Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Full-vectorial analysis of a silicon-based multimode interference mode-order converter for slot waveguide nanowires

Xiao Jin-Biao Wang Deng-Feng

Full-vectorial analysis of a silicon-based multimode interference mode-order converter for slot waveguide nanowires

Xiao Jin-Biao, Wang Deng-Feng
PDF
Get Citation
  • Recently, silicon-based photonic integrated circuits (PICs) have attracted considerable interest due to the advantages of high index contrast and complementary metal oxide semiconductor compatible process. Furthermore, to meet the ever-growing bandwidth requirements for data center and supercomputing, several multiplexing on-chip technologies by using silicon PICs are proposed. Among them, the mode division multiplexing (MDM) is widely recognized to be important, where mode-order converters (MOCs) are fundamental building blocks. In addition, slot waveguides can efficiently confine the light in low-index regions, thus forming various kinds of novel photonic devices. In this paper, a compact 12 multimode interference (MMI) mode-order converter (MOC) for silicon-based slot nanowires is proposed, where straight waveguides, as the input/output channels, are connected to a quadratic-tapered multimode waveguide via linear-tapered waveguides. A full-vectorial finite-difference frequency-domain method is used to analyze the modal characteristics of the used silicon-based vertical slot waveguides; from this, quasi-TM mode is chosen as an input optical signal since its field distribution is strongly confined in the slot, i. e., the electric field strength is greatly enhanced in the vertical slot, and with the increase of the width of the slot waveguide, it can support higher-order quasi-TM modes. Compared with the beating length of rectangular MMI structure, the beating length of quadratic-tapered MMI structure can be effectively reduced with transmission loss lowering. From the imaging position of the guided-mode in MMI region via self-imagining effect, the length of quadratic-tapered MMI structure can be determined accurately where first-order and fundamental quasi-TM modes are outputs, respectively, from wider and narrower channels. A three-dimensional finite-difference time-domain method is utilized to assess the performance of the proposed MOC, where the insertion loss and crosstalk are analyzed in detail. The results show that an MOC with an MMI section of 35 m2 is achieved to be an insertion loss and a crosstalk of~0.35 dB and~-16.9 dB, respectively, at a wavelength of 1.55 m by carefully optimizing the key structural parameters. Moreover, the fabrication deviation of the proposed device is also analyzed in detail and the performance is evaluated, where insertion loss and the contrast are considered. To demonstrate the transmission characteristics of the proposed MOC, the evolution of the excited fundamental quasi-TM mode through the MOC is also presented. Numerical results show that the presented MOC realizes the desired function, converting the fundamental quasi-TM mode into first-order one with reasonable performance. We remark that the present MOC has a good potential application in MDM system to improve the capacity of the silicon-based on-chip transmission system.
      Corresponding author: Xiao Jin-Biao, jbxiao@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574046, 60978005) and the Jiangsu Provincial Natural Science Foundation, China (Grant No. BK20141120).
    [1]

    Paul D J 2009 Electron. Lett 45 582

    [2]

    Jalali B, Fathpour S 2007 J. Lightwave Technol. 24 4600

    [3]

    Haralick R M 1979 Proc. IEEE 67 786

    [4]

    Liu A S, Liao L, Chetrit Y, Hat B N, Rubin D, Panicca M 2010 IEEE J. Sel. Top. Quantum Electron. 16 23

    [5]

    Deng L, Pang X D, Othman M B, Jensen J B, Zibar B, Yu X B, Liu D M, Monroy I T 2012 Opt. Express 20 4369

    [6]

    Sjdin M, Agrell E, Johannisson P, Lu G W, Andrekson P A, Karlsson M 2011 J. Lightwave Technol. 29 1219

    [7]

    Randel S, Ryf R, Sierra A, Winzer P J, Gnauck A H, Bolle C A, Essiambre R J, Peckham D W, McCurdy A, Lingle R 2011 Opt. Express 19 16697

    [8]

    SalsiM, KoebeleC, Sperti D, Tran P, Mardoyan H, Brindel P, Bigo S, Boutin A, Verluise F, Sillard P, Astruc M B, Provost L, Charlet G 2012 J. Lightwave Technol. 30 618

    [9]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photon. 7 354

    [10]

    Foland S, Liu K, Choi K H, Macfarlane D, Lee J B 2011 11th IEEE International Conference on Nanotechnology Portland, Oregon, USA, August 15-18, 2011 p1483

    [11]

    Giles I, Obeysekara A, Chen R, Giles D, Poletti F, Richardson D 2012 IEEE Photon. Technol. Lett. 24 1922

    [12]

    Igarashi K, Souma D, Tsuritani T, Morita I 2014 Opt. Express 22 20881

    [13]

    Low A L Y, Yong Y S, You A H, Su F C, Teo C F 2004 IEEE Photon. Technol. Lett. 16 1673

    [14]

    Park J B, Yeo D M, Shin S Y 2006 IEEE Photon. Technol. Lett. 18 2084

    [15]

    Deng Q, Liu L, Li X, Zhou Z 2014 Opt. Lett. 39 5665

    [16]

    Xiao J B, Xu Y 2016 IEEE Photon. Technol. Lett. 28 1

    [17]

    Leuthold J, Joyner C H 2001 J. Lightwave Technol. 19 700

    [18]

    Singh G, Yadav R P, Janyani V 2010 Int. J. Commun. 2010 115

    [19]

    Wu J J 2008 Pier C 54 113

    [20]

    Tsao S L, Guo H C, Tsai C W 2004 Opt. Commun. 232 371

    [21]

    Poveda A C, Mnguez A H, Gargallo B, Biermann K, Tahraoui A, Santos P V, Munoz P, Cantarero A, Lima J M M D 2015 Opt. Express 23 21213

    [22]

    Yan C J 2008 Opt. Optoelectron. Technol. 6 88

    [23]

    Wang J H, Xiao J B, Sun X H 2015 Appl. Opt. 54 3805

    [24]

    Xu Y, Xiao J B 2015 IEEE Photon. Technol. Lett. 27 2071

    [25]

    Soldano L B, Pennings E C M 1995 J. Lightwave Technol. 13 615

    [26]

    Besse P A, Gini E, Bachmann M, Melchior H 1996 J. Lightwave Technol. 14 2286

    [27]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M 2014 Nat. Commun. 5 1661

    [28]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [29]

    Xiao J B, Ni H X, Sun X H 2008 Opt. Lett. 33 1848

    [30]

    Zhao Y J, Wu K L, Cheng K K M 2002 IEEE Trans. Microw. Theory Tech. 50 1844

    [31]

    Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G 2010 Comput. Phys. Commun. 181 687

    [32]

    Sullivan D M 2013 Electromagnetic Simulation Using the FDTD Method (New York:Wiley) pp85-96

    [33]

    Taflove A 1988 Wave Motion 10 547

    [34]

    Yee K S, Chen J S 1997 IEEE Trans. Antennas Propagat. 45 354

    [35]

    Chew W C, Liu Q H 1996 J. Comput. Acoust. 4 341

    [36]

    Mur G 1981 IEEE Trans. Electromagn. Compat. 4 377

    [37]

    Xiao J B, Liu X, Sun X 2008 Jpn. J. Appl. Phys. 47 3748

    [38]

    Xiao J B, Liu X, Sun X 2007 Opt. Express 15 8300

  • [1]

    Paul D J 2009 Electron. Lett 45 582

    [2]

    Jalali B, Fathpour S 2007 J. Lightwave Technol. 24 4600

    [3]

    Haralick R M 1979 Proc. IEEE 67 786

    [4]

    Liu A S, Liao L, Chetrit Y, Hat B N, Rubin D, Panicca M 2010 IEEE J. Sel. Top. Quantum Electron. 16 23

    [5]

    Deng L, Pang X D, Othman M B, Jensen J B, Zibar B, Yu X B, Liu D M, Monroy I T 2012 Opt. Express 20 4369

    [6]

    Sjdin M, Agrell E, Johannisson P, Lu G W, Andrekson P A, Karlsson M 2011 J. Lightwave Technol. 29 1219

    [7]

    Randel S, Ryf R, Sierra A, Winzer P J, Gnauck A H, Bolle C A, Essiambre R J, Peckham D W, McCurdy A, Lingle R 2011 Opt. Express 19 16697

    [8]

    SalsiM, KoebeleC, Sperti D, Tran P, Mardoyan H, Brindel P, Bigo S, Boutin A, Verluise F, Sillard P, Astruc M B, Provost L, Charlet G 2012 J. Lightwave Technol. 30 618

    [9]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photon. 7 354

    [10]

    Foland S, Liu K, Choi K H, Macfarlane D, Lee J B 2011 11th IEEE International Conference on Nanotechnology Portland, Oregon, USA, August 15-18, 2011 p1483

    [11]

    Giles I, Obeysekara A, Chen R, Giles D, Poletti F, Richardson D 2012 IEEE Photon. Technol. Lett. 24 1922

    [12]

    Igarashi K, Souma D, Tsuritani T, Morita I 2014 Opt. Express 22 20881

    [13]

    Low A L Y, Yong Y S, You A H, Su F C, Teo C F 2004 IEEE Photon. Technol. Lett. 16 1673

    [14]

    Park J B, Yeo D M, Shin S Y 2006 IEEE Photon. Technol. Lett. 18 2084

    [15]

    Deng Q, Liu L, Li X, Zhou Z 2014 Opt. Lett. 39 5665

    [16]

    Xiao J B, Xu Y 2016 IEEE Photon. Technol. Lett. 28 1

    [17]

    Leuthold J, Joyner C H 2001 J. Lightwave Technol. 19 700

    [18]

    Singh G, Yadav R P, Janyani V 2010 Int. J. Commun. 2010 115

    [19]

    Wu J J 2008 Pier C 54 113

    [20]

    Tsao S L, Guo H C, Tsai C W 2004 Opt. Commun. 232 371

    [21]

    Poveda A C, Mnguez A H, Gargallo B, Biermann K, Tahraoui A, Santos P V, Munoz P, Cantarero A, Lima J M M D 2015 Opt. Express 23 21213

    [22]

    Yan C J 2008 Opt. Optoelectron. Technol. 6 88

    [23]

    Wang J H, Xiao J B, Sun X H 2015 Appl. Opt. 54 3805

    [24]

    Xu Y, Xiao J B 2015 IEEE Photon. Technol. Lett. 27 2071

    [25]

    Soldano L B, Pennings E C M 1995 J. Lightwave Technol. 13 615

    [26]

    Besse P A, Gini E, Bachmann M, Melchior H 1996 J. Lightwave Technol. 14 2286

    [27]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M 2014 Nat. Commun. 5 1661

    [28]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [29]

    Xiao J B, Ni H X, Sun X H 2008 Opt. Lett. 33 1848

    [30]

    Zhao Y J, Wu K L, Cheng K K M 2002 IEEE Trans. Microw. Theory Tech. 50 1844

    [31]

    Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G 2010 Comput. Phys. Commun. 181 687

    [32]

    Sullivan D M 2013 Electromagnetic Simulation Using the FDTD Method (New York:Wiley) pp85-96

    [33]

    Taflove A 1988 Wave Motion 10 547

    [34]

    Yee K S, Chen J S 1997 IEEE Trans. Antennas Propagat. 45 354

    [35]

    Chew W C, Liu Q H 1996 J. Comput. Acoust. 4 341

    [36]

    Mur G 1981 IEEE Trans. Electromagn. Compat. 4 377

    [37]

    Xiao J B, Liu X, Sun X 2008 Jpn. J. Appl. Phys. 47 3748

    [38]

    Xiao J B, Liu X, Sun X 2007 Opt. Express 15 8300

  • [1] Xiao Jin-Biao, Luo Hui, Xu Yin, Sun Xiao-Han. Full-vectorial analysis of a polarization demultiplexer using a microring resonator with silicon-based slot waveguides. Acta Physica Sinica, 2015, 64(19): 194207. doi: 10.7498/aps.64.194207
    [2] Design of polarization-insensitive 1×2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191449
    [3] Wang Ming-Hua, Jiang Xiao-Qing, Yang Jian-Yi, Yu Tian-Bao. Coupling characteristics of electromagnetic waves in parallel three photonic crystal waveguides and its application. Acta Physica Sinica, 2006, 55(4): 1851-1856. doi: 10.7498/aps.55.1851
    [4] Tu Xin, Chen Zhen-Min, Fu Hong-Yan. Reivew of silicon photonic switches. Acta Physica Sinica, 2019, 68(10): 104210. doi: 10.7498/aps.68.20190011
    [5] Zhou Pei-Ji, Li Zhi-Yong, Yu Yu-De, Yu Jin-Zhong. Research progress of silicon-based photonic integration. Acta Physica Sinica, 2014, 63(10): 104218. doi: 10.7498/aps.63.104218
    [6] Qiu Cheng, Chen Yong-Yi, Gao Feng, Qin Li, Wang Li-Jun. Design of a multimode interference waveguide semiconductor laser combining gain coupled distributed feedback grating. Acta Physica Sinica, 2019, 68(16): 164204. doi: 10.7498/aps.68.20190744
    [7] Wen Chang-Li, Ji Jia-Rong, Dou Wen-Hua, Feng Xiang-Hua, Xu Rong, Men Tao, Liu Chang-Hai. Improvement of the technology of making multi-mode polysiloxane waveguides. Acta Physica Sinica, 2012, 61(9): 094202. doi: 10.7498/aps.61.094202
    [8] Zhang Jun, Yu Tian-Bao, Liu Nian-Hua, Liao Qing-Hua, He Ling-Juan. Propagation properties of light in multimode photonic crystal waveguides with triangular lattices based on total internal reflection. Acta Physica Sinica, 2011, 60(10): 104217. doi: 10.7498/aps.60.104217
    [9] Xue Yan-Ru, Tian Peng-Fei, Jin Wa, Zhao Neng, Jin Yun, Bi Wei-Hong. Superimposed long period gratings based mode converter in few-mode fiber. Acta Physica Sinica, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [10] Fang Xiao-Hui, Hu Ming-Lie, Song You-Jian, Xie Chen, Chai Lu, Wang Qing-Yue. Mode locked multi-core photonic crystal fiber laser. Acta Physica Sinica, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [11] Pan Jian-Xia, Sun Yi-Ling. Analysis of the fully destructive interference of overlapping-images in MMI couplers. Acta Physica Sinica, 2007, 56(6): 3300-3305. doi: 10.7498/aps.56.3300
    [12] Lin Xu-Sheng, Wu Li-Jun, Guo Qi, Hu Wei, Lan Sheng. Impact of a stripe waveguide to coupled defect modes of photonic crystals. Acta Physica Sinica, 2008, 57(12): 7717-7724. doi: 10.7498/aps.57.7717
    [13] Xiao Jin-Biao, Li Wen-Liang, Xia Sai-Sai, Sun Xiao-Han. Full-vectorial analysis of the directional couplers in horizontal multiple-slotted silicon wires with trapezoidal cross-section. Acta Physica Sinica, 2012, 61(12): 124216. doi: 10.7498/aps.61.124216
    [14] Chen Xian-Feng, Jiang Mei-Ping, Shen Xiao-Ming, Jin Yi, Huang Zhen-Yi. The defect modes in one-dimensional photonic crystal with multiple defects. Acta Physica Sinica, 2008, 57(9): 5709-5712. doi: 10.7498/aps.57.5709
    [15] Yan Sheng-Mei, Su Wei, Wang Ya-Jun, Xu Ao, Chen Zhang, Jin Da-Zhi, Xiang Wei. Theoretical and simulation study of 0.14 THz fundamental mode multi-beam folded waveguide traveling wave tube. Acta Physica Sinica, 2014, 63(23): 238404. doi: 10.7498/aps.63.238404
    [16] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [17] ZHANG BIN, LV BAI-DA. MODE CORRELATION AND COHERENT-MODE REPRESEN-TATION OF MULTI-MODE LASER BEAMS. Acta Physica Sinica, 1999, 48(1): 58-64. doi: 10.7498/aps.48.58
    [18] Wang Qiang, Zhou Hai-Jing, Yang Chun, Li Biao, He Xiao-Yang. Iterative method for multimode waveguide design. Acta Physica Sinica, 2013, 62(11): 115204. doi: 10.7498/aps.62.115204
    [19] Zeng Li, Liu Guo-Biao, Zhang Hai-Feng, Huang Tong. An ultrawideband linear-to-circular polarization converter based on multiphysics regulation. Acta Physica Sinica, 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [20] Wang Dong, Xu Sha, Cao Yan-Wei, Qin Fen. Design of a metallic photonic crystal high power microwave mode converter. Acta Physica Sinica, 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
  • Citation:
Metrics
  • Abstract views:  176
  • PDF Downloads:  126
  • Cited By: 0
Publishing process
  • Received Date:  08 September 2016
  • Accepted Date:  13 January 2017
  • Published Online:  05 April 2017

Full-vectorial analysis of a silicon-based multimode interference mode-order converter for slot waveguide nanowires

    Corresponding author: Xiao Jin-Biao, jbxiao@seu.edu.cn
  • 1. School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11574046, 60978005) and the Jiangsu Provincial Natural Science Foundation, China (Grant No. BK20141120).

Abstract: Recently, silicon-based photonic integrated circuits (PICs) have attracted considerable interest due to the advantages of high index contrast and complementary metal oxide semiconductor compatible process. Furthermore, to meet the ever-growing bandwidth requirements for data center and supercomputing, several multiplexing on-chip technologies by using silicon PICs are proposed. Among them, the mode division multiplexing (MDM) is widely recognized to be important, where mode-order converters (MOCs) are fundamental building blocks. In addition, slot waveguides can efficiently confine the light in low-index regions, thus forming various kinds of novel photonic devices. In this paper, a compact 12 multimode interference (MMI) mode-order converter (MOC) for silicon-based slot nanowires is proposed, where straight waveguides, as the input/output channels, are connected to a quadratic-tapered multimode waveguide via linear-tapered waveguides. A full-vectorial finite-difference frequency-domain method is used to analyze the modal characteristics of the used silicon-based vertical slot waveguides; from this, quasi-TM mode is chosen as an input optical signal since its field distribution is strongly confined in the slot, i. e., the electric field strength is greatly enhanced in the vertical slot, and with the increase of the width of the slot waveguide, it can support higher-order quasi-TM modes. Compared with the beating length of rectangular MMI structure, the beating length of quadratic-tapered MMI structure can be effectively reduced with transmission loss lowering. From the imaging position of the guided-mode in MMI region via self-imagining effect, the length of quadratic-tapered MMI structure can be determined accurately where first-order and fundamental quasi-TM modes are outputs, respectively, from wider and narrower channels. A three-dimensional finite-difference time-domain method is utilized to assess the performance of the proposed MOC, where the insertion loss and crosstalk are analyzed in detail. The results show that an MOC with an MMI section of 35 m2 is achieved to be an insertion loss and a crosstalk of~0.35 dB and~-16.9 dB, respectively, at a wavelength of 1.55 m by carefully optimizing the key structural parameters. Moreover, the fabrication deviation of the proposed device is also analyzed in detail and the performance is evaluated, where insertion loss and the contrast are considered. To demonstrate the transmission characteristics of the proposed MOC, the evolution of the excited fundamental quasi-TM mode through the MOC is also presented. Numerical results show that the presented MOC realizes the desired function, converting the fundamental quasi-TM mode into first-order one with reasonable performance. We remark that the present MOC has a good potential application in MDM system to improve the capacity of the silicon-based on-chip transmission system.

Reference (38)

Catalog

    /

    返回文章
    返回