Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental investigation and numerical simulation on liquid phase separation of ternary Fe-Sn-Si/Ge monotectic alloy

Wu Yu-Hao Wang Wei-Li Wei Bing-Bo

Experimental investigation and numerical simulation on liquid phase separation of ternary Fe-Sn-Si/Ge monotectic alloy

Wu Yu-Hao, Wang Wei-Li, Wei Bing-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The liquid phase separation of small Fe-Sn-Si/Ge alloy droplets under reduced-gravity condition is investigated experimentally by free fall technique and theoretically by lattice Boltzmann method. In the drop tube experiments, the Fe-Sn-Si/Ge monotectic alloys are heated by induction heating in an ultrahigh vacuum chamber and further overheated to 200 K above their liquid temperatures for a few seconds. Finally, the molten alloy melt is ejected out from the small orifice of a quartz tube by high pressure jetting gas of He and dispersed into numerous tiny droplets, which are rapidly solidified during free fall in a protecting He gas environment. These droplets benefit from the combined advantages of high undercooling, containerless state and rapid cooling, which can provide an efficient way to study the liquid phase separation of high-temperature alloys in microgravity. In order to efficiently reproduce the dynamic process of phase separation inside drop tube equipment, the effects of surface segregation and Marangoni convection are introduced into the interaction potential of different liquids within lattice Boltzmann theory. Based on this modified model, the dynamic mechanism of phase separation can be sufficiently analyzed and the phase separation patterns can be realistically simulated. Experimental results demonstrate that conspicuous liquid phase separations have taken place for both Fe-Sn-Si and Fe-Sn-Ge alloy droplets and the corresponding morphologies are mainly characterized by core-shell and dispersed structures. The phase separation process can be modulated by the third-element addition. As the Si element of Fe-Sn-Si alloy is replaced by the Ge element with the same fraction, the distribution order of Fe-rich and Sn-rich zones is reversed within core-shell structure. A core-shell structure composed of a Fe-rich core and a Sn-rich shell is frequently observed in Fe-Sn-Si alloy droplets whereas the Fe-Sn-Ge alloy droplets tend to form a core-shell structure consisting of a Sn-rich core and a Fe-rich shell. Theoretical calculations show that the droplet cooling rate is closely related to droplet size: a smaller alloy droplet has a higher cooling rate. The liquid L2(Sn) phase always nucleates preferentially and forms tiny globules prior to solid Fe phase. Stokes motion can be greatly weakened in this experiment and the Marangoni migration dominates the globule movement in the process of liquid phase separation. Furthermore, the intensity of Marangoni convection within Fe-Sn-Ge alloy droplets is significantly stronger than that inside Fe-Sn-Si alloy droplets. Numerical simulations reveal that the cooling rate, Marangoni convection and surface segregation play the important roles in determining the selection of core-shell configurations and the formation of dispersed structures. Ultrahigh cooling rate contributes to forming the dispersed structures. When the Marangoni convection proceeds more drastically than the surface segregation, the minor liquid phase with a smaller surface free energy migrates to droplet center and occupies the interior of droplet, otherwise most of the minor phases appear around the periphery of droplet.
      Corresponding author: Wei Bing-Bo, bbwei@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51271150, 51371150, 51571163, 51327901).
    [1]

    Delfino G, Squarcini A 2014 Phys. Rev. Lett. 113 066101

    [2]

    Cui L M, Li J, Zhang Y, Zhao L, Deng H, Huang K Q, Li H K, Zheng D N 2014 Chin. Phys. B 23 098501

    [3]

    Sabin J, Bailey A E, Espinosa G, Frisken B J 2012 Phys. Rev. Lett. 109 195701

    [4]

    Prisk T R, Pantalei C, Kaiser H, Sokol P E 2012 Phys. Rev. Lett. 109 075301

    [5]

    Wu Y H, Wang W L, Wei B 2015 Comp. Mater. Sci. 103 179

    [6]

    Patel A J, Rappl T J, Balsara N P 2011 Phys. Rev. Lett. 106 035702

    [7]

    Zhang X M, Wang W L, Ruan Y, Wei B 2010 Chin. Phys. Lett. 27 026401

    [8]

    Takahashi Y, Yamaoka K, Yamazaki Y, Miyazaki T, Fujiwara T 2013 Appl. Phys. Lett. 103 071909

    [9]

    Roussel M, Talbot E, Pareige C, Nalini R P, Gourbilleau F, Pareige P 2013 Appl. Phys. Lett. 103 203109

    [10]

    Yan N, Wang W L, Dai F P, Wei B B 2011 Acta Phys. Sin. 60 034602 (in Chinese) [闫娜, 王伟丽, 代富平, 魏炳波 2011 物理学报 60 034602]

    [11]

    Baruah S, Ganesh R, Avinash K 2015 J. Chem. Phys. 22 082116

    [12]

    Luo B C, Liu X R, Wei B 2009 J. Appl. Phys. 106 053523

    [13]

    Hatch H W, Mittal J, Shen V K 2015 J. Chem. Phys. 142 164901

    [14]

    Moucka F, Bratko D, Luzar A 2015 J. Chem. Phys. 142 124705

    [15]

    Wang W L, Wu Y H, Li L H, Zhai W, Zhang X M, Wei B 2015 Sci. Rep. 5 16335

    [16]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [17]

    Jansen H P, Sotthewes K, Swigchem J V, Zandvliet H J W, Kooij E S 2013 Phys. Rev. E 88 013008

    [18]

    Zhou F M, Sun D K, Zhu M F 2009 Acta Phys. Sin. 59 3394 (in Chinese) [周丰茂, 孙东科, 朱鸣芳 2009 物理学报 59 3394]

    [19]

    Turnbull D 1950 J. Appl. Phys. 21 1022

    [20]

    Cahn J W, Hilliard J H 1958 J. Chem. Phys. 28 258

    [21]

    Spaepen F 1975 Acta Metall. 23 729

    [22]

    Rogers J R, Davis R H 1990 Metall. Trans. A 21 59

    [23]

    Young N O, Goldstein J S, Block M J 1959 J. Fluid. Mech. 6 350

    [24]

    Smithells C J 1984 Metals Reference Book (6th Ed.) (London: Butterworth) pp10-16

  • [1]

    Delfino G, Squarcini A 2014 Phys. Rev. Lett. 113 066101

    [2]

    Cui L M, Li J, Zhang Y, Zhao L, Deng H, Huang K Q, Li H K, Zheng D N 2014 Chin. Phys. B 23 098501

    [3]

    Sabin J, Bailey A E, Espinosa G, Frisken B J 2012 Phys. Rev. Lett. 109 195701

    [4]

    Prisk T R, Pantalei C, Kaiser H, Sokol P E 2012 Phys. Rev. Lett. 109 075301

    [5]

    Wu Y H, Wang W L, Wei B 2015 Comp. Mater. Sci. 103 179

    [6]

    Patel A J, Rappl T J, Balsara N P 2011 Phys. Rev. Lett. 106 035702

    [7]

    Zhang X M, Wang W L, Ruan Y, Wei B 2010 Chin. Phys. Lett. 27 026401

    [8]

    Takahashi Y, Yamaoka K, Yamazaki Y, Miyazaki T, Fujiwara T 2013 Appl. Phys. Lett. 103 071909

    [9]

    Roussel M, Talbot E, Pareige C, Nalini R P, Gourbilleau F, Pareige P 2013 Appl. Phys. Lett. 103 203109

    [10]

    Yan N, Wang W L, Dai F P, Wei B B 2011 Acta Phys. Sin. 60 034602 (in Chinese) [闫娜, 王伟丽, 代富平, 魏炳波 2011 物理学报 60 034602]

    [11]

    Baruah S, Ganesh R, Avinash K 2015 J. Chem. Phys. 22 082116

    [12]

    Luo B C, Liu X R, Wei B 2009 J. Appl. Phys. 106 053523

    [13]

    Hatch H W, Mittal J, Shen V K 2015 J. Chem. Phys. 142 164901

    [14]

    Moucka F, Bratko D, Luzar A 2015 J. Chem. Phys. 142 124705

    [15]

    Wang W L, Wu Y H, Li L H, Zhai W, Zhang X M, Wei B 2015 Sci. Rep. 5 16335

    [16]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [17]

    Jansen H P, Sotthewes K, Swigchem J V, Zandvliet H J W, Kooij E S 2013 Phys. Rev. E 88 013008

    [18]

    Zhou F M, Sun D K, Zhu M F 2009 Acta Phys. Sin. 59 3394 (in Chinese) [周丰茂, 孙东科, 朱鸣芳 2009 物理学报 59 3394]

    [19]

    Turnbull D 1950 J. Appl. Phys. 21 1022

    [20]

    Cahn J W, Hilliard J H 1958 J. Chem. Phys. 28 258

    [21]

    Spaepen F 1975 Acta Metall. 23 729

    [22]

    Rogers J R, Davis R H 1990 Metall. Trans. A 21 59

    [23]

    Young N O, Goldstein J S, Block M J 1959 J. Fluid. Mech. 6 350

    [24]

    Smithells C J 1984 Metals Reference Book (6th Ed.) (London: Butterworth) pp10-16

  • [1] Chen Ke-Ping, Lü Peng, Peng Wang. Liquid-solid phase transition of Cu-Zr eutectic alloy under microgravity condition. Acta Physica Sinica, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [2] Dai Fu-Ping, Wei Bing-Bo, Xu Jin-Feng. Phase separation of Cu-Pb monotectic alloy during rapid solidification. Acta Physica Sinica, 2007, 56(7): 3996-4003. doi: 10.7498/aps.56.3996
    [3] Mi Guang-Bao, Li Pei-Jie, Охапкин А В, Константинова Н Ю, Сабирзянов А А, Попель П С. Relationship between liquid structure and property Ⅱ—— Kinematic viscosity of Mg-9Al melt and its relationship with the microstructure. Acta Physica Sinica, 2011, 60(5): 056601. doi: 10.7498/aps.60.056601
    [4] LI HONG, ZHANG HAI -FENG, DING BING-ZHE, WANG CHAO-YING, ZHAI GUANG-JIE, WU LAN-SHENG, MAI ZHEN-HONG. EFFECT OF GRAVITY ON THE WETTING BEHAVIOR OF MOLTEN GaSb DROP. Acta Physica Sinica, 2000, 49(10): 2094-2100. doi: 10.7498/aps.49.2094
    [5] Yang Chun, Chen Min, Guo Zeng-Yuan, Yao Wen-Jing, Han Xiu-Jun, Wei Bing-Bo. Rapid dendritic growth in an undercooled Ni-Cu alloy under the microgravity condition. Acta Physica Sinica, 2003, 52(2): 448-453. doi: 10.7498/aps.52.448
    [6] Yan Na, Wang Wei-Li, Dai Fu-Ping, Wei Bing-Bo. Microstructure formation mechanism of rapidly solidified ternary Co-Cu-Pb monotectic alloys. Acta Physica Sinica, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [7] Wang Ru-Jia, Wu Shi-Ping, Chen Wei. Propagation of thermoviscoelastic wave in inhomogeneous alloy melt with varying temperature. Acta Physica Sinica, 2019, 68(4): 048101. doi: 10.7498/aps.68.20181923
    [8] Zhai Wei, Wang Nan, Wei Bing-Bo. Direct observation of phase separation in binary monotectic solution. Acta Physica Sinica, 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [9] Li Yong-Qiang, Zhang Chen-Hui, Liu Ling, Duan Li, Kang Qi. The analytical approximate solutions of capillary flow in circular tubes under microgravity. Acta Physica Sinica, 2013, 62(4): 044701. doi: 10.7498/aps.62.044701
    [10] Zhou Hong-Wei, Wang Lin-Wei, Xu Sheng-Hua, Sun Zhi-Wei. Capillary-driven flow in tubes connected to the containers under microgravity condition. Acta Physica Sinica, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [11] HUO CHONG-RU, GE PEI-WEN, CHEN DONG, ZHU ZHEN-HE. THE STABILITY OF THE CRYSTAL GROWTH FACE IN A MODEL FOR CRYSTAL GROWTH FROM SOLUTION UNDER MICROGRAVITY . Acta Physica Sinica, 2001, 50(3): 377-382. doi: 10.7498/aps.50.377
    [12] Shi Feng, Li Wei-Bin, Li Jing-Qing, Lan Ding, Wang Yu-Ren. Self-excited oscillation of droplets on confined substrate with instantaneous weightlessness. Acta Physica Sinica, 2015, 64(19): 196801. doi: 10.7498/aps.64.196801
    [13] Xia Zhen-Chao, Wang Wei-Li, Luo Sheng-Bao, Wei Bing-Bo. Rapid solidification mechanism and magnetic property of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy. Acta Physica Sinica, 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
    [14] Xu Sheng-Hua, Zhou Hong-Wei, Wang Cai-Xia, Wang Lin-Wei, Sun Zhi-Wei. Experimental study on the capillary flow in tubes of different shapes under microgravity condition. Acta Physica Sinica, 2013, 62(13): 134702. doi: 10.7498/aps.62.134702
    [15] LI MAO-ZI, JIANG GUO-JIAN, ZHANG QING-XUE, ZHUANG HAN-RUI, LI WEN-LAN. STUDIES OF GRAVITY BEHAVIORS IN THE COURSE OF PRODUCING AlN AND TiC MATERIALS(Ⅱ ). Acta Physica Sinica, 2000, 49(12): 2498-2501. doi: 10.7498/aps.49.2498
    [16] LI MAO-ZI, JIANG GUO-JIAN, ZHANG QING-XUE, ZHUANG HAN-RUI, LI WEN-LAN. STUDIES OF GRAVITY BEHAVIORS IN THE COURSE OF PRODUCING AlN AND TiC MATERIALS(Ⅲ ). Acta Physica Sinica, 2000, 49(12): 2502-2506. doi: 10.7498/aps.49.2502
    [17] LI MAO-ZI, JIANG GUO-JIAN, ZHANG QING-XUE, ZHUANG HAN-RUI, LI WEN-LAN. STUDIES OF GRAVITY BEHAVIORS IN THE COURSE OF PRODUCING AlN AND TiC MATERIALS(Ⅰ ). Acta Physica Sinica, 2000, 49(12): 2494-2497. doi: 10.7498/aps.49.2494
    [18] Li Si-Qi, Qi Wei-Hong. Calculation of absorption spectrum of silver-gold bimetallic nanoparticles. Acta Physica Sinica, 2014, 63(11): 117802. doi: 10.7498/aps.63.117802
    [19] Wang Hua, Chen Qiong, Wang Wen-Guang, Hou Mei-Ying. Experimental study of clustering behaviors in granular gases. Acta Physica Sinica, 2016, 65(1): 014502. doi: 10.7498/aps.65.014502
    [20] Gu Qian-Qian, Ruan Ying, Dai Fu-Ping. Rapid solidification mechanism of Fe-Al-Nb alloy droplet and its influence on microhardness under microgravity condition. Acta Physica Sinica, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
  • Citation:
Metrics
  • Abstract views:  723
  • PDF Downloads:  419
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2016
  • Accepted Date:  02 March 2016
  • Published Online:  05 May 2016

Experimental investigation and numerical simulation on liquid phase separation of ternary Fe-Sn-Si/Ge monotectic alloy

    Corresponding author: Wei Bing-Bo, bbwei@nwpu.edu.cn
  • 1. Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710072, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 51271150, 51371150, 51571163, 51327901).

Abstract: The liquid phase separation of small Fe-Sn-Si/Ge alloy droplets under reduced-gravity condition is investigated experimentally by free fall technique and theoretically by lattice Boltzmann method. In the drop tube experiments, the Fe-Sn-Si/Ge monotectic alloys are heated by induction heating in an ultrahigh vacuum chamber and further overheated to 200 K above their liquid temperatures for a few seconds. Finally, the molten alloy melt is ejected out from the small orifice of a quartz tube by high pressure jetting gas of He and dispersed into numerous tiny droplets, which are rapidly solidified during free fall in a protecting He gas environment. These droplets benefit from the combined advantages of high undercooling, containerless state and rapid cooling, which can provide an efficient way to study the liquid phase separation of high-temperature alloys in microgravity. In order to efficiently reproduce the dynamic process of phase separation inside drop tube equipment, the effects of surface segregation and Marangoni convection are introduced into the interaction potential of different liquids within lattice Boltzmann theory. Based on this modified model, the dynamic mechanism of phase separation can be sufficiently analyzed and the phase separation patterns can be realistically simulated. Experimental results demonstrate that conspicuous liquid phase separations have taken place for both Fe-Sn-Si and Fe-Sn-Ge alloy droplets and the corresponding morphologies are mainly characterized by core-shell and dispersed structures. The phase separation process can be modulated by the third-element addition. As the Si element of Fe-Sn-Si alloy is replaced by the Ge element with the same fraction, the distribution order of Fe-rich and Sn-rich zones is reversed within core-shell structure. A core-shell structure composed of a Fe-rich core and a Sn-rich shell is frequently observed in Fe-Sn-Si alloy droplets whereas the Fe-Sn-Ge alloy droplets tend to form a core-shell structure consisting of a Sn-rich core and a Fe-rich shell. Theoretical calculations show that the droplet cooling rate is closely related to droplet size: a smaller alloy droplet has a higher cooling rate. The liquid L2(Sn) phase always nucleates preferentially and forms tiny globules prior to solid Fe phase. Stokes motion can be greatly weakened in this experiment and the Marangoni migration dominates the globule movement in the process of liquid phase separation. Furthermore, the intensity of Marangoni convection within Fe-Sn-Ge alloy droplets is significantly stronger than that inside Fe-Sn-Si alloy droplets. Numerical simulations reveal that the cooling rate, Marangoni convection and surface segregation play the important roles in determining the selection of core-shell configurations and the formation of dispersed structures. Ultrahigh cooling rate contributes to forming the dispersed structures. When the Marangoni convection proceeds more drastically than the surface segregation, the minor liquid phase with a smaller surface free energy migrates to droplet center and occupies the interior of droplet, otherwise most of the minor phases appear around the periphery of droplet.

Reference (24)

Catalog

    /

    返回文章
    返回