Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of ultra-hard multifunctional transition metal compounds

Bao Kuo Ma Shuai-Ling Xu Chun-Hong Cui Tian

Design of ultra-hard multifunctional transition metal compounds

Bao Kuo, Ma Shuai-Ling, Xu Chun-Hong, Cui Tian
PDF
Get Citation
  • Transition metals have special characteristics, such as a large number of valence electrons, multi valence states, high electron density, etc. Introducing a light element, such as boron, carbon, nitrogen, oxygen, etc. into a transition metal is an important means for searching the new multifunctional hard materials. With the development of ab intio calculation, advance in computer and the more in-depth understanding of the nature of hardness, it is possible to design new multifunctional ultra-hard transitional metal with using the advanced structure searching software, which could now serve as the experimental syntheses of these materials. In the present article, we introduce the design of ultra hard multi functional transition metal materials. We first introduce some basic ideas of hardness and material design, then conduct some studies, afterwards we discuss some difficulties in this kind of research. Hopefully these results in the present study could be helpful for designing and synthesizing the ultra-hard multifunctional materials.
      Corresponding author: Cui Tian, cuitian@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51632002, 51572108, 11634004, 51032001, 11104103), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_15R23), and the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103202).
    [1]

    Sung C M, Sung M 1996 Mater. Chem. Phys. 43 1

    [2]

    Veprek S 1999 J. Vac. Sci. Technol. A 17 2401

    [3]

    Yoo C S, Cynn H, Gygi F, Galli G, Iota V, Nicol M, Carlson S, Husermann D, Mailhiot C 1999 Phys. Rev. Lett. 83 5527

    [4]

    Li Q, Zheng W T 2016 Chin. Phys. B 25 076103

    [5]

    Liu A Y, Cohen M L 1989 Science 245 841

    [6]

    Li D, Tian F B, Duan D F, Zhao Z L, Liu Y X, Chu B H, Sha X J, Wang L, Liu B B, Cui T 2014 RSC Adv. 4 17364

    [7]

    Xing M J, Li B H, Yua Z T, Chen Q 2016 RSC Adv. 6 32740

    [8]

    Mao W L, Mao H K, Peter J E, Thomas T P, Newville M, Kao C C, Heinz D L, Shu J F, Meng Y, Hemley R J 2003 Science 302 425

    [9]

    Hao J, Liu H Y, Lei W W, Tang X, Lu J, Liu D, Li Y W 2015 J. Phys. Chem. C 119 28614

    [10]

    He J L, Guo L C, Guo X J, Liu R P, Tian Y J, Wang H T, Gao C X 2006 Appl. Phys. Lett. 88 101906

    [11]

    Stavrou E, Lobanov S, Dong H F, Oganov A R, Prakapenka V B, Konôpková Z, Goncharov A F 2016 Chem. Mater. 28 6925

    [12]

    Wei Q, Zhang M G, Yan H Y 2016 Phys. Lett. A 380 3217

    [13]

    Fan Q Y, Chai C C, Wei Q, Yang Y T 2016 Materials 9 427

    [14]

    Houska J, Steidl P, Vlcek J, Martan J 2016 Ceram. Int. 42 4361

    [15]

    Pan Z C, Sun H, Zhang Y, Chen C F 2009 Phys. Rev. Lett. 102 055503

    [16]

    He C Y, Sun L Z, Zhang C X, Peng X G, Zhang K W, Zhong J X 2012 Phys. Chem. Chem. Phys. 14 10967

    [17]

    Huang Q, Yu D L, Zhao Z S, Fu S W, Xiong M, Wang Q Q, Gao Y F, Luo K, He J L, Tian Y J 2012 J. Appl. Phys. 112 053518

    [18]

    Wu J H, Liu C X 2016 Chin. Phys. Lett. 33 036202

    [19]

    Zhang B L 2016 J. Alloys Compd. 663 862

    [20]

    He D W, Zhao Y S, Daemen L, Qian J, Shen T D, Zerda T W 2002 Appl. Phys. Lett. 81 643

    [21]

    Qin Y, Shi L W, Zhang S B, Jin F, Zhang L Y, Xia W S, Duan Y F 2016 J. Alloys Compd. 686 914

    [22]

    Wang S N, Oganov A R, Qian G R, Zhu Q, Dong H F, Dong X, Esfahania M M D 2016 Phys. Chem. Chem. Phys. 18 1859

    [23]

    Kenichi T 2004 Phys. Rev. B 70 012101

    [24]

    Cynn H, Klepeis J E, Yoo C S, Young D A 2002 Phys. Rev. Lett. 88 135701

    [25]

    Levine J B, Tolbert S H, Kaner R B 2009 Adv. Funct. Mater. 19 3519

    [26]

    Gilman J J, Chamberland R W, Kaner R B 2006 Int. J. Refract. Met. Hard Mater. 24 1

    [27]

    Kaner R B, Cilman J J, Tolbert S H 2005 Science 308 1268

    [28]

    Chung H Y, Weinberger M B, Levine J B, Cumberland R W, Kavner A, Yang J M, Tolbert S H, Kaner R B 2007 Science 316 436

    [29]

    Chung H Y, Weinberger M B, Yang J M, Tolbert S H, Kaner R B 2008 Appl. Phys. Lett. 92 261904

    [30]

    Desgreniers S, Lagarec K 1999 Phys. Rev. B 59 8467

    [31]

    Dubrovinksy L S, Dubrovinskaia N A, Swamy V, Muscat J, Harrison N M, Ahuja R, Holm B, Johansson B 2001 Nature 410 653

    [32]

    Zhao W J, Xu H B, Wang Y X 2009 Phys. Status Solidi RRL. 3 99

    [33]

    Rogl P, Rudy E 1978 J. Solid State Chem. 24 175

    [34]

    Rogl P, Nowotny H, Benesovs F 1970 Monatsh. Chem. 101 850

    [35]

    Rogl P, Nowotny H, Benesovs F 1970 Monatsh. Chem. 101 27

    [36]

    Kalish D, Clougherty E V, Kreder K 1969 J. Am. Ceram. Soc. 52 30

    [37]

    Bsenko L, Lundstrom T 1974 J. Less-Common Met. 34 273

    [38]

    Munro R G 2000 J. Res. Natl. Inst. Stand. Technol. 105 709

    [39]

    O'Neill H 1934 The Hardness of Metals and Its Measurement (London:Chapman and Hall)

    [40]

    Teter D M 1998 MRS Bull. 23 22

    [41]

    Brazhkin V V, Lyapin A G, Hemley R J 2002 Philos. Mag. A 82 231

    [42]

    Smith R L, Sandland G E 1922 Proc. Institut. Mech. Engin. 102 623

    [43]

    Gilman J J 1975 J. Appl. Phys. 46 5110

    [44]

    Teter D M, Hemley R J 1996 Science 271 53

    [45]

    Gao F M 2004 Phys. Rev. B 69 094113

    [46]

    Gao F M 2006 Phys. Rev. B 73 132104

    [47]

    Guo X J, Li L, Liu Z Y, Yu D L, He J L, Liu R P, Xu B, Tian Y J, Wang H T 2008 J. Appl. Phys. 104 023503

    [48]

    Šimůnek A, Vackář J 2006 Phys. Rev. Lett. 96 085501

    [49]

    Dai F Z, Zhou Y C 2016 Sci. Rep. 6 33085

    [50]

    Tao Q, Zheng D F, Zhao X P, Chen Y Li, Li Q, Li Q, Wang C C, Cui T, Ma Y M, Wang X, Zhu P W 2014 Chem. Mater. 26 5297

    [51]

    Liu Q, Peng W M, Peng F 2014 Chin. Phys. Lett. 31 086202

    [52]

    Zhang Y K, Wu L L, Wan B, Zhao Y, Gao R, Li Z P, Zhang J W, Gou H Y, Mao H K 2016 Phys. Chem. Chem. Phys. 18 2361

    [53]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704

    [54]

    Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227

    [55]

    Wang Y C, L J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [56]

    Wang Y C, L J, Zhu L, Ma Y M 2012 Comput. Phys. Commun. 183 2063

    [57]

    Zhang X X, Wang Y C, L J, Zhu C Y, Li Q, Zhang M, Li Q, Ma Y M 2013 J. Chem. Phys. 138 114101

    [58]

    Amsler M, Goedecker S 2010 J. Chem. Phys. 133 224104

    [59]

    Pickard C J, Needs R J 2011 J. Phys.:Condens. Matter 23 053201

    [60]

    Kolmogorov A N, Shah S, Margine E R, Kleppe A K, Jephcoat A P 2012 Phys. Rev. Lett. 109 075501

    [61]

    Wang X L, Tian F B, Wang L, Jin X L, Duan D F, Huang X L, Liu B B, Cui T 2013 New J. Phys. 15 013010

    [62]

    Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558

    [63]

    Wei S L, Li D, L Y Z, Liu Z, Xu C H, Tian F B, Duan D F, Liu B B, Cui T 2016 Phys. Chem. Chem. Phys. 18 18074

    [64]

    Yu H Y, Duan D F, Liu H Y, Yang T, Tian F B, Bao K, Li D, Zhao Z L, Liu B B, Cui T 2016 Sci. Rep. 6 18918

    [65]

    Yu H Y, Duan D F, Tian F B, Liu H Y, Li D, Huang X L, Liu Y X, Liu B B, Cui T 2015 J. Phys. Chem. C 119 25268

    [66]

    Lu X H, Kang L, Zhou L, Chen J, Ji Z M, Cao C H, Jin B B, Xu W W, Wu P H, Wang X S 2008 Chin. Phys. Lett. 25 4076

    [67]

    Zou Y T, Wang X B, Chen T, Li X F, Qi X T, Welch D, Zhu P W, Liu B B, Cui T, Li B S 2015 Sci. Rep. 5 10811

    [68]

    Zhao Z L, Bao K, Li Da, Duan D F, Tian F B, Jin X L, Chen C B, Huang X L, Liu B B, Cui T 2014 Sci. Rep. 4 04797

    [69]

    Zhang Y K, Wu L L, Wan B, Lin Y Z, Hu Q Y, Zhao Y, Gao R, Li Z P, Zhang J W, Gou H Y 2016 Sci. Rep. 6 33506

    [70]

    Li D, Tian F B, Duan D F, Bao K, Chu B H, Sha X J, Liu B B, Cui T 2014 RSC Adv. 4 10133

    [71]

    Zhao Z L, Bao K, Tian F B, Duan D F, Liu B B, Cui T 2016 Phys. Rev. B 93 214104

    [72]

    Quandt A, Boustani I 2005 Chem. Phys. Chem. 6 2001

    [73]

    Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863

    [74]

    Boustani I 1997 Phys. Rev. B 55 16426

    [75]

    Chen Z Q, Peng Y S, Hu M, Li C M, Luo Y T 2016 Ceram. Int. 42 6624

    [76]

    Dudka A P, Khrykina O N, Bolotina N B, Shitsevalova N Y, Filipov V B, Sluchanko N E 2017 J. Alloys Compd. 692 535

    [77]

    Ma T, Li H, Zheng X, Wang S M, Wang X C, Zhao H Z, Han S B, Liu J, Zhang R F, Zhu P W, Long Y W, Cheng J G, Ma Y M, Zhao Y S, Jin C Q, Yu X H 2017 Adv. Mater. 29 1604003

    [78]

    Akopov G, Yeung M T, Sobell Z C, Turner C L, Lin C W, Kaner R B 2016 Chem. Mater. 28 6605

    [79]

    Troc R, Wawryk R, Pikul A, Shitsevalova N 2015 Philos. Mag. 95 2343

    [80]

    Li X F, Du J Y 2016 RSC Adv. 6 49214

    [81]

    Li P F, Zhou R L, Zeng X C 2015 ACS Appl. Mater. Interfaces 7 15607

    [82]

    Pan Y, Huang H W, Wang X, Lin Y H 2015 Comput. Mater. Sci. 09 1

    [83]

    Zhang X Z, Zhao E J, Wu Z J 2015 J. Alloys Compd. 632 37

    [84]

    Yan Q, Wang Y X, Wang B, Yang J M, Yang G 2015 RSC Adv. 5 25919

    [85]

    Huang B, Duan Y H, Hu W C, Suna Y, Chen S 2015 Ceram. Int. 41 6831

    [86]

    Feng S Q, Guo F, Li J Y, Wang Y Q, Zhang L M, Cheng X 2015 Chem. Phys. Lett. 635 205

    [87]

    Wu L L, Wan B, Zhao Y, Zhang Y K, Liu H Y, Wang Y C, Zhang J W, Gou H Y 2015 J. Phys. Chem. C 119 21649

    [88]

    Ding L P, Kuang X Y, Shao P, Huang X F 2014 Inorg. Chem. 53 3471

    [89]

    Wang Y C, Wu L L, Lin Y Z, Hu Q Y, Li Z P, Liu H Y, Zhang Y K, Gou H Y, Yao Y S, Zhang J W, Gao F M, Mao H K 2015 Phys. Rev. B 92 174106

    [90]

    Li Y W, Hao J, Xu Y 2012 Phys. Lett. A 376 3535

    [91]

    Harikrishnan G, Ajith K M, Chandra S, Valsakumar M C 2015 Modelling Simul. Mater. Sci. Eng. 23 085006

    [92]

    Pan Y, Lin Y H, Guo J M, Wen M 2014 RSC Adv. 4 47377

    [93]

    Bian Y, Liu X, Li A, Wang S, Liang Y 2015 Mater. Res. Innovations 19 178

    [94]

    Cui L, Wang M L, Wang Y X 2014 J. Phys. Soc. Jpn. 83 114707.

    [95]

    Pan Y, Lin Y H 2015 J. Phys. Chem. C 119 23175

    [96]

    Fan J, Bao K, Jin X L, Meng X X, Cui T 2012 J. Mater. Chem. 22 17630

    [97]

    Aydin S, Simsek M 2009 Phys. Rev. B 80 134107

    [98]

    Aronsson B 1960 Acta Chem. Scand. 14 1414

    [99]

    100 Meng X X, Fan J, Bao K, Li F F, Huang X L, Li Y, Tian F B, Duan D F, Jin X L, Zhu P W, He Z, Zhou Q, Gao C X, Liu B B, Cui T 2014 Chin. Phys. B 23 016102

    [100]

    Cheng X Y, Zhang W, Chen X Q, Niu H Y, Liu P T, Du K, Liu G, Li D Z, Cheng H M, Ye H Q, Li Y Y 2013 Appl. Phys. Lett. 103 171903

    [101]

    Gao F M, He J L, Wu E D, Liu S M, Yu D L, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [102]

    Chen X Q, Niu H Y, Li D Z, Li Y Y 2011 Intermetallics 19 1275

  • [1]

    Sung C M, Sung M 1996 Mater. Chem. Phys. 43 1

    [2]

    Veprek S 1999 J. Vac. Sci. Technol. A 17 2401

    [3]

    Yoo C S, Cynn H, Gygi F, Galli G, Iota V, Nicol M, Carlson S, Husermann D, Mailhiot C 1999 Phys. Rev. Lett. 83 5527

    [4]

    Li Q, Zheng W T 2016 Chin. Phys. B 25 076103

    [5]

    Liu A Y, Cohen M L 1989 Science 245 841

    [6]

    Li D, Tian F B, Duan D F, Zhao Z L, Liu Y X, Chu B H, Sha X J, Wang L, Liu B B, Cui T 2014 RSC Adv. 4 17364

    [7]

    Xing M J, Li B H, Yua Z T, Chen Q 2016 RSC Adv. 6 32740

    [8]

    Mao W L, Mao H K, Peter J E, Thomas T P, Newville M, Kao C C, Heinz D L, Shu J F, Meng Y, Hemley R J 2003 Science 302 425

    [9]

    Hao J, Liu H Y, Lei W W, Tang X, Lu J, Liu D, Li Y W 2015 J. Phys. Chem. C 119 28614

    [10]

    He J L, Guo L C, Guo X J, Liu R P, Tian Y J, Wang H T, Gao C X 2006 Appl. Phys. Lett. 88 101906

    [11]

    Stavrou E, Lobanov S, Dong H F, Oganov A R, Prakapenka V B, Konôpková Z, Goncharov A F 2016 Chem. Mater. 28 6925

    [12]

    Wei Q, Zhang M G, Yan H Y 2016 Phys. Lett. A 380 3217

    [13]

    Fan Q Y, Chai C C, Wei Q, Yang Y T 2016 Materials 9 427

    [14]

    Houska J, Steidl P, Vlcek J, Martan J 2016 Ceram. Int. 42 4361

    [15]

    Pan Z C, Sun H, Zhang Y, Chen C F 2009 Phys. Rev. Lett. 102 055503

    [16]

    He C Y, Sun L Z, Zhang C X, Peng X G, Zhang K W, Zhong J X 2012 Phys. Chem. Chem. Phys. 14 10967

    [17]

    Huang Q, Yu D L, Zhao Z S, Fu S W, Xiong M, Wang Q Q, Gao Y F, Luo K, He J L, Tian Y J 2012 J. Appl. Phys. 112 053518

    [18]

    Wu J H, Liu C X 2016 Chin. Phys. Lett. 33 036202

    [19]

    Zhang B L 2016 J. Alloys Compd. 663 862

    [20]

    He D W, Zhao Y S, Daemen L, Qian J, Shen T D, Zerda T W 2002 Appl. Phys. Lett. 81 643

    [21]

    Qin Y, Shi L W, Zhang S B, Jin F, Zhang L Y, Xia W S, Duan Y F 2016 J. Alloys Compd. 686 914

    [22]

    Wang S N, Oganov A R, Qian G R, Zhu Q, Dong H F, Dong X, Esfahania M M D 2016 Phys. Chem. Chem. Phys. 18 1859

    [23]

    Kenichi T 2004 Phys. Rev. B 70 012101

    [24]

    Cynn H, Klepeis J E, Yoo C S, Young D A 2002 Phys. Rev. Lett. 88 135701

    [25]

    Levine J B, Tolbert S H, Kaner R B 2009 Adv. Funct. Mater. 19 3519

    [26]

    Gilman J J, Chamberland R W, Kaner R B 2006 Int. J. Refract. Met. Hard Mater. 24 1

    [27]

    Kaner R B, Cilman J J, Tolbert S H 2005 Science 308 1268

    [28]

    Chung H Y, Weinberger M B, Levine J B, Cumberland R W, Kavner A, Yang J M, Tolbert S H, Kaner R B 2007 Science 316 436

    [29]

    Chung H Y, Weinberger M B, Yang J M, Tolbert S H, Kaner R B 2008 Appl. Phys. Lett. 92 261904

    [30]

    Desgreniers S, Lagarec K 1999 Phys. Rev. B 59 8467

    [31]

    Dubrovinksy L S, Dubrovinskaia N A, Swamy V, Muscat J, Harrison N M, Ahuja R, Holm B, Johansson B 2001 Nature 410 653

    [32]

    Zhao W J, Xu H B, Wang Y X 2009 Phys. Status Solidi RRL. 3 99

    [33]

    Rogl P, Rudy E 1978 J. Solid State Chem. 24 175

    [34]

    Rogl P, Nowotny H, Benesovs F 1970 Monatsh. Chem. 101 850

    [35]

    Rogl P, Nowotny H, Benesovs F 1970 Monatsh. Chem. 101 27

    [36]

    Kalish D, Clougherty E V, Kreder K 1969 J. Am. Ceram. Soc. 52 30

    [37]

    Bsenko L, Lundstrom T 1974 J. Less-Common Met. 34 273

    [38]

    Munro R G 2000 J. Res. Natl. Inst. Stand. Technol. 105 709

    [39]

    O'Neill H 1934 The Hardness of Metals and Its Measurement (London:Chapman and Hall)

    [40]

    Teter D M 1998 MRS Bull. 23 22

    [41]

    Brazhkin V V, Lyapin A G, Hemley R J 2002 Philos. Mag. A 82 231

    [42]

    Smith R L, Sandland G E 1922 Proc. Institut. Mech. Engin. 102 623

    [43]

    Gilman J J 1975 J. Appl. Phys. 46 5110

    [44]

    Teter D M, Hemley R J 1996 Science 271 53

    [45]

    Gao F M 2004 Phys. Rev. B 69 094113

    [46]

    Gao F M 2006 Phys. Rev. B 73 132104

    [47]

    Guo X J, Li L, Liu Z Y, Yu D L, He J L, Liu R P, Xu B, Tian Y J, Wang H T 2008 J. Appl. Phys. 104 023503

    [48]

    Šimůnek A, Vackář J 2006 Phys. Rev. Lett. 96 085501

    [49]

    Dai F Z, Zhou Y C 2016 Sci. Rep. 6 33085

    [50]

    Tao Q, Zheng D F, Zhao X P, Chen Y Li, Li Q, Li Q, Wang C C, Cui T, Ma Y M, Wang X, Zhu P W 2014 Chem. Mater. 26 5297

    [51]

    Liu Q, Peng W M, Peng F 2014 Chin. Phys. Lett. 31 086202

    [52]

    Zhang Y K, Wu L L, Wan B, Zhao Y, Gao R, Li Z P, Zhang J W, Gou H Y, Mao H K 2016 Phys. Chem. Chem. Phys. 18 2361

    [53]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704

    [54]

    Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227

    [55]

    Wang Y C, L J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [56]

    Wang Y C, L J, Zhu L, Ma Y M 2012 Comput. Phys. Commun. 183 2063

    [57]

    Zhang X X, Wang Y C, L J, Zhu C Y, Li Q, Zhang M, Li Q, Ma Y M 2013 J. Chem. Phys. 138 114101

    [58]

    Amsler M, Goedecker S 2010 J. Chem. Phys. 133 224104

    [59]

    Pickard C J, Needs R J 2011 J. Phys.:Condens. Matter 23 053201

    [60]

    Kolmogorov A N, Shah S, Margine E R, Kleppe A K, Jephcoat A P 2012 Phys. Rev. Lett. 109 075501

    [61]

    Wang X L, Tian F B, Wang L, Jin X L, Duan D F, Huang X L, Liu B B, Cui T 2013 New J. Phys. 15 013010

    [62]

    Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558

    [63]

    Wei S L, Li D, L Y Z, Liu Z, Xu C H, Tian F B, Duan D F, Liu B B, Cui T 2016 Phys. Chem. Chem. Phys. 18 18074

    [64]

    Yu H Y, Duan D F, Liu H Y, Yang T, Tian F B, Bao K, Li D, Zhao Z L, Liu B B, Cui T 2016 Sci. Rep. 6 18918

    [65]

    Yu H Y, Duan D F, Tian F B, Liu H Y, Li D, Huang X L, Liu Y X, Liu B B, Cui T 2015 J. Phys. Chem. C 119 25268

    [66]

    Lu X H, Kang L, Zhou L, Chen J, Ji Z M, Cao C H, Jin B B, Xu W W, Wu P H, Wang X S 2008 Chin. Phys. Lett. 25 4076

    [67]

    Zou Y T, Wang X B, Chen T, Li X F, Qi X T, Welch D, Zhu P W, Liu B B, Cui T, Li B S 2015 Sci. Rep. 5 10811

    [68]

    Zhao Z L, Bao K, Li Da, Duan D F, Tian F B, Jin X L, Chen C B, Huang X L, Liu B B, Cui T 2014 Sci. Rep. 4 04797

    [69]

    Zhang Y K, Wu L L, Wan B, Lin Y Z, Hu Q Y, Zhao Y, Gao R, Li Z P, Zhang J W, Gou H Y 2016 Sci. Rep. 6 33506

    [70]

    Li D, Tian F B, Duan D F, Bao K, Chu B H, Sha X J, Liu B B, Cui T 2014 RSC Adv. 4 10133

    [71]

    Zhao Z L, Bao K, Tian F B, Duan D F, Liu B B, Cui T 2016 Phys. Rev. B 93 214104

    [72]

    Quandt A, Boustani I 2005 Chem. Phys. Chem. 6 2001

    [73]

    Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863

    [74]

    Boustani I 1997 Phys. Rev. B 55 16426

    [75]

    Chen Z Q, Peng Y S, Hu M, Li C M, Luo Y T 2016 Ceram. Int. 42 6624

    [76]

    Dudka A P, Khrykina O N, Bolotina N B, Shitsevalova N Y, Filipov V B, Sluchanko N E 2017 J. Alloys Compd. 692 535

    [77]

    Ma T, Li H, Zheng X, Wang S M, Wang X C, Zhao H Z, Han S B, Liu J, Zhang R F, Zhu P W, Long Y W, Cheng J G, Ma Y M, Zhao Y S, Jin C Q, Yu X H 2017 Adv. Mater. 29 1604003

    [78]

    Akopov G, Yeung M T, Sobell Z C, Turner C L, Lin C W, Kaner R B 2016 Chem. Mater. 28 6605

    [79]

    Troc R, Wawryk R, Pikul A, Shitsevalova N 2015 Philos. Mag. 95 2343

    [80]

    Li X F, Du J Y 2016 RSC Adv. 6 49214

    [81]

    Li P F, Zhou R L, Zeng X C 2015 ACS Appl. Mater. Interfaces 7 15607

    [82]

    Pan Y, Huang H W, Wang X, Lin Y H 2015 Comput. Mater. Sci. 09 1

    [83]

    Zhang X Z, Zhao E J, Wu Z J 2015 J. Alloys Compd. 632 37

    [84]

    Yan Q, Wang Y X, Wang B, Yang J M, Yang G 2015 RSC Adv. 5 25919

    [85]

    Huang B, Duan Y H, Hu W C, Suna Y, Chen S 2015 Ceram. Int. 41 6831

    [86]

    Feng S Q, Guo F, Li J Y, Wang Y Q, Zhang L M, Cheng X 2015 Chem. Phys. Lett. 635 205

    [87]

    Wu L L, Wan B, Zhao Y, Zhang Y K, Liu H Y, Wang Y C, Zhang J W, Gou H Y 2015 J. Phys. Chem. C 119 21649

    [88]

    Ding L P, Kuang X Y, Shao P, Huang X F 2014 Inorg. Chem. 53 3471

    [89]

    Wang Y C, Wu L L, Lin Y Z, Hu Q Y, Li Z P, Liu H Y, Zhang Y K, Gou H Y, Yao Y S, Zhang J W, Gao F M, Mao H K 2015 Phys. Rev. B 92 174106

    [90]

    Li Y W, Hao J, Xu Y 2012 Phys. Lett. A 376 3535

    [91]

    Harikrishnan G, Ajith K M, Chandra S, Valsakumar M C 2015 Modelling Simul. Mater. Sci. Eng. 23 085006

    [92]

    Pan Y, Lin Y H, Guo J M, Wen M 2014 RSC Adv. 4 47377

    [93]

    Bian Y, Liu X, Li A, Wang S, Liang Y 2015 Mater. Res. Innovations 19 178

    [94]

    Cui L, Wang M L, Wang Y X 2014 J. Phys. Soc. Jpn. 83 114707.

    [95]

    Pan Y, Lin Y H 2015 J. Phys. Chem. C 119 23175

    [96]

    Fan J, Bao K, Jin X L, Meng X X, Cui T 2012 J. Mater. Chem. 22 17630

    [97]

    Aydin S, Simsek M 2009 Phys. Rev. B 80 134107

    [98]

    Aronsson B 1960 Acta Chem. Scand. 14 1414

    [99]

    100 Meng X X, Fan J, Bao K, Li F F, Huang X L, Li Y, Tian F B, Duan D F, Jin X L, Zhu P W, He Z, Zhou Q, Gao C X, Liu B B, Cui T 2014 Chin. Phys. B 23 016102

    [100]

    Cheng X Y, Zhang W, Chen X Q, Niu H Y, Liu P T, Du K, Liu G, Li D Z, Cheng H M, Ye H Q, Li Y Y 2013 Appl. Phys. Lett. 103 171903

    [101]

    Gao F M, He J L, Wu E D, Liu S M, Yu D L, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [102]

    Chen X Q, Niu H Y, Li D Z, Li Y Y 2011 Intermetallics 19 1275

  • [1] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [2] Luo Duan, Hui Dan-Dan, Wen Wen-Long, Li Li-Li, Xin Li-Wei, Zhong Zi-Yuan, Ji Chao, Chen Ping, He Kai, Wang Xing, Tian Jin-Shou. Design of femtosecond electron diffractometer with adjustable gap. Acta Physica Sinica, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [3] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [4] Wang Lin, Wei Lai, Wang Zheng-Xiong. Effect of out-of-plane driving flow on formation of plasmoids in current sheet system. Acta Physica Sinica, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [5] Simulation of the nonlinear cahn-hilliard equation based onthe local refinement pure meshless method. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191829
    [6] Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication. Acta Physica Sinica, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [7] Zhuang Zhi-Ben, Li Jun, Liu Jing-Yi, Chen Shi-Qiang. Image encryption algorithm based on new five-dimensional multi-ring multi-wing hyperchaotic system. Acta Physica Sinica, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
  • Citation:
Metrics
  • Abstract views:  508
  • PDF Downloads:  1071
  • Cited By: 0
Publishing process
  • Received Date:  13 January 2017
  • Accepted Date:  19 January 2017
  • Published Online:  05 February 2017

Design of ultra-hard multifunctional transition metal compounds

    Corresponding author: Cui Tian, cuitian@jlu.edu.cn
  • 1. State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 51632002, 51572108, 11634004, 51032001, 11104103), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_15R23), and the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103202).

Abstract: Transition metals have special characteristics, such as a large number of valence electrons, multi valence states, high electron density, etc. Introducing a light element, such as boron, carbon, nitrogen, oxygen, etc. into a transition metal is an important means for searching the new multifunctional hard materials. With the development of ab intio calculation, advance in computer and the more in-depth understanding of the nature of hardness, it is possible to design new multifunctional ultra-hard transitional metal with using the advanced structure searching software, which could now serve as the experimental syntheses of these materials. In the present article, we introduce the design of ultra hard multi functional transition metal materials. We first introduce some basic ideas of hardness and material design, then conduct some studies, afterwards we discuss some difficulties in this kind of research. Hopefully these results in the present study could be helpful for designing and synthesizing the ultra-hard multifunctional materials.

Reference (102)

Catalog

    /

    返回文章
    返回