Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Mo doping concentration on the physical properties of ZnO studied by first principles

Jia Xiao-Fang Huo Qing-Yu Zhao Chun-Wang

Effect of Mo doping concentration on the physical properties of ZnO studied by first principles

Jia Xiao-Fang, Huo Qing-Yu, Zhao Chun-Wang
PDF
Get Citation
  • The experimental results of red-shift and blue-shift in absorption spectrum of Mo-doped ZnO are in mutual contradiction, and this phenomenon has not been explained rationally so far. For explaining this phenomenon, we analyze the energy band structure, state density, and absorption-spectrum distributions for each of Zn0.9583Mo0.0417O, Zn0.9375Mo0.0625O and Zn14Mo2O by first-principles calculation. The results show that within a limited doping amount range of 2.08 at%-3.13 at%, the higher Mo doping amount results in higher doping system volume, higher formation energy, lower system stability, and more difficult to dope. Meanwhile, all doping systems are converted into n-type degenerate semiconductors. Compared with the band gap of pure ZnO, the band gap of each doping system becomes narrow and the absorption spectrum shows red-shift. The higher the Mo doping amount, the weaker the narrowing of band gap becomes and the weaker the red-shift in absorption spectrum as well as the lower the electronic effective mass and the lower the electronic concentration; the lower the electronic mobility, the lower the electronic conductivity is; the lower the electronic magnetic moment is. The Curie temperature of doping system can reach a temperature higher than room temperature.
      Corresponding author: Huo Qing-Yu, by0501119@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 61664007, 11672175).
    [1]

    Rai R C 2013 J. Appl. Phys. 113 153508

    [2]

    Li Z X, Rong Z 2015 Chin. Phys. B 24 107703

    [3]

    Wu M Y, Yu S H, Chen G H, He L, Yang L, Zhang W F 2015 Appl. Surf. Sci. 324 791

    [4]

    Wu Y H, Li C P, Li M J, Li H J, Sheng X, Wu X G, Yang B H 2016 Ceram. Int. 42 10847

    [5]

    Ma D W, Wang Z, Cui H T, Zeng J, He C Z, Lu Z S 2016 Sensor. Actuat. B: Chem. 224 372

    [6]

    Soumahoro I, Colis S, Schmerber G, Leuvrey C, Barre S, Ulhaq-Bouillet C, Muller D, Abd-lefdil M, Hassanain N, Petersen J, Berrada A, Slaoui A, Dinia A 2014 Thin Solid Films 566 61

    [7]

    Umar K, Aris A, Parveen T, Jaafar J, Majid Z A, Reddy A V B, Taliba J 2015 Appl. Catal. A: Gen. 505 507

    [8]

    Boukhachem A, Ouni B, Karyaoui M, Madani A, Chtourou R, Amlouk M 2012 Mater. Sci. Semicond. Process. 15 282

    [9]

    Wu C G, Shen J, Ma J, Wang S, Zhang Z J, Yang X L 2009 Semicond. Sci. Technol. 24 125012

    [10]

    Gokulakrishnan V, Parthiban S, Jeganathan K, Ramamurthi K 2011 Ferroelectrics 423 126

    [11]

    Wang Y F, Zhang X D, Meng X D, Cao Y, Yang F, Nan J Y, Song Q G, Huang Q, Wei C C, Zhang J J 2016 Sol. Energy Mater. Sol. Cells 145 171

    [12]

    Ravichandran K, Anbazhagan A, Baneto M, Dineshbabu N, Ravidhas, Muruganandam G 2016 Mater. Sci. Semicond. Process. 41 150

    [13]

    Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X, Zhou X C 2012 Sci. China. Chem. 55 1802

    [14]

    Mekki A, Tabet N 2014 Acta Phys. Pol. A 125 365

    [15]

    Guo S Q, Hou Q Y, Zhao C W, Zhang Y 2014 Chem. Phys. Lett. 614 15

    [16]

    Foreman J V, Simmons J G, Baughman W E, Liu J, Everitt H O 2013 J. Appl. Phys. 113 133513

    [17]

    Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973

    [18]

    Srinivasarao K, Srinivasarao G, Madhuri K V, Murthy K K, Mukhopadhyay P K 2013 Indian J. Eng. Mater. Sci. 2013 684730

    [19]

    Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescu V S 2004 J. Mater. Sci. 39 675

    [20]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [21]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [22]

    Feng Y, Huang B J, Li S S, Zhang B M, Ji W X, Zhang C W, Wang P J 2015 J. Mater. Sci. 50 6993

    [23]

    Roth A P, Webb J B, Williams D F 1981 Solid. State. Commun. 39 1269

    [24]

    Shi J L, Ma H, Ma G H, Ma H L, Shen J 2008 Appl. Phys. A 92 357

    [25]

    Jayabharathi J, Karunakaran C, Kalaiarasi V, Ramanathan P 2014 J. Photoch. Photobio. A 295 1

    [26]

    Harun K, Mansor N, Yaakob M K, Taib M F M, Ahmad Z A, Mohamad A A 2016 J. Sol. Gel.Sci. Technol. 80 56

    [27]

    Qu L F, Hou Q Y, Xu Z C, Zhao C W 2016 Acta Phys. Sin. 65 157201 (in Chinese) [曲灵丰, 侯清玉, 许镇潮, 赵春旺 2016 物理学报 65 157201]

    [28]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 物理学报 59 4925]

    [29]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [30]

    Gu X Q, Zhu L P, Ye Z Z, Ma Q B, He H P, Zhang Y Z, Zhao B H 2008 Sol. Energy Mater. Sol. Cells 92 343

    [31]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [32]

    Abdel-Baset T A, Fang Y W, Duan C G, Abdel-Hafiez M 2016 J. Supercond. Nov. Magn. 29 1937

    [33]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [34]

    Schleife A, Fuchs F, Furthmller J 2006 Phys. Rev. B 73 245212

    [35]

    Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi (b) 243 2054

    [36]

    Ravichandran K, Anbazhagan A, Dineshbabu N, Ravidhaset C 2015 J. Mater. Sci.-Mater. Electron. 26 7649

  • [1]

    Rai R C 2013 J. Appl. Phys. 113 153508

    [2]

    Li Z X, Rong Z 2015 Chin. Phys. B 24 107703

    [3]

    Wu M Y, Yu S H, Chen G H, He L, Yang L, Zhang W F 2015 Appl. Surf. Sci. 324 791

    [4]

    Wu Y H, Li C P, Li M J, Li H J, Sheng X, Wu X G, Yang B H 2016 Ceram. Int. 42 10847

    [5]

    Ma D W, Wang Z, Cui H T, Zeng J, He C Z, Lu Z S 2016 Sensor. Actuat. B: Chem. 224 372

    [6]

    Soumahoro I, Colis S, Schmerber G, Leuvrey C, Barre S, Ulhaq-Bouillet C, Muller D, Abd-lefdil M, Hassanain N, Petersen J, Berrada A, Slaoui A, Dinia A 2014 Thin Solid Films 566 61

    [7]

    Umar K, Aris A, Parveen T, Jaafar J, Majid Z A, Reddy A V B, Taliba J 2015 Appl. Catal. A: Gen. 505 507

    [8]

    Boukhachem A, Ouni B, Karyaoui M, Madani A, Chtourou R, Amlouk M 2012 Mater. Sci. Semicond. Process. 15 282

    [9]

    Wu C G, Shen J, Ma J, Wang S, Zhang Z J, Yang X L 2009 Semicond. Sci. Technol. 24 125012

    [10]

    Gokulakrishnan V, Parthiban S, Jeganathan K, Ramamurthi K 2011 Ferroelectrics 423 126

    [11]

    Wang Y F, Zhang X D, Meng X D, Cao Y, Yang F, Nan J Y, Song Q G, Huang Q, Wei C C, Zhang J J 2016 Sol. Energy Mater. Sol. Cells 145 171

    [12]

    Ravichandran K, Anbazhagan A, Baneto M, Dineshbabu N, Ravidhas, Muruganandam G 2016 Mater. Sci. Semicond. Process. 41 150

    [13]

    Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X, Zhou X C 2012 Sci. China. Chem. 55 1802

    [14]

    Mekki A, Tabet N 2014 Acta Phys. Pol. A 125 365

    [15]

    Guo S Q, Hou Q Y, Zhao C W, Zhang Y 2014 Chem. Phys. Lett. 614 15

    [16]

    Foreman J V, Simmons J G, Baughman W E, Liu J, Everitt H O 2013 J. Appl. Phys. 113 133513

    [17]

    Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973

    [18]

    Srinivasarao K, Srinivasarao G, Madhuri K V, Murthy K K, Mukhopadhyay P K 2013 Indian J. Eng. Mater. Sci. 2013 684730

    [19]

    Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescu V S 2004 J. Mater. Sci. 39 675

    [20]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [21]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [22]

    Feng Y, Huang B J, Li S S, Zhang B M, Ji W X, Zhang C W, Wang P J 2015 J. Mater. Sci. 50 6993

    [23]

    Roth A P, Webb J B, Williams D F 1981 Solid. State. Commun. 39 1269

    [24]

    Shi J L, Ma H, Ma G H, Ma H L, Shen J 2008 Appl. Phys. A 92 357

    [25]

    Jayabharathi J, Karunakaran C, Kalaiarasi V, Ramanathan P 2014 J. Photoch. Photobio. A 295 1

    [26]

    Harun K, Mansor N, Yaakob M K, Taib M F M, Ahmad Z A, Mohamad A A 2016 J. Sol. Gel.Sci. Technol. 80 56

    [27]

    Qu L F, Hou Q Y, Xu Z C, Zhao C W 2016 Acta Phys. Sin. 65 157201 (in Chinese) [曲灵丰, 侯清玉, 许镇潮, 赵春旺 2016 物理学报 65 157201]

    [28]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 物理学报 59 4925]

    [29]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [30]

    Gu X Q, Zhu L P, Ye Z Z, Ma Q B, He H P, Zhang Y Z, Zhao B H 2008 Sol. Energy Mater. Sol. Cells 92 343

    [31]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [32]

    Abdel-Baset T A, Fang Y W, Duan C G, Abdel-Hafiez M 2016 J. Supercond. Nov. Magn. 29 1937

    [33]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [34]

    Schleife A, Fuchs F, Furthmller J 2006 Phys. Rev. B 73 245212

    [35]

    Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi (b) 243 2054

    [36]

    Ravichandran K, Anbazhagan A, Dineshbabu N, Ravidhaset C 2015 J. Mater. Sci.-Mater. Electron. 26 7649

  • [1] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [2] Liu Ying-Guang, Bian Yong-Qing, Han Zhong-He. Heat transport behavior of bicrystal ZnO containing tilt grain boundary. Acta Physica Sinica, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [3] Fang Wen-Yu, Zhang Peng-Cheng, Zhao Jun, Kang Wen-Bin. Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe. Acta Physica Sinica, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [4] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [5] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [6] Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong. Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [7] Huang Yong-Feng, Cao Huai-Xin, Wang Wen-Hua. Conjugate linear symmetry and its application to \begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-symmetry quantum theory. Acta Physica Sinica, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [8] Zhao Jian-Ning, Liu Dong-Huan, Wei Dong, Shang Xin-Chun. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance. Acta Physica Sinica, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [9] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
  • Citation:
Metrics
  • Abstract views:  389
  • PDF Downloads:  299
  • Cited By: 0
Publishing process
  • Received Date:  20 September 2016
  • Accepted Date:  28 December 2016
  • Published Online:  20 March 2017

Effect of Mo doping concentration on the physical properties of ZnO studied by first principles

    Corresponding author: Huo Qing-Yu, by0501119@126.com
  • 1. College of Science, Inner Mongolia University of Technology, Hohhot 010051, China;
  • 2. Key Laboratory of Thin Films and Coatings of Inner Mongolia, Hohhot 010051, China;
  • 3. College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 61664007, 11672175).

Abstract: The experimental results of red-shift and blue-shift in absorption spectrum of Mo-doped ZnO are in mutual contradiction, and this phenomenon has not been explained rationally so far. For explaining this phenomenon, we analyze the energy band structure, state density, and absorption-spectrum distributions for each of Zn0.9583Mo0.0417O, Zn0.9375Mo0.0625O and Zn14Mo2O by first-principles calculation. The results show that within a limited doping amount range of 2.08 at%-3.13 at%, the higher Mo doping amount results in higher doping system volume, higher formation energy, lower system stability, and more difficult to dope. Meanwhile, all doping systems are converted into n-type degenerate semiconductors. Compared with the band gap of pure ZnO, the band gap of each doping system becomes narrow and the absorption spectrum shows red-shift. The higher the Mo doping amount, the weaker the narrowing of band gap becomes and the weaker the red-shift in absorption spectrum as well as the lower the electronic effective mass and the lower the electronic concentration; the lower the electronic mobility, the lower the electronic conductivity is; the lower the electronic magnetic moment is. The Curie temperature of doping system can reach a temperature higher than room temperature.

Reference (36)

Catalog

    /

    返回文章
    返回