Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of Al-doped and vacancy on the magnetism of ZnO

Hou Qing-Yu Li Yong Zhao Chun-Wang

First-principles study of Al-doped and vacancy on the magnetism of ZnO

Hou Qing-Yu, Li Yong, Zhao Chun-Wang
PDF
Get Citation
  • There is a controversy over the magnetic source and mechanism of the coexistence of Al-doping and Zn vacancy or Al doping and O vacancy in ZnO systems. In order to solve the problem, the combined influence mechanism of Al doping and Zn vacancy or Al doping and O vacancy on magnetism of ZnO is studied by using the first-principle calculation in this work. The coexistence of Al doping and Zn vacancy can achieve Curie temperature higher than room temperature. Moreover, the magnetism of the doping system of Al doping and Zn vacancy is mainly contributed by electron exchange interaction through O 2p and Zn 4s states near the Zn vacancy through taking carrier as medium. However, the system of Al doping and O vacancy is non-magnetic. Meantime, in the coexistence of Al doping and Zn vacancy or O vacancy, a close relative distance between doping and vacancy will reduce the formation energy of the doping system, increase the easiness of accomplishment of doping and vacancy, and enhance the stability of the doping system.
      Corresponding author: Hou Qing-Yu, by0501119@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 61664007, 11672175).
    [1]

    Srikant V, Clarke D R 1998 J. Appl. Phys. 83 5447

    [2]

    Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A 2003 Nat. Mater. 2 673

    [3]

    KittilstvedK R, Liu W K, Almelin D R 2006 Nat. Mater. 5 291

    [4]

    Liu S H, Hsu H S, Venkataiah G, Qi X, Lin C R, Lee J F, Liang K S, Huang J C A 2010 Appl. Phys. Lett. 96 262504

    [5]

    Fukuma Y, Odawara F, Asada H, Koyanagi T 2008 Phys. Rev. B 78 104417

    [6]

    Tian Y F, Li Y F, He M, Putra I A, Peng H Y, Yao B, Cheong S A, Wu T 2011 Appl. Phys. Lett. 98 162503

    [7]

    YanH L, Wang J B, Zhong X L, Zhou Y C 2008 Appl. Phys. Lett. 93 142502

    [8]

    Yan H L, Zhong X L, Wang J B, Huang G J, Ding S L, Zhou G C, Zhou Y C 2007 Appl. Phys. Lett. 90 082503

    [9]

    Baset T A A, Fang Y W, Anis B, Duan C G, Hafiez M A 2016 Nanoscal. Res. Lett. 11 115

    [10]

    Shatnawi M, Alsmadi A M, Bsoul I, Salameh B, Alna'washi G A, Dweri F A, Akkad F E 2016 J. Alloy. Compd. 655 244

    [11]

    Jadhav J, Biswas S 2016 J. Alloy. Compd. 664 71

    [12]

    Kseoğlu Y 2016 Ceram. Int. 42 9190

    [13]

    Mickan M, Helmersson U, Rinnert H, Ghanbaja J, Mulle D, Horwat D 2016 Sol. Energ. Mat. Sol. C 157 742

    [14]

    Kumar S, Deepika, Tripathi M, Vaibhav P, Kumar A, Kumar R, Choudhary R J, Phase D M 2016 J. Magn. Magn. Mater. 419 68

    [15]

    Hong J, Katsumata K I, Matsushita N 2016 J. Electron. Mater. 45 4875

    [16]

    Sreedhar A, Kwon J H, Yi J, Jin S G 2016 Ceram. Int. 42 14456

    [17]

    Zhang J M, Gao D, Xu K W 2012 Sci. China: Phys. Mech. Astron. 55 428

    [18]

    Khuili M, Fazouan N, Makarim H A E, Halani G E, Atmani E H 2016 J. Alloy. Compd. 688 368

    [19]

    Zhang T, Song L X, Chen Z Z, Shi E W, Chao L X, Zhang H W 2006 Appl. Phys. Lett. 89 172502

    [20]

    Hou Q Y, Dong H Y, Ying C, Ma W 2012 Acta Phys. Sin. 61 167102 (in Chinese) [侯清玉, 董红英, 迎春, 马文 2012 物理学报 61 167102]

    [21]

    Alo D Q, Zhang J, Yang G J, Zhang J L, Shi Z H, Qi J, Zhang Z H, Xue D S 2010 J. Phys. Chem. C 114 13477

    [22]

    Liu Y Y, Zhou W, Wu P 2014 J. Alloy. Compd. 615 401

    [23]

    Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1

    [24]

    Lee H J, Jeong S Y, Cho C R, Park C H 2002 Appl. Phys. Lett. 81 4020

    [25]

    Kodu M, Arroval T, Avarmaa T, Jaaniso R, Kink I, Leinberg S, Savi K, Timusk M 2014 Appl. Surf. Sci. 320 756

    [26]

    Hsu C H, Chen D H 2010 Nanotechnology 21 285603

    [27]

    Ma X G, Wu Y, L Y H, Zhu Y F 2013 J. Phys. Chem. C 117 26029

    [28]

    Yingsamphancharoen T, Nakarungsee P, Herng T S, Ding J, Tang I M, Thongmee S 2016 J. Magn. Magn. Mater. 419 274

    [29]

    Zhou B, Wu Y S, Wu L L, Zou K, Gai H D 2009 Physica E 41 705

    [30]

    Srivastava A K, Kumar J 2013 Sci. Technol. Adv. Mater. 14 065002

    [31]

    Wang Q J, Wang J B, Zhong X L, Tan Q H, Hu Z, Zhou Y C 2012 Appl. Phys. Lett. 100 132407

    [32]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [33]

    Fan J C, Sreekanth K M, Xie Z, Chang S L, Rao K V 2013 Prog. Mater. Sci. 58 874

    [34]

    Zener C 1951 Phys. Rev 82 403

    [35]

    Zener C 1951 Phys. Rev 81 440

    [36]

    Sato K, Dederichs P H, Katayama Y H 2003 Europhys. Lett. 61 403

  • [1]

    Srikant V, Clarke D R 1998 J. Appl. Phys. 83 5447

    [2]

    Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A 2003 Nat. Mater. 2 673

    [3]

    KittilstvedK R, Liu W K, Almelin D R 2006 Nat. Mater. 5 291

    [4]

    Liu S H, Hsu H S, Venkataiah G, Qi X, Lin C R, Lee J F, Liang K S, Huang J C A 2010 Appl. Phys. Lett. 96 262504

    [5]

    Fukuma Y, Odawara F, Asada H, Koyanagi T 2008 Phys. Rev. B 78 104417

    [6]

    Tian Y F, Li Y F, He M, Putra I A, Peng H Y, Yao B, Cheong S A, Wu T 2011 Appl. Phys. Lett. 98 162503

    [7]

    YanH L, Wang J B, Zhong X L, Zhou Y C 2008 Appl. Phys. Lett. 93 142502

    [8]

    Yan H L, Zhong X L, Wang J B, Huang G J, Ding S L, Zhou G C, Zhou Y C 2007 Appl. Phys. Lett. 90 082503

    [9]

    Baset T A A, Fang Y W, Anis B, Duan C G, Hafiez M A 2016 Nanoscal. Res. Lett. 11 115

    [10]

    Shatnawi M, Alsmadi A M, Bsoul I, Salameh B, Alna'washi G A, Dweri F A, Akkad F E 2016 J. Alloy. Compd. 655 244

    [11]

    Jadhav J, Biswas S 2016 J. Alloy. Compd. 664 71

    [12]

    Kseoğlu Y 2016 Ceram. Int. 42 9190

    [13]

    Mickan M, Helmersson U, Rinnert H, Ghanbaja J, Mulle D, Horwat D 2016 Sol. Energ. Mat. Sol. C 157 742

    [14]

    Kumar S, Deepika, Tripathi M, Vaibhav P, Kumar A, Kumar R, Choudhary R J, Phase D M 2016 J. Magn. Magn. Mater. 419 68

    [15]

    Hong J, Katsumata K I, Matsushita N 2016 J. Electron. Mater. 45 4875

    [16]

    Sreedhar A, Kwon J H, Yi J, Jin S G 2016 Ceram. Int. 42 14456

    [17]

    Zhang J M, Gao D, Xu K W 2012 Sci. China: Phys. Mech. Astron. 55 428

    [18]

    Khuili M, Fazouan N, Makarim H A E, Halani G E, Atmani E H 2016 J. Alloy. Compd. 688 368

    [19]

    Zhang T, Song L X, Chen Z Z, Shi E W, Chao L X, Zhang H W 2006 Appl. Phys. Lett. 89 172502

    [20]

    Hou Q Y, Dong H Y, Ying C, Ma W 2012 Acta Phys. Sin. 61 167102 (in Chinese) [侯清玉, 董红英, 迎春, 马文 2012 物理学报 61 167102]

    [21]

    Alo D Q, Zhang J, Yang G J, Zhang J L, Shi Z H, Qi J, Zhang Z H, Xue D S 2010 J. Phys. Chem. C 114 13477

    [22]

    Liu Y Y, Zhou W, Wu P 2014 J. Alloy. Compd. 615 401

    [23]

    Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1

    [24]

    Lee H J, Jeong S Y, Cho C R, Park C H 2002 Appl. Phys. Lett. 81 4020

    [25]

    Kodu M, Arroval T, Avarmaa T, Jaaniso R, Kink I, Leinberg S, Savi K, Timusk M 2014 Appl. Surf. Sci. 320 756

    [26]

    Hsu C H, Chen D H 2010 Nanotechnology 21 285603

    [27]

    Ma X G, Wu Y, L Y H, Zhu Y F 2013 J. Phys. Chem. C 117 26029

    [28]

    Yingsamphancharoen T, Nakarungsee P, Herng T S, Ding J, Tang I M, Thongmee S 2016 J. Magn. Magn. Mater. 419 274

    [29]

    Zhou B, Wu Y S, Wu L L, Zou K, Gai H D 2009 Physica E 41 705

    [30]

    Srivastava A K, Kumar J 2013 Sci. Technol. Adv. Mater. 14 065002

    [31]

    Wang Q J, Wang J B, Zhong X L, Tan Q H, Hu Z, Zhou Y C 2012 Appl. Phys. Lett. 100 132407

    [32]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [33]

    Fan J C, Sreekanth K M, Xie Z, Chang S L, Rao K V 2013 Prog. Mater. Sci. 58 874

    [34]

    Zener C 1951 Phys. Rev 82 403

    [35]

    Zener C 1951 Phys. Rev 81 440

    [36]

    Sato K, Dederichs P H, Katayama Y H 2003 Europhys. Lett. 61 403

  • [1] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [2] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [3] Liu Ying-Guang, Bian Yong-Qing, Han Zhong-He. Heat transport behavior of bicrystal ZnO containing tilt grain boundary. Acta Physica Sinica, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [4] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [5] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [6] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [7] Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong. Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [8] Huang Yong-Feng, Cao Huai-Xin, Wang Wen-Hua. Conjugate linear symmetry and its application to \begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-symmetry quantum theory. Acta Physica Sinica, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [9] Zhao Jian-Ning, Liu Dong-Huan, Wei Dong, Shang Xin-Chun. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance. Acta Physica Sinica, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [10] Zhu Xiao-Li, Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Comparison between ionospheric disturbances caused by barium and cesium. Acta Physica Sinica, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [11] Chen Ya-Bo, Yang Xiao-Kuo, Wei Bo, Wu Tong, Liu Jia-Hao, Zhang Ming-Liang, Cui Huan-Qing, Dong Dan-Na, Cai Li. Ferromagnetic resonance frequency and spin wave mode of asymmetric strip nanomagnet. Acta Physica Sinica, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [12] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [13] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [14] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a thickness-graded silver-plated strip probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
  • Citation:
Metrics
  • Abstract views:  353
  • PDF Downloads:  288
  • Cited By: 0
Publishing process
  • Received Date:  11 November 2016
  • Accepted Date:  06 December 2016
  • Published Online:  20 March 2017

First-principles study of Al-doped and vacancy on the magnetism of ZnO

    Corresponding author: Hou Qing-Yu, by0501119@126.com
  • 1. College of Science, Inner Mongolia University of Technology, Hohhot 010051, China;
  • 2. College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, China;
  • 3. Inner Mongolia Key Laboratory of Thin Film and Coatings, Hohhot 010051, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 61664007, 11672175).

Abstract: There is a controversy over the magnetic source and mechanism of the coexistence of Al-doping and Zn vacancy or Al doping and O vacancy in ZnO systems. In order to solve the problem, the combined influence mechanism of Al doping and Zn vacancy or Al doping and O vacancy on magnetism of ZnO is studied by using the first-principle calculation in this work. The coexistence of Al doping and Zn vacancy can achieve Curie temperature higher than room temperature. Moreover, the magnetism of the doping system of Al doping and Zn vacancy is mainly contributed by electron exchange interaction through O 2p and Zn 4s states near the Zn vacancy through taking carrier as medium. However, the system of Al doping and O vacancy is non-magnetic. Meantime, in the coexistence of Al doping and Zn vacancy or O vacancy, a close relative distance between doping and vacancy will reduce the formation energy of the doping system, increase the easiness of accomplishment of doping and vacancy, and enhance the stability of the doping system.

Reference (36)

Catalog

    /

    返回文章
    返回