搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nd3+/Yb3+共掺磷酸盐玻璃光纤的发光与激光特性研究

林治全 于春雷 何冬兵 冯素雅 张磊 陈丹平 胡丽丽

Nd3+/Yb3+共掺磷酸盐玻璃光纤的发光与激光特性研究

林治全, 于春雷, 何冬兵, 冯素雅, 张磊, 陈丹平, 胡丽丽
PDF
导出引用
导出核心图
  • 以970 nm和808 nm半导体激光器作为抽运源,从光纤长度和抽运功率两个方面,探讨了Nd3+/Yb3+摩尔浓度比约为4:1的共掺磷酸盐玻璃光纤的发光与激光特性.在970 nm抽运下,光纤光谱以Yb3+离子的发光为主,但Yb3+→Nd3+能量传递会对光纤光谱(激光和受激放大自发辐射)产生调制作用,调制作用随970 nm抽运功率或光纤长度的增加而显著,甚至出现显著的双波长激光现象.尽管玻璃样品中Nd3+→Yb3+的能量传递效率ηNd→Yb高达64%,但在808 nm抽运下,激光峰始终在1053 nm附近产生,且与808 nm抽运功率大小和光纤长度无关.为解释这一现象,推导了考虑Nd3+离子受激辐射的能量传递模型.从理论模型来看,Nd3+→Yb3+能量传递作用随Nd3+离子受激辐射信号光强度的增加而迅速减弱,这与该光纤实际测试的荧光光谱随808 nm抽运功率的变化规律相符合.因此,当采用Nd3+离子来敏化Yb3+离子时,需要考虑Nd3+离子的受激辐射对Nd3+→Yb3+能量传递的抑制作用.
      通信作者: 于春雷, sdycllcy@163.com
    • 基金项目: 国家自然科学基金(批准号:61405215,61505232)、中国科学院青年促进会和国家高技术研究发展计划(批准号:2016YFB0402201)资助的课题.
    [1]

    Rivera-Lopez F, Babu P, Basavapoornima C, Jayasankar C K, Lavin V 2011 J. Appl. Phys. 109 123514

    [2]

    Pearson A D, Porto S P S 1964 Appl. Phys. Lett. 4 202

    [3]

    Petit V, Camy P, Doualan J L, Moncorgé R 2006 Appl. Phys. Lett. 88 051111

    [4]

    Reichel V, Moerl K W, Unger S, Jetschke S, Mueller H, Kirchhof J, Sandrock T, Harschack A, Liem A, Limpert J, Zellmer H, Tuennermann A 2005 Proceedings of the XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers Bellingham, America, March 23, 2005 p404

    [5]

    Jetschke S, Reichel V, Moerl K, Unger S, Roepke U, Mueller H 2005 Proceedings of Fiber Lasers Ⅱ:Technology, Systems, and Applications Bellingham, America, April 22, 2005 p59

    [6]

    Limpert J, Liem A, Zellmer H, Tnnermann A 2003 Electron. Lett. 39 645

    [7]

    Jaque D, Ramirez M O, Bausá L E, Solé J G, Cavalli E, Speghini A, Bettinelli M 2003 Phys. Rev. B 68 035118

    [8]

    Ramirez M O, Jaque D, Bausá L E, Martín I R, Lahoz F, Cavalli E, Speghini A, Bettinelli M 2005 J. Appl. Phys. 97 093510

    [9]

    Galagan B I, Denker B I, Dmitruk L N, Motsartov V V, Osiko V V, Sverchkov S E 1996 J. Quantum Elect. 26 99

    [10]

    Sugimoto N, Ohishi Y, Katoh Y, Tate A, Shimokozono M, Sudo S 1995 Appl. Phys. Lett. 67 582

    [11]

    de Sousa D F, Batalioto F, Bell M J V, Oliveira S L, Nunes L A O 2001 J. Appl. Phys. 90 3308

    [12]

    Lurin C, Parent C, Le Flem G, Hagenmuller P 1985 J. Phys. Chem. Solids 46 1083

    [13]

    Lurin C, Parent C, Le Flem G 1985 J. Less-Common Metals 112 91

    [14]

    George S A, Pucilowski A, Hayden, J S, Urruti E H 2016 Proceeding of Advanced Solid State Lasers Boston, Massachusetts, Oct. 31-Nov. 3, 2016 pJTu2A. 18

    [15]

    Lupei V, Lupei A, Ikesue A 2005 Appl. Phys. Lett. 86 111118

    [16]

    Lupei V, Lupei A, Gheorghe C, Hau S, Ikesue A 2009 Opt. Lett. 34 2141

    [17]

    Borrero-González L J, Nunes L A O 2012 J. Phys.:Condens. Matter 24 385501

    [18]

    Borrero-González L J, Nunes L A O, Bianchi G S, Astrath F B G, Baesso M L 2013 J. Appl. Phys. 114 013103

    [19]

    Yu D C, Zhang Q Y 2013 Sci. China:Chem. 43 1431(in Chinese)[禹德朝, 张勤远2013中国科学:化学43 1431]

    [20]

    Jia Z T, Arcangeli A, Tao X T, Zhang J, Dong C M, Jiang M H, Bonelli L, Tonelli M 2009 J. Appl. Phys. 105 083113

    [21]

    Sontakke A D, Biswas K, Sen R, Annapurna K 2010 J. Opt. Soc. Am. B 27 2750

    [22]

    Chen S C, Mao S, Dai F M 1984 Acta Phys. Sin. 33 515 (in Chinese)[陈述春, 茅森, 戴凤妹1984物理学报33 515]

    [23]

    Jaque D, García Solé J, Macalik L, Hanuza J, Majchrowski A 2005 Appl. Phys. Lett. 86 011920

    [24]

    Jaque D, Solé J G, Speghini A, Bettinelli M, Cavalli E, Ródenas A 2006 Phys. Rev. B 74 035106

    [25]

    Xu W, Zhao H, Zhang Z G, Cao W W 2013 Sens. Actuator B:Chem. 178 520

    [26]

    Lin Z Q, Yu C L, He D B, Feng S Y, Chen D P, Hu L L 2016 IEEE Photon. Tech. Lett. 28 2673

    [27]

    Lou L R, Yin M, Li Q T 2014 Fundamentals of Luminescence Physics:Optical Transition Processes in Solids (Hefei:Press of University of Science and Technology of China) p152(in Chinese)[楼立人, 尹民, 李清庭2014发光物理基础:固体光跃迁过程(合肥:中国科学技术大学出版社)第152页]

    [28]

    George S, Carlie N, Pucilowski S, Hayden J 2014 US Patent 14 088973

    [29]

    Payne S A, Chase L L, Smith L K, Kway W L, Krupke W F 1992 IEEE J. Quantum Electron. 28 2619

  • [1]

    Rivera-Lopez F, Babu P, Basavapoornima C, Jayasankar C K, Lavin V 2011 J. Appl. Phys. 109 123514

    [2]

    Pearson A D, Porto S P S 1964 Appl. Phys. Lett. 4 202

    [3]

    Petit V, Camy P, Doualan J L, Moncorgé R 2006 Appl. Phys. Lett. 88 051111

    [4]

    Reichel V, Moerl K W, Unger S, Jetschke S, Mueller H, Kirchhof J, Sandrock T, Harschack A, Liem A, Limpert J, Zellmer H, Tuennermann A 2005 Proceedings of the XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers Bellingham, America, March 23, 2005 p404

    [5]

    Jetschke S, Reichel V, Moerl K, Unger S, Roepke U, Mueller H 2005 Proceedings of Fiber Lasers Ⅱ:Technology, Systems, and Applications Bellingham, America, April 22, 2005 p59

    [6]

    Limpert J, Liem A, Zellmer H, Tnnermann A 2003 Electron. Lett. 39 645

    [7]

    Jaque D, Ramirez M O, Bausá L E, Solé J G, Cavalli E, Speghini A, Bettinelli M 2003 Phys. Rev. B 68 035118

    [8]

    Ramirez M O, Jaque D, Bausá L E, Martín I R, Lahoz F, Cavalli E, Speghini A, Bettinelli M 2005 J. Appl. Phys. 97 093510

    [9]

    Galagan B I, Denker B I, Dmitruk L N, Motsartov V V, Osiko V V, Sverchkov S E 1996 J. Quantum Elect. 26 99

    [10]

    Sugimoto N, Ohishi Y, Katoh Y, Tate A, Shimokozono M, Sudo S 1995 Appl. Phys. Lett. 67 582

    [11]

    de Sousa D F, Batalioto F, Bell M J V, Oliveira S L, Nunes L A O 2001 J. Appl. Phys. 90 3308

    [12]

    Lurin C, Parent C, Le Flem G, Hagenmuller P 1985 J. Phys. Chem. Solids 46 1083

    [13]

    Lurin C, Parent C, Le Flem G 1985 J. Less-Common Metals 112 91

    [14]

    George S A, Pucilowski A, Hayden, J S, Urruti E H 2016 Proceeding of Advanced Solid State Lasers Boston, Massachusetts, Oct. 31-Nov. 3, 2016 pJTu2A. 18

    [15]

    Lupei V, Lupei A, Ikesue A 2005 Appl. Phys. Lett. 86 111118

    [16]

    Lupei V, Lupei A, Gheorghe C, Hau S, Ikesue A 2009 Opt. Lett. 34 2141

    [17]

    Borrero-González L J, Nunes L A O 2012 J. Phys.:Condens. Matter 24 385501

    [18]

    Borrero-González L J, Nunes L A O, Bianchi G S, Astrath F B G, Baesso M L 2013 J. Appl. Phys. 114 013103

    [19]

    Yu D C, Zhang Q Y 2013 Sci. China:Chem. 43 1431(in Chinese)[禹德朝, 张勤远2013中国科学:化学43 1431]

    [20]

    Jia Z T, Arcangeli A, Tao X T, Zhang J, Dong C M, Jiang M H, Bonelli L, Tonelli M 2009 J. Appl. Phys. 105 083113

    [21]

    Sontakke A D, Biswas K, Sen R, Annapurna K 2010 J. Opt. Soc. Am. B 27 2750

    [22]

    Chen S C, Mao S, Dai F M 1984 Acta Phys. Sin. 33 515 (in Chinese)[陈述春, 茅森, 戴凤妹1984物理学报33 515]

    [23]

    Jaque D, García Solé J, Macalik L, Hanuza J, Majchrowski A 2005 Appl. Phys. Lett. 86 011920

    [24]

    Jaque D, Solé J G, Speghini A, Bettinelli M, Cavalli E, Ródenas A 2006 Phys. Rev. B 74 035106

    [25]

    Xu W, Zhao H, Zhang Z G, Cao W W 2013 Sens. Actuator B:Chem. 178 520

    [26]

    Lin Z Q, Yu C L, He D B, Feng S Y, Chen D P, Hu L L 2016 IEEE Photon. Tech. Lett. 28 2673

    [27]

    Lou L R, Yin M, Li Q T 2014 Fundamentals of Luminescence Physics:Optical Transition Processes in Solids (Hefei:Press of University of Science and Technology of China) p152(in Chinese)[楼立人, 尹民, 李清庭2014发光物理基础:固体光跃迁过程(合肥:中国科学技术大学出版社)第152页]

    [28]

    George S, Carlie N, Pucilowski S, Hayden J 2014 US Patent 14 088973

    [29]

    Payne S A, Chase L L, Smith L K, Kway W L, Krupke W F 1992 IEEE J. Quantum Electron. 28 2619

  • [1] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [2] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [3] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [4] 胡耀华, 刘艳, 穆鸽, 秦齐, 谭中伟, 王目光, 延凤平. 基于多模光纤散斑的压缩感知在光学图像加密中的应用. 物理学报, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [5] 赵超樱, 范钰婷, 孟义朝, 郭奇志, 谭维翰. 圆柱型光纤螺线圈轨道角动量模式. 物理学报, 2020, 69(5): 054207. doi: 10.7498/aps.69.20190997
    [6] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [7] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [8] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [9] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [10] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [11] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [12] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [13] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [14] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [15] 周旭聪, 石尚, 李飞, 孟庆田, 王兵兵. 利用双色激光场下域上电离谱鉴别H32+ 两种不同分子构型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200013
    [16] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [17] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
  • 引用本文:
    Citation:
计量
  • 文章访问数:  221
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-20
  • 修回日期:  2017-06-05
  • 刊出日期:  2017-08-20

Nd3+/Yb3+共掺磷酸盐玻璃光纤的发光与激光特性研究

  • 1. 中国科学院上海光学精密机械研究所, 强激光材料重点实验室, 上海 201800;
  • 2. 中国科学院大学, 北京 100049
  • 通信作者: 于春雷, sdycllcy@163.com
    基金项目: 

    国家自然科学基金(批准号:61405215,61505232)、中国科学院青年促进会和国家高技术研究发展计划(批准号:2016YFB0402201)资助的课题.

摘要: 以970 nm和808 nm半导体激光器作为抽运源,从光纤长度和抽运功率两个方面,探讨了Nd3+/Yb3+摩尔浓度比约为4:1的共掺磷酸盐玻璃光纤的发光与激光特性.在970 nm抽运下,光纤光谱以Yb3+离子的发光为主,但Yb3+→Nd3+能量传递会对光纤光谱(激光和受激放大自发辐射)产生调制作用,调制作用随970 nm抽运功率或光纤长度的增加而显著,甚至出现显著的双波长激光现象.尽管玻璃样品中Nd3+→Yb3+的能量传递效率ηNd→Yb高达64%,但在808 nm抽运下,激光峰始终在1053 nm附近产生,且与808 nm抽运功率大小和光纤长度无关.为解释这一现象,推导了考虑Nd3+离子受激辐射的能量传递模型.从理论模型来看,Nd3+→Yb3+能量传递作用随Nd3+离子受激辐射信号光强度的增加而迅速减弱,这与该光纤实际测试的荧光光谱随808 nm抽运功率的变化规律相符合.因此,当采用Nd3+离子来敏化Yb3+离子时,需要考虑Nd3+离子的受激辐射对Nd3+→Yb3+能量传递的抑制作用.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回