Agnesi A 2015 J. Opt. Soc. Am. B 32 2321

    [10]

    Zhao H, Major A 2013 Opt. Express 21 31846

    [11]

    Aballea P, Suganuma A, Druon F, Hostalrich J, Georges P, Gredin P, Mortier M 2015 Optica 2 288

    [12]

    Fries C, Weitz M, Theobald C, Menar PVLO, Bartschke J, L'huillier J A 2015 Conference on Solid State Lasers XXIV-Technology and Devices San Francisco, February 7, 2015 93421O-1

    [13]

    Dai S X, Sugiyama A, Hu L L, Liu Z P, Huang G S, Jiang Z H 2002 J. Non-Cryst. Solids 311 138

    [14]

    Koch R, Clarkson W A, Hanna D C, Jiang S, Myers M J, Rhonehouse D, Hamlin S J, Griebner U, Schönnagel H 1997 Opt. Commun. 134 175

    [15]

    Haumesser P H, Gaumé R, Viana B, Antic-Fidancev E, Vivien D 2001 J. Phys.-Condens. Mat. 13 5427

    [16]

    Zhang L Y, Xue T F, He D B, Guzik M, Boulon G 2015 Opt. Express 23 1505

    [17]

    Yang B H, Liu X Q, Wang X, Zhang J J, Hu L L, Zhang L Y 2014 Opt. Lett. 39 1772

    [18]

    Guyot Y, Canibano H, Goutaudier C, Novoselov A, Yoshikawa A, Fukuda T, Boulon G 2006 Opt. Mater. 28 1658

    [19]

    Auzel F 2001 J. Lumin. 93 129

    [20]

    Robinson C C, Fournier J T 1970 J. Phys. Chem. Solids 31 895

    [21]

    Gan F X 1995 J. Non-Cryst. Solid. 184 9

    [22]

    Gan F X 1982 Optical Glass (Vol. 1) (Beijing:Science Press) p63 (in Chinese) [干福熹 1982 光学玻璃(上卷)(北京:科学出版社) 第63页]

    [23]

    Lee E T Y, Taylor E R M 2006 Opt. Mater. 28 200

  • [1] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [2] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [3] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
  • Citation:
Metrics
  • Abstract views:  231
  • PDF Downloads:  124
  • Cited By: 0
Publishing process
  • Received Date:  04 November 2015
  • Accepted Date:  20 December 2015
  • Published Online:  05 March 2016

Effect of SiO2 on the Stark splitting enlargement of Yb3+ in phosphate glass

    Corresponding author: Zhang Li-Yan, jndxzly@hotmail.com
  • 1. Research and Development Center of High Power Laser Components, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of sciences, Shanghai 201800, China;
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61177083).

Abstract: Up to now, high-energy large-scale Yb3+ laser has still faced to the fact that no proper gain media are available, though researchers made a more than ten year effort for it. Yb: fluorophosphate glass is the only material used in a laser system, reaching an output of more than 10 TW. As is well known, the thermal blocking of Yb3+ laser is a bottleneck in laser operation, which is closely related to the Stark splitting of Yb3+ in a gain medium. Conventional Yb: phosphate glass has the advantages in Yb3+ concentration, lifetime and cross section over silicate glass, however, its small Stark splitting is the main drawback that induces difficulties in realizing laser output at room temperature. Yb: phosphate glass will be a good gain medium for high power Yb3+ laser if the Stark splitting is improved. This study focuses on the enlargement of the Yb3+ Stark splitting in phosphate glass by introducing SiO2, thereby achieving a large Stark splitting property compared with the phosphate glass. The glass 60P2O5-7.5Al2O3-15K2O-17.5BaO-1Yb2O3 is used as the base glass, and the modified glass denoted as PS is obtained by doping a certain amount of SiO2. Such a glass is prepared by the conventional melting-quenching method. Lorentz fitting is performed to the absorption and fluorescence spectra for determining the Stark splitting scheme. Raman spectrum is used for the auxiliary judgment of the attributions of the different spectroscopic bands. Then the results are confirmed by the barycenter law of Yb3+ ion. Investigations show that the addition of SiO2 can enlarge the Stark splitting obviously from the original 670 to 771 cm-1 in PS3. Scalar crystal field parameter N_{J} and asymmetry degree around Yb3+ are also increased due to SiO2 incorporation. Meanwhile, spectroscopic properties of PS series glasses, such as fluorescence effective line width (Δλeff) and fluorescence lifetime (τf), are moderately enhanced. The glass transition temperature is improved greatly, which is very valuable for high power Yb3+ laser. These results suggest that the introduction of a second network former is an effective way to enlarge the Stark splitting of Yb3+ in phosphate glass. Next, our investigation will focus on preparing the high-homogeneity SiO2 modified phosphate glasses and the corresponding laser experiments.

Reference (23)

Catalog

    /

    返回文章
    返回