Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Manipulation of lattice vibration by ultrafast spectroscopy

Wang Jian-Li Guo Liang Xu Xian-Fan Ni Zhong-Hua Chen Yun-Fei

Manipulation of lattice vibration by ultrafast spectroscopy

Wang Jian-Li, Guo Liang, Xu Xian-Fan, Ni Zhong-Hua, Chen Yun-Fei
PDF
Get Citation
  • The ultrafast pump-probe spectroscopy allows us to make movies of the dynamics of the carriers and vibrational excitations on the timescales shorter than the typical scattering time. In general, the temporal evolution of the reflectivity change is comprised of the oscillatory and the non-oscillatory components. The former corresponds to the coherent lattice vibration, while the latter is related to the complex cooling process of the hot carriers. To investigate the dynamics of the hot carrier and the lattice vibration, it is necessary to decouple the two parts in the detected signal. Comparatively, the manipulation of the coherent lattice vibration is easier in spite of its super-high frequency and subatomic vibration amplitude. In this work, the behavior of the coherent lattice vibration in Bi2Te3 single crystalline film with a thickness of 100 nm is studied by using the double pump-single probe ultrafast spectroscopy. Firstly, the coherent lattice vibration with the subatomic amplitude and a frequency of about 1.856 THz is simulated by a femtosecond pump pulse, and its damped oscillation signal is detected by the reflectivity change of a probe pulse. Compared with the Raman spectrum, this vibration is confirmed to be the coherent optical phonon with A1g1 symmetric vibration mode. To manipulate this lattice vibration, a pulse shaper is then installed in the pump-beam arm to generate double pump pulses with the different separation times and the intensity ratios. The resulting reflectivity change is found to be a superposition of the pulse train: the oscillation amplitude is enhanced when the separation time is matched to the period of the oscillation; if the separation time is the odd times the half-period of the oscillation, the A1g1 vibration mode can be completely cancelled out after adjusting the intensity ratio. Finally, by maintaining the same intensity ratio, the amplitudes of the oscillation signals after the second pump pulse are measured with different separation times. The results agree well with the theoretical predictions: the amplitude of the oscillation after the second pump pulse shows a cosine function of separation time with a period of about 1080 fs, which is the twice the period of the oscillation illuminated by a single pump pulse. This work suggests that the lattice vibration can be optically manipulated, thus provides an effective way to disentangle the lifetimes of the phonons and the interactions with the excited carriers in the ultrafast energy relaxation process in semiconductor, which is extremely important for a number of interesting phenomena such as the non-thermal melting and the insulator-to-metal transition.
      Corresponding author: Wang Jian-Li, wangjianli@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 51476033).
    [1]

    Binning G, Rohrer H 1983 Surf. Sci. 126 236

    [2]

    Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese)[田艳, 黄丽, 罗懋康2013物理学报62 050502]

    [3]

    Kittle C 1996 Introduction to Solid State Physics(New York:John Wiley) pp107-108

    [4]

    Timoshenko S, Young D H, Weaver W 1974 Vibration Problems in Engineering(New York:John Wiley) pp30-61

    [5]

    Zhao X H, Ma F, Wu Y S, Zhang J P, Ai X C 2008 Acta Phys. Sin. 57 298 (in Chinese)[赵晓辉, 马菲, 吴义室, 张建平, 艾希成2008物理学报57 298]

    [6]

    Maznev A A, Hofmann F, Jandl A, Esfarjani K, Bulsara M T, Fitzgerald E A, Chen G, Nelson K A 2013 Appl. Phys. Lett. 102 041901

    [7]

    Hsieh C S, Bakker H J, Piatkowski L, Bonn M 2014 J. Phys. Chem. C 118 20875

    [8]

    Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K, Zhao J M 2016 Phys. Rev. Lett. 116 107001

    [9]

    Zhao J M, Bragas A V, Lockwood D J, Merlin R 2004 Phys. Rev. Lett. 93 107203

    [10]

    Zhao J M, Bragas A V, Merlin R, Lockwood D J 2006 Phys. Rev. B 73 184434

    [11]

    Weiner A M, Leaird D E, Wiederrecht G P, Nelson K A 1990 Science 247 1317

    [12]

    Zeiger H J, Vidal J, Cheng T K, Ippen E P, Dresselhaus G, Dresselhaus M S 1992 Phys. Rev. B 45 768

    [13]

    Cheng T K, Vidal J, Zeiger H J, Dresselhaus G, Dresselhaus M S, Ippen E P 1991 Appl. Phys. Lett. 59 1923

    [14]

    Stevens T E, Kuhl J, Merlin R 2002 Phys. Rev. B 65 144304

    [15]

    Riffe D M, Sabbah A J 2007 Phys. Rev. B 76 085207

    [16]

    DeCamp M F, Reis D A, Bucksbaum P H, Merlin R 2001 Phys. Rev. B 64 092301

    [17]

    Cho G C, Ktt W, Kurz H 1990 Phys. Rev. Lett. 65 764

    [18]

    Wu A Q, Xu X F, Venkatasubramanian R 2008 Appl. Phys. Lett. 92 011108

    [19]

    Qi J, Chen X, Yu W, Cadden-Zimansky P, Smirnov D, Tolk N H, Miotkowski I, Cao H, Chen Y P, Wu Y, Qiao S, Jiang Z 2010 Appl. Phys. Lett. 97 182102

    [20]

    Hase M, Kitajima M, Constantinescu A M, Petek H 2003 Nature 426 51

    [21]

    Ishioka K, Hase M, Kitajima M, Wirtz L, Rubio A, Petek H 2008 Phys. Rev. B 77 121402

    [22]

    Lim Y S, Yee K J, Kim J H, Hároz E H, Shaver J, Junichiro K, Doorn S K, Hauge R H, Smalley R E 2006 Nano Lett. 6 2696

    [23]

    Hase M, Ishioka K, Kitajima M, Ushida K, Hishita S 2000 Appl. Phys. Lett. 76 1258

    [24]

    Wu A Q, Xu X 2007 Appl. Phys. Lett. 90 251111

    [25]

    Othonos A 1998 J. Appl. Phys. 83 1789

    [26]

    Wang J L, Guo L, Ling C, Song Y M, Xu X F, Ni Z H, Chen Y F 2016 Phys. Rev. B 93 155306

    [27]

    Kumar N, Ruzicka B A, Butch N P, Syers P, Kirshenbaum K, Paglione J, Zhao H 2011 Phys. Rev. B 83 235306

    [28]

    Wang J L, Guo L, Liu C H, Xu X F, Chen Y F 2015 Appl. Phys. Lett. 107 063107

    [29]

    Wang Y G, Guo L, Xu X F 2013 Phys. Rev. B 88 064307

    [30]

    Richter W, Köhler H, Becker C R 1977 Phys. Stat. Sol.(b) 84 619

    [31]

    Min L X, Dwayne Miller R J 1990 Appl. Phys. Lett. 56 524

    [32]

    Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P, Gauthier J C, Hulin D 2001 Nature 410 65

  • [1]

    Binning G, Rohrer H 1983 Surf. Sci. 126 236

    [2]

    Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese)[田艳, 黄丽, 罗懋康2013物理学报62 050502]

    [3]

    Kittle C 1996 Introduction to Solid State Physics(New York:John Wiley) pp107-108

    [4]

    Timoshenko S, Young D H, Weaver W 1974 Vibration Problems in Engineering(New York:John Wiley) pp30-61

    [5]

    Zhao X H, Ma F, Wu Y S, Zhang J P, Ai X C 2008 Acta Phys. Sin. 57 298 (in Chinese)[赵晓辉, 马菲, 吴义室, 张建平, 艾希成2008物理学报57 298]

    [6]

    Maznev A A, Hofmann F, Jandl A, Esfarjani K, Bulsara M T, Fitzgerald E A, Chen G, Nelson K A 2013 Appl. Phys. Lett. 102 041901

    [7]

    Hsieh C S, Bakker H J, Piatkowski L, Bonn M 2014 J. Phys. Chem. C 118 20875

    [8]

    Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K, Zhao J M 2016 Phys. Rev. Lett. 116 107001

    [9]

    Zhao J M, Bragas A V, Lockwood D J, Merlin R 2004 Phys. Rev. Lett. 93 107203

    [10]

    Zhao J M, Bragas A V, Merlin R, Lockwood D J 2006 Phys. Rev. B 73 184434

    [11]

    Weiner A M, Leaird D E, Wiederrecht G P, Nelson K A 1990 Science 247 1317

    [12]

    Zeiger H J, Vidal J, Cheng T K, Ippen E P, Dresselhaus G, Dresselhaus M S 1992 Phys. Rev. B 45 768

    [13]

    Cheng T K, Vidal J, Zeiger H J, Dresselhaus G, Dresselhaus M S, Ippen E P 1991 Appl. Phys. Lett. 59 1923

    [14]

    Stevens T E, Kuhl J, Merlin R 2002 Phys. Rev. B 65 144304

    [15]

    Riffe D M, Sabbah A J 2007 Phys. Rev. B 76 085207

    [16]

    DeCamp M F, Reis D A, Bucksbaum P H, Merlin R 2001 Phys. Rev. B 64 092301

    [17]

    Cho G C, Ktt W, Kurz H 1990 Phys. Rev. Lett. 65 764

    [18]

    Wu A Q, Xu X F, Venkatasubramanian R 2008 Appl. Phys. Lett. 92 011108

    [19]

    Qi J, Chen X, Yu W, Cadden-Zimansky P, Smirnov D, Tolk N H, Miotkowski I, Cao H, Chen Y P, Wu Y, Qiao S, Jiang Z 2010 Appl. Phys. Lett. 97 182102

    [20]

    Hase M, Kitajima M, Constantinescu A M, Petek H 2003 Nature 426 51

    [21]

    Ishioka K, Hase M, Kitajima M, Wirtz L, Rubio A, Petek H 2008 Phys. Rev. B 77 121402

    [22]

    Lim Y S, Yee K J, Kim J H, Hároz E H, Shaver J, Junichiro K, Doorn S K, Hauge R H, Smalley R E 2006 Nano Lett. 6 2696

    [23]

    Hase M, Ishioka K, Kitajima M, Ushida K, Hishita S 2000 Appl. Phys. Lett. 76 1258

    [24]

    Wu A Q, Xu X 2007 Appl. Phys. Lett. 90 251111

    [25]

    Othonos A 1998 J. Appl. Phys. 83 1789

    [26]

    Wang J L, Guo L, Ling C, Song Y M, Xu X F, Ni Z H, Chen Y F 2016 Phys. Rev. B 93 155306

    [27]

    Kumar N, Ruzicka B A, Butch N P, Syers P, Kirshenbaum K, Paglione J, Zhao H 2011 Phys. Rev. B 83 235306

    [28]

    Wang J L, Guo L, Liu C H, Xu X F, Chen Y F 2015 Appl. Phys. Lett. 107 063107

    [29]

    Wang Y G, Guo L, Xu X F 2013 Phys. Rev. B 88 064307

    [30]

    Richter W, Köhler H, Becker C R 1977 Phys. Stat. Sol.(b) 84 619

    [31]

    Min L X, Dwayne Miller R J 1990 Appl. Phys. Lett. 56 524

    [32]

    Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P, Gauthier J C, Hulin D 2001 Nature 410 65

  • [1] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [2] Luo Duan, Hui Dan-Dan, Wen Wen-Long, Li Li-Li, Xin Li-Wei, Zhong Zi-Yuan, Ji Chao, Chen Ping, He Kai, Wang Xing, Tian Jin-Shou. Design of femtosecond electron diffractometer with adjustable gap. Acta Physica Sinica, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [3] Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan. Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [4] Control of spiral waves in excitable media under polarized electric fields. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191934
    [5] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [6] Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191858
    [7] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [8] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [9] Identifying two different configurations of the H32+ by the direct above-threshold ionization spectrum in two-color laser field. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200013
  • Citation:
Metrics
  • Abstract views:  295
  • PDF Downloads:  288
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2016
  • Accepted Date:  13 October 2016
  • Published Online:  05 January 2017

Manipulation of lattice vibration by ultrafast spectroscopy

    Corresponding author: Wang Jian-Li, wangjianli@seu.edu.cn
  • 1. Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, Southeast University, Nanjing 211189, China;
  • 2. School of Mechanical Engineering, Purdue University, West Lafayette 47907, USA
Fund Project:  Project supported by the National Natural Science Foundation of China(Grant No. 51476033).

Abstract: The ultrafast pump-probe spectroscopy allows us to make movies of the dynamics of the carriers and vibrational excitations on the timescales shorter than the typical scattering time. In general, the temporal evolution of the reflectivity change is comprised of the oscillatory and the non-oscillatory components. The former corresponds to the coherent lattice vibration, while the latter is related to the complex cooling process of the hot carriers. To investigate the dynamics of the hot carrier and the lattice vibration, it is necessary to decouple the two parts in the detected signal. Comparatively, the manipulation of the coherent lattice vibration is easier in spite of its super-high frequency and subatomic vibration amplitude. In this work, the behavior of the coherent lattice vibration in Bi2Te3 single crystalline film with a thickness of 100 nm is studied by using the double pump-single probe ultrafast spectroscopy. Firstly, the coherent lattice vibration with the subatomic amplitude and a frequency of about 1.856 THz is simulated by a femtosecond pump pulse, and its damped oscillation signal is detected by the reflectivity change of a probe pulse. Compared with the Raman spectrum, this vibration is confirmed to be the coherent optical phonon with A1g1 symmetric vibration mode. To manipulate this lattice vibration, a pulse shaper is then installed in the pump-beam arm to generate double pump pulses with the different separation times and the intensity ratios. The resulting reflectivity change is found to be a superposition of the pulse train: the oscillation amplitude is enhanced when the separation time is matched to the period of the oscillation; if the separation time is the odd times the half-period of the oscillation, the A1g1 vibration mode can be completely cancelled out after adjusting the intensity ratio. Finally, by maintaining the same intensity ratio, the amplitudes of the oscillation signals after the second pump pulse are measured with different separation times. The results agree well with the theoretical predictions: the amplitude of the oscillation after the second pump pulse shows a cosine function of separation time with a period of about 1080 fs, which is the twice the period of the oscillation illuminated by a single pump pulse. This work suggests that the lattice vibration can be optically manipulated, thus provides an effective way to disentangle the lifetimes of the phonons and the interactions with the excited carriers in the ultrafast energy relaxation process in semiconductor, which is extremely important for a number of interesting phenomena such as the non-thermal melting and the insulator-to-metal transition.

Reference (32)

Catalog

    /

    返回文章
    返回