Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental and theoretical study on terahertz spectra of all-trans -carotene

Yan Wei Ma Miao Dai Ze-Lin Gu Yu Zhu Hong-Zhao Liu Yu-Tong Xu Xiang-Dong Han Shou-Sheng Peng Yong

Experimental and theoretical study on terahertz spectra of all-trans -carotene

Yan Wei, Ma Miao, Dai Ze-Lin, Gu Yu, Zhu Hong-Zhao, Liu Yu-Tong, Xu Xiang-Dong, Han Shou-Sheng, Peng Yong
PDF
Get Citation
  • The -carotene is a short chain polyene molecule containing nine -electron conjugated double-bonds. Because of its special molecular structure, -carotene has been used widely in many fields, including functional materials, optoelectronic devices and biological applications of light collection, light protection, anti-cancer, etc. Recently, new applications of -carotene in generation and detection of terahertz (THz) wave have also attracted great attention. In this work, all-trans -carotene films are prepared by spray coating, and the THz spectra in a wavenumber range of 30-400 cm-1 (a frequency range of 0.9-12 THz) of the as-prepared products are experimentally measured at room temperature by Fourier transform infrared spectroscopy. For comparison, the THz spectra in 0.5-3.0 THz are also characterized at the same temperature by THz time-domain spectroscopy. Based on these measurements, the fingerprint peaks of all-trans -carotene in the THz region are experimentally identified to be located at 54 cm-1 (1.62 THz), 57 cm-1 (1.71 THz), 64 cm-1 (1.91 THz), 77 cm-1 (2.32 THz), 90 cm-1 (2.69 THz), 98 cm-1 (2.95 THz), 115 cm-1 (3.45 THz), 124 cm-1 (3.72 THz), 134 cm-1 (4.02 THz), 170 cm-1 (5.11 THz), 247 cm-1 (7.42 THz), and 279 cm-1 (8.38 THz), respectively. It is worth noting that the recent results about the THz spectra of palm leaves are thus verified. Particularly, the B3 LYP method of density functional theory is further utilized in this work to theoretically simulate the THz spectra of all-trans -carotene molecule. It is revealed that the theoretical simulation results accord well with those experimentally measured data. In addition, we also find that the absorption peaks are caused by the torsion, deformation and rocking vibration of the molecules. Accordingly, the vibrational modes of the measured THz characteristic peaks at 148 cm-1 (4.44 THz), 132 cm-1 (3.96 THz), 115 cm-1 (3.45 THz), 76 cm-1 (2.28 THz) and 52 cm-1 (1.56 THz) are theoretically assigned, which provides a reference to explain the formation mechanism of the THz spectra. The valuable results presented in this work will be helpful for promoting the studies of the THz spectral features and response mechanisms of the organics.
      Corresponding author: Xu Xiang-Dong, xdxu@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61071032, 61377063).
    [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [2]

    Shen Y C, Upadhya P C, Linfield E H, Davies A G 2004 Vib. Spectrosc. 35 111

    [3]

    Markelz A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42

    [4]

    Globus T R, Woolard D L, Khromova T, Crowe T W, Bykhovskaia M, Gelmont B L, Hesler J, Samuels A C 2003 J. Biol. Phys. 29 89

    [5]

    Taday P F, Bradley I V, Arnone D D 2003 J. Biol. Phys. 29 109

    [6]

    Guo H, He M, Huang R, Qi W, Guo W H, Su R X, He Z M 2014 RSC Adv. 4 57945

    [7]

    Schlcker S, Szeghalmi A, Schmitt M, Popp J, Kiefer W 2003 J. Raman Spectrosc. 34 413

    [8]

    Ziegler R G 1991 Am. J. Clin. Nutr. 53 251S

    [9]

    Sugisaki M, Fujiwara M, Nair S V, Ruda H E, Cogdell R J, Hashimoto H 2009 Phys. Rev. B 80 035118

    [10]

    Ostroumov E E, Muller M G, Reus M, Holzwarth A R 2011 J. Phys. Chem. A 115 3698

    [11]

    Yanagi K, Miyata Y, Kataura H 2006 Adv. Mater. 18 437

    [12]

    Zuo J, Zhang L L, Yu F, Zhang Z W, Zhang C L 2010 Proc. SPIE Beijing, China, October 18-22, 2010 p785439

    [13]

    Zhang L W, Zuo J, Zhang C L 2014 Spectrosc. Spect. Anal. 34 405 (in Chinese)[张磊巍, 左剑, 张存林2014光谱学与光谱分析34 405]

    [14]

    Liu Y K, Liu Y T, Xu X D, Yan W, Ma M, Zhu H Z, Ma C Q, Zou R J, Din L, Luo M J 2015 Acta Phys. Sin. 64 068701 (in Chinese)[刘一客, 刘禹彤, 许向东, 闫微, 马淼, 朱宏钊, 马春前, 邹瑞娇, 丁廉, 罗梦佳2015物理学报64 068701]

    [15]

    Hu Y Q, Chen Y J, Li H H, Wang H S 2012 Spectrosc. Spect. Anal. 32 339 (in Chinese)[胡燕琴, 陈玉静, 李慧华, 王海水2012光谱学与光谱分析32 339]

    [16]

    Naftaly M, Miles R E 2007 P. IEEE 95 1658

    [17]

    Zhang T J, Cai J H, Zhou Z K 2008 Spectrosc. Spect. Anal. 28 721 (in Chinese)[张同军, 蔡晋辉, 周泽魁2008光谱学与光谱分析28 721]

    [18]

    Mickan S P, Lee K S, Lu T M, Munch J, Abbott D, Zhang X C 2002 Microelectron. J. 12 1033

    [19]

    Li Y B, Zheng Y Y, Wang W N 2007 J. Capital Normal Univ.:Nat. Sci. Ed. 28 39 (in Chinese)[李元波, 郑盈盈, 王卫宁2007首都师范大学学报:自然科学版28 39]

    [20]

    Shen Y C, Upadhya P C, Linfield E H, Davies A G 2003 Appl. Phys. Lett. 82 2350

    [21]

    Ma J L, Xu K J, Li Z, Jin B B, Fu R, Zhang C H, Ji Z M, Zhang C, Chen Z X, Chen J, Wu P H 2009 Acta Phys. Sin. 58 6101 (in Chinese)[马金龙, 徐开俊, 李哲, 金飚兵, 傅荣, 张彩虹, 吉争鸣, 张仓, 陈兆旭, 陈健, 吴培亨2009物理学报58 6101]

    [22]

    Yu B, Zeng F, Yang Y, Xing Q, Chechin A, Xin X, Zeylikovich I, Alfano R R 2004 Biophys. J. 86 164

  • [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [2]

    Shen Y C, Upadhya P C, Linfield E H, Davies A G 2004 Vib. Spectrosc. 35 111

    [3]

    Markelz A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42

    [4]

    Globus T R, Woolard D L, Khromova T, Crowe T W, Bykhovskaia M, Gelmont B L, Hesler J, Samuels A C 2003 J. Biol. Phys. 29 89

    [5]

    Taday P F, Bradley I V, Arnone D D 2003 J. Biol. Phys. 29 109

    [6]

    Guo H, He M, Huang R, Qi W, Guo W H, Su R X, He Z M 2014 RSC Adv. 4 57945

    [7]

    Schlcker S, Szeghalmi A, Schmitt M, Popp J, Kiefer W 2003 J. Raman Spectrosc. 34 413

    [8]

    Ziegler R G 1991 Am. J. Clin. Nutr. 53 251S

    [9]

    Sugisaki M, Fujiwara M, Nair S V, Ruda H E, Cogdell R J, Hashimoto H 2009 Phys. Rev. B 80 035118

    [10]

    Ostroumov E E, Muller M G, Reus M, Holzwarth A R 2011 J. Phys. Chem. A 115 3698

    [11]

    Yanagi K, Miyata Y, Kataura H 2006 Adv. Mater. 18 437

    [12]

    Zuo J, Zhang L L, Yu F, Zhang Z W, Zhang C L 2010 Proc. SPIE Beijing, China, October 18-22, 2010 p785439

    [13]

    Zhang L W, Zuo J, Zhang C L 2014 Spectrosc. Spect. Anal. 34 405 (in Chinese)[张磊巍, 左剑, 张存林2014光谱学与光谱分析34 405]

    [14]

    Liu Y K, Liu Y T, Xu X D, Yan W, Ma M, Zhu H Z, Ma C Q, Zou R J, Din L, Luo M J 2015 Acta Phys. Sin. 64 068701 (in Chinese)[刘一客, 刘禹彤, 许向东, 闫微, 马淼, 朱宏钊, 马春前, 邹瑞娇, 丁廉, 罗梦佳2015物理学报64 068701]

    [15]

    Hu Y Q, Chen Y J, Li H H, Wang H S 2012 Spectrosc. Spect. Anal. 32 339 (in Chinese)[胡燕琴, 陈玉静, 李慧华, 王海水2012光谱学与光谱分析32 339]

    [16]

    Naftaly M, Miles R E 2007 P. IEEE 95 1658

    [17]

    Zhang T J, Cai J H, Zhou Z K 2008 Spectrosc. Spect. Anal. 28 721 (in Chinese)[张同军, 蔡晋辉, 周泽魁2008光谱学与光谱分析28 721]

    [18]

    Mickan S P, Lee K S, Lu T M, Munch J, Abbott D, Zhang X C 2002 Microelectron. J. 12 1033

    [19]

    Li Y B, Zheng Y Y, Wang W N 2007 J. Capital Normal Univ.:Nat. Sci. Ed. 28 39 (in Chinese)[李元波, 郑盈盈, 王卫宁2007首都师范大学学报:自然科学版28 39]

    [20]

    Shen Y C, Upadhya P C, Linfield E H, Davies A G 2003 Appl. Phys. Lett. 82 2350

    [21]

    Ma J L, Xu K J, Li Z, Jin B B, Fu R, Zhang C H, Ji Z M, Zhang C, Chen Z X, Chen J, Wu P H 2009 Acta Phys. Sin. 58 6101 (in Chinese)[马金龙, 徐开俊, 李哲, 金飚兵, 傅荣, 张彩虹, 吉争鸣, 张仓, 陈兆旭, 陈健, 吴培亨2009物理学报58 6101]

    [22]

    Yu B, Zeng F, Yang Y, Xing Q, Chechin A, Xin X, Zeylikovich I, Alfano R R 2004 Biophys. J. 86 164

  • [1] Lian Yu-Xiang, Dai Ze-Lin, Xu Xiang-Dong, Gu Yu, Li Xin-Rong, Wang Fu, Yang Chun, Cheng Xiao-Meng, Zhou Hua-Xin. Terahertz spectrum study of organic electro-optic crystal 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate. Acta Physica Sinica, 2017, 66(24): 244211. doi: 10.7498/aps.66.244211
    [2] Sun Yi-Wen, Zhong Jun-Lan, Zuo Jian, Zhang Cun-Lin, Dan Guo. Principal component analysis of terahertz spectrum on hemagglutinin protein and its antibody. Acta Physica Sinica, 2015, 64(16): 168701. doi: 10.7498/aps.64.168701
    [3] Zhang Ji, Wang Di, Zhang De-Ming, Zhang Qing-Li, Wan Song-Ming, Sun Dun-Lu, Yin Shao-Tang. Vibrational spectra and first principles calculation of BaBPO5 crystal. Acta Physica Sinica, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [4] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [5] Yang Yue-Bin, Zuo Wen-Long, Bao Yan-Xiang, Liu Shu-Yu, Li Long-Fei, Zhang Jin-Xiu, Xiong Xiao-Min. Detection of a coupled vibration by mechanical resonant absorption spectra. Acta Physica Sinica, 2012, 61(20): 200509. doi: 10.7498/aps.61.200509
    [6] Gao Tao, Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Xiao Yan. Spatial configurations and X-ray absorption of Ti catalyzing on NaAlH4 surfaces: Car-Parrinello molecular dynamics and density functional theory study. Acta Physica Sinica, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [7] Fu Pei-Zhen, Hou Bi-Hui, Jian Yan-Zhen, Wang Ya-Li, Zhang Er-Pan, Wang Li, Zhong Ren-Bin. Terahertz spectra and soft optical phonons of PbB4O7 crystal. Acta Physica Sinica, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [8] Mang Chao-Yong, Gou Gao-Zhang, Liu Cai-Ping, Wu Ke-Chen. Density functional study on chirospectra of bruguierols. Acta Physica Sinica, 2011, 60(4): 043101. doi: 10.7498/aps.60.043101
    [9] Peng Jie, Zhang Si-Jie, Wang Ke, Dove Martin. Density functional theory calculation of spectrum and excitation properties of mer-Alq3. Acta Physica Sinica, 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [10] Wang Wei-Ning. Terahertz and Raman spectra of L-threonine. Acta Physica Sinica, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [11] Li Xin, Zhao Yan, Jin Ying-Hui, Wang Xiao-Rui, Yu Xie-Qiu, Wu Mei, Han Yu-Xing, Yang Yong-Gang, Li Chang-Yong, Jia Suo-Tang. One color resonance two-photon ionization spectra of p-methoxybenzonitrile. Acta Physica Sinica, 2017, 66(9): 093301. doi: 10.7498/aps.66.093301
    [12] Zhang Ji, Wang Di, Zhang De-Ming, Zhang Qing-Li, Wan Song-Ming, Sun Dun-Lu, Yin Shao-Tang. Temperature-dependent Raman spectroscopic study on orthophosphates Ba3(PO4)2 and Sr3(PO4)2. Acta Physica Sinica, 2013, 62(9): 097802. doi: 10.7498/aps.62.097802
    [13] Zhou Hai-Liang, Gu Qing-Tian, Zhang Qing-Hua, Liu Bao-An, Zhu Li-Li, Zhang Li-Song, Zhang Fang, Xu Xin-Guang, Wang Zheng-Ping, Sun Xun, Zhao Xian. Raman spectroscopic study on the micro-structure of NH4H2PO4 and ND4D2PO4 crystals. Acta Physica Sinica, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [14] Zhang Ji, Zhang De-Ming, Wang Di, Zhang Qing-Li, Sun Dun-Lu, Yin Shao-Tang. Polarized Raman spectra of single crystal Bi2ZnOB2O6. Acta Physica Sinica, 2013, 62(23): 237802. doi: 10.7498/aps.62.237802
    [15] Zhang Hui-Peng, Jin Qing-Hua, Wang Yu-Fang, Li Bao-Hui, Ding Da-Tong. Effect of single-wall carbon nanotubes’chiral angle for the phonon frequency. Acta Physica Sinica, 2005, 54(9): 4279-4284. doi: 10.7498/aps.54.4279
    [16] Zhang Xiu-Rong, Wu Li-Qing, Rao Qian. Theoretical study of electronic structure and optical properties of OsnN0,(n=1 6) clusters. Acta Physica Sinica, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [17] Zhang Xiu-Rong, Li Yang, Yin Lin, Wang Yang-Yang. Theoretical study on polarities and spectrum properties of WnNim (n+m=8) clusters. Acta Physica Sinica, 2013, 62(2): 023601. doi: 10.7498/aps.62.023601
    [18] Xu Bu-Yi, Chen Jun-Rong, Cai Jing, Li Quan, Zhao Ke-Qing. Theoretical study on the structure,spectra and thermodynamic property of 2-(toluene-4-sulfonylamino)-benzoic. Acta Physica Sinica, 2009, 58(3): 1531-1536. doi: 10.7498/aps.58.1531
    [19] Zhang Xiu-Rong, Gao Cong-Hua, Wu Li-Qing, Tang Hui-Shuai. The theory study of electronic structures and spectram properties of WnNim(n+m≤7; m=1, 2) clusters. Acta Physica Sinica, 2010, 59(8): 5429-5438. doi: 10.7498/aps.59.5429
    [20] Zhang Lai-Bin, Ren Ting-Qi. Theoretical study on the photophysical properties of the newly designed guanine analog y-guanine and its tautomers. Acta Physica Sinica, 2015, 64(7): 077101. doi: 10.7498/aps.64.077101
  • Citation:
Metrics
  • Abstract views:  288
  • PDF Downloads:  227
  • Cited By: 0
Publishing process
  • Received Date:  22 June 2016
  • Accepted Date:  24 October 2016
  • Published Online:  05 February 2017

Experimental and theoretical study on terahertz spectra of all-trans -carotene

    Corresponding author: Xu Xiang-Dong, xdxu@uestc.edu.cn
  • 1. School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61071032, 61377063).

Abstract: The -carotene is a short chain polyene molecule containing nine -electron conjugated double-bonds. Because of its special molecular structure, -carotene has been used widely in many fields, including functional materials, optoelectronic devices and biological applications of light collection, light protection, anti-cancer, etc. Recently, new applications of -carotene in generation and detection of terahertz (THz) wave have also attracted great attention. In this work, all-trans -carotene films are prepared by spray coating, and the THz spectra in a wavenumber range of 30-400 cm-1 (a frequency range of 0.9-12 THz) of the as-prepared products are experimentally measured at room temperature by Fourier transform infrared spectroscopy. For comparison, the THz spectra in 0.5-3.0 THz are also characterized at the same temperature by THz time-domain spectroscopy. Based on these measurements, the fingerprint peaks of all-trans -carotene in the THz region are experimentally identified to be located at 54 cm-1 (1.62 THz), 57 cm-1 (1.71 THz), 64 cm-1 (1.91 THz), 77 cm-1 (2.32 THz), 90 cm-1 (2.69 THz), 98 cm-1 (2.95 THz), 115 cm-1 (3.45 THz), 124 cm-1 (3.72 THz), 134 cm-1 (4.02 THz), 170 cm-1 (5.11 THz), 247 cm-1 (7.42 THz), and 279 cm-1 (8.38 THz), respectively. It is worth noting that the recent results about the THz spectra of palm leaves are thus verified. Particularly, the B3 LYP method of density functional theory is further utilized in this work to theoretically simulate the THz spectra of all-trans -carotene molecule. It is revealed that the theoretical simulation results accord well with those experimentally measured data. In addition, we also find that the absorption peaks are caused by the torsion, deformation and rocking vibration of the molecules. Accordingly, the vibrational modes of the measured THz characteristic peaks at 148 cm-1 (4.44 THz), 132 cm-1 (3.96 THz), 115 cm-1 (3.45 THz), 76 cm-1 (2.28 THz) and 52 cm-1 (1.56 THz) are theoretically assigned, which provides a reference to explain the formation mechanism of the THz spectra. The valuable results presented in this work will be helpful for promoting the studies of the THz spectral features and response mechanisms of the organics.

Reference (22)

Catalog

    /

    返回文章
    返回