Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamical behaviors of Sn micro-sphere particles under shock wave action

Zhao Xin-Wen Li Xin-Zhu Zhang Hang Wang Xue-Jun Song Ping Zhang Han-Zhao Kang Qiang Huang Jin Wu Qiang

Dynamical behaviors of Sn micro-sphere particles under shock wave action

Zhao Xin-Wen, Li Xin-Zhu, Zhang Hang, Wang Xue-Jun, Song Ping, Zhang Han-Zhao, Kang Qiang, Huang Jin, Wu Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In these decades, the turbulence mixing of micro-ejecta particles and gas has attracted considerable attention because it has great influence on inertial confinement fusion and some technologies of optical detection. It is significantly important for studying the evolution of micro-ejecta by investigating the influence of particle size and the transporting progress. In this paper, we experimentally investigate the micro-ejecta dynamical behaviors when a strong shockwave acts on Sn micro-sphere particles with different sizes of 0.1 μm, 1 μm, 5 μm and 10 μm. A strict experiment is carried out, in which a thin Ta flyer is accelerated by TNT explosion to load the Sn particles, and the velocity variation of ejecta particles transported in air is measured by the displacement interferometer system for any reflector. The results show that the tip-velocity of the micro-ejecta is very sensitive to the initial size of particle, where the larger size results in increased velocity. By analyzing the results of each case in detail, we discover that the formation of micro-ejecta is caused by the interaction between shockwave and the gap structure among several particles, where the larger gap structure induces faster ejecta tip-velocity. To verify this explanation, the effects of particle size on the ejecta tip-velocity is examined by simulating the cases of 5 μm and 10 μm in particle size through three-dimensional smooth particle hydrodynamics method. The simulated tip-velocity results are in good agreement with the corresponding experimental results. However, the scenario is different when the particle size is smaller than 1 μm, where the experimentally measured tip-velocity of 0.1 μm size particle is nearly the same as that of 1 μm size particle. We attribute this to the fact that the gap structure is too small to affect the micro-ejecta progress and the micro-ejecta is mainly caused by the large scale defects accumulated by a huge number of particles. Furthermore, by comparing with the experimentally measured velocity decay, we also estimate the size distribution of ejecta particles by simulating the decelerating processes of different-sized particles with different initial velocities in gas. This paper is helpful in comprehending in depth the micro-ejecta process caused by the shockwave acting on micro particles, and also in designing such experiments accurately.
      Corresponding author: Li Xin-Zhu, yy_stroller@163.com
    • Funds: Project supported by the Science Challenge Project, China (Grant No. JCKY2016212A501).
    [1]

    Walsh J M, Shreffler R G, Willing F J 1953 J. Appl. Phys. 24 349

    [2]

    Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284

    [3]

    Wang P, Qin C S, Zhang S D, Liu C 2004 Chin. J. High Press. Phys. 18 149 (in Chinese) [王裴,秦承森,张树道,刘超 2004 高压物理学报 18 149]

    [4]

    Buttler W T, Zellner M B, Olson R T, Rigg P A, Hixson R S, Hammerberg J E, Obst A W, Payton J R 2007 J. Appl. Phys. 101 063547

    [5]

    Monfared S K, Oró D M, Grover M, Hammerberg J E, Lalone B M, Pack C L, Schauer M M, Stevens G D, Stone J B, Turley W D, Buttler W T 2014 J. Appl. Phys. 116 063504

    [6]

    Durand O, Soulard L 2013 J. Appl. Phys. 114 194902

    [7]

    Zhang W Y, Ye W H, Wu J F, Miao W Y, Fan Z F, Wang L F, Gu J F, Dai Z S, Cao Z R, Xu X W, Yuan Y T, Kang D G, Li Y S, Yu X J, Liu C L, Xue C, Zheng W D, Wang M, Pei W B, Zhu S P, Jiang S E, Liu S Y, Ding Y K, He X S 2014 Sci. China: Phys. Mech. Astron. 44 1 (in Chinese) [张维岩, 叶文华, 吴俊峰, 缪文勇, 范征锋, 王立锋, 谷建法, 戴振生, 曹柱荣, 徐小文, 袁永腾, 康洞国, 李永升, 郁晓瑾, 刘长礼, 薛创, 郑无敌, 王敏, 裴文兵, 朱少平, 江少恩, 刘慎业, 丁永坤, 贺贤土 2014 中国科学:物理学 44 1]

    [8]

    Zhang C Y, Hu H B, Li Q Z, Yuan S 2009 Chin. J. High Press. Phys. 23 283 (in Chinese) [张崇玉, 胡海波, 李庆忠, 袁帅 2009 高压物理学报 23 283]

    [9]

    Weng J D, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101

    [10]

    La Lone B M, Marshall B R, Miller E K, Stevens G D, Turley W D, Veeser L R 2015 Rev. Sci. Instrum. 86 023112

    [11]

    Seifter A, Stewart S T, Furlanetto M R, Kennedy G B, Payton J R, Obst A W 2006 AIP Conf. Proc. 845 239

    [12]

    Seifter A, Grover M, Holtkamp D B, Payton J R, Rodriguez P, Turley D, Obst A W 2004 26th International Congress on High-Speed Photography and Photonics Alexandria, Virginia, September 19-24, 2004 p93

    [13]

    Ma Y, Wang X S, Li X Z, Zhang H Z, Hu S L, Li J B, Chen H, Wen J D 2006 Chin. J. High Press. Phys. 20 207 (in Chinese) [马云, 汪小松, 李欣竹, 张汉钊, 胡绍楼, 李加波, 陈宏, 翁继东 2006 高压物理学报 20 207]

    [14]

    Asay J R 1978 J. Appl. Phys. 49 6173

    [15]

    Oró D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [16]

    Rousculp C L, Oro D M, Morris C, Saunders A, Reass W, Griego J R, Turchi P J, Reinovsky R E https://www.osti.gov/scitech/biblio/1178310/ [2015-4-20]

    [17]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Methods (Singapore: World Scientific) pp309-339

    [18]

    Wang P, Qin C S, Zhang S D, Liu C 2004 Chin. J. High Press. Phys. 18 149 (in Chinese) [王裴, 秦承森, 张树道, 刘超 2004 高压物理学报 18 149]

    [19]

    Monfared S K, Buttler W T, Frayer D K, Grover M, LaLone B M, Stevens G D, Stone J B, Turley W D, Schauer M M 2015 J. Appl. Phys. 117 223105

    [20]

    Tan H 2007 Introduction to Experimental Shocked-Wave Physics (Beijing: National Defense Industry Press) pp36-43 (in Chinese) [谭华 2007 实验冲击波物理导引(北京:国防工业出版社)第36—43页]

    [21]

    Zhang S Q, Liu C L, Li Q Z, Liu Q 2008 Acta Mech. Sin. 40 535 (in Chinese) [张世文, 刘仓理, 李庆忠, 刘乔 2008 力学学报 40 535]

    [22]

    Sorenson D S, Pazuchanics P D, Johnson R P, Tunnell T W, Smalley D D, Malone R M, Kaufman M I, Marks D G, Capelle G A, Grover M, Stevens G D, LaLone B M, Marshall B F, Turley W D 2017 AIP Conf. Proc. 1793 100026

    [23]

    Buttler W T, Oró D M, Olson R T, Cherne F J, Hammerberg J E, Hixson R S, Monfared S K, Pack C L, Rigg P A, Stone J B, Terrones G 2014 J. Appl. Phys. 116 103519

    [24]

    Fung J, Harrison A K, Chitanvbs S, Margulies J 2013 Comput. Fluids 83 177

    [25]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海全, 邵建立, 秦承森, 李欣竹 2012 物理学报 61 234703]

    [26]

    Igra O, Takayama K 1993 Proc. R. Soc. London 442 231

  • [1]

    Walsh J M, Shreffler R G, Willing F J 1953 J. Appl. Phys. 24 349

    [2]

    Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284

    [3]

    Wang P, Qin C S, Zhang S D, Liu C 2004 Chin. J. High Press. Phys. 18 149 (in Chinese) [王裴,秦承森,张树道,刘超 2004 高压物理学报 18 149]

    [4]

    Buttler W T, Zellner M B, Olson R T, Rigg P A, Hixson R S, Hammerberg J E, Obst A W, Payton J R 2007 J. Appl. Phys. 101 063547

    [5]

    Monfared S K, Oró D M, Grover M, Hammerberg J E, Lalone B M, Pack C L, Schauer M M, Stevens G D, Stone J B, Turley W D, Buttler W T 2014 J. Appl. Phys. 116 063504

    [6]

    Durand O, Soulard L 2013 J. Appl. Phys. 114 194902

    [7]

    Zhang W Y, Ye W H, Wu J F, Miao W Y, Fan Z F, Wang L F, Gu J F, Dai Z S, Cao Z R, Xu X W, Yuan Y T, Kang D G, Li Y S, Yu X J, Liu C L, Xue C, Zheng W D, Wang M, Pei W B, Zhu S P, Jiang S E, Liu S Y, Ding Y K, He X S 2014 Sci. China: Phys. Mech. Astron. 44 1 (in Chinese) [张维岩, 叶文华, 吴俊峰, 缪文勇, 范征锋, 王立锋, 谷建法, 戴振生, 曹柱荣, 徐小文, 袁永腾, 康洞国, 李永升, 郁晓瑾, 刘长礼, 薛创, 郑无敌, 王敏, 裴文兵, 朱少平, 江少恩, 刘慎业, 丁永坤, 贺贤土 2014 中国科学:物理学 44 1]

    [8]

    Zhang C Y, Hu H B, Li Q Z, Yuan S 2009 Chin. J. High Press. Phys. 23 283 (in Chinese) [张崇玉, 胡海波, 李庆忠, 袁帅 2009 高压物理学报 23 283]

    [9]

    Weng J D, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101

    [10]

    La Lone B M, Marshall B R, Miller E K, Stevens G D, Turley W D, Veeser L R 2015 Rev. Sci. Instrum. 86 023112

    [11]

    Seifter A, Stewart S T, Furlanetto M R, Kennedy G B, Payton J R, Obst A W 2006 AIP Conf. Proc. 845 239

    [12]

    Seifter A, Grover M, Holtkamp D B, Payton J R, Rodriguez P, Turley D, Obst A W 2004 26th International Congress on High-Speed Photography and Photonics Alexandria, Virginia, September 19-24, 2004 p93

    [13]

    Ma Y, Wang X S, Li X Z, Zhang H Z, Hu S L, Li J B, Chen H, Wen J D 2006 Chin. J. High Press. Phys. 20 207 (in Chinese) [马云, 汪小松, 李欣竹, 张汉钊, 胡绍楼, 李加波, 陈宏, 翁继东 2006 高压物理学报 20 207]

    [14]

    Asay J R 1978 J. Appl. Phys. 49 6173

    [15]

    Oró D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [16]

    Rousculp C L, Oro D M, Morris C, Saunders A, Reass W, Griego J R, Turchi P J, Reinovsky R E https://www.osti.gov/scitech/biblio/1178310/ [2015-4-20]

    [17]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Methods (Singapore: World Scientific) pp309-339

    [18]

    Wang P, Qin C S, Zhang S D, Liu C 2004 Chin. J. High Press. Phys. 18 149 (in Chinese) [王裴, 秦承森, 张树道, 刘超 2004 高压物理学报 18 149]

    [19]

    Monfared S K, Buttler W T, Frayer D K, Grover M, LaLone B M, Stevens G D, Stone J B, Turley W D, Schauer M M 2015 J. Appl. Phys. 117 223105

    [20]

    Tan H 2007 Introduction to Experimental Shocked-Wave Physics (Beijing: National Defense Industry Press) pp36-43 (in Chinese) [谭华 2007 实验冲击波物理导引(北京:国防工业出版社)第36—43页]

    [21]

    Zhang S Q, Liu C L, Li Q Z, Liu Q 2008 Acta Mech. Sin. 40 535 (in Chinese) [张世文, 刘仓理, 李庆忠, 刘乔 2008 力学学报 40 535]

    [22]

    Sorenson D S, Pazuchanics P D, Johnson R P, Tunnell T W, Smalley D D, Malone R M, Kaufman M I, Marks D G, Capelle G A, Grover M, Stevens G D, LaLone B M, Marshall B F, Turley W D 2017 AIP Conf. Proc. 1793 100026

    [23]

    Buttler W T, Oró D M, Olson R T, Cherne F J, Hammerberg J E, Hixson R S, Monfared S K, Pack C L, Rigg P A, Stone J B, Terrones G 2014 J. Appl. Phys. 116 103519

    [24]

    Fung J, Harrison A K, Chitanvbs S, Margulies J 2013 Comput. Fluids 83 177

    [25]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海全, 邵建立, 秦承森, 李欣竹 2012 物理学报 61 234703]

    [26]

    Igra O, Takayama K 1993 Proc. R. Soc. London 442 231

  • [1] Zhao Xin-Wen, Li Xin-Zhu, Wang Xue-Jun, Song Ping, Zhang Han-Zhao, Wu Qiang. Effects of surface groove micro-structure on ejection from shocked metal surface. Acta Physica Sinica, 2015, 64(12): 124701. doi: 10.7498/aps.64.124701
    [2] Chen Jun, Jing Fu-Qian, Zhang Jing-Lin, Chen Dong-Quan. . Acta Physica Sinica, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [3] Wang Pei, Sun Hai-Quan, Shao Jian-Li, Qin Cheng-Sen, Li Xin-Zhu. Numerical simulation on mixing process of ejecta and gas. Acta Physica Sinica, 2012, 61(23): 234703. doi: 10.7498/aps.61.234703
    [4] Chen Yong-Tao, Ren Guo-Wu, Tang Tie-Gang, Li Qing-Zhong, Wang De-Tian, Hu Hai-Bo. Ejecta on Pb surface below and above melting pressure. Acta Physica Sinica, 2012, 61(20): 206202. doi: 10.7498/aps.61.206202
    [5] Chen Yong-Tao, Hong Ren-Kai, Chen Hao-Yu, Ren Guo-Wu. Experimental investigation of ejecta on melted Sn sample under shock loading. Acta Physica Sinica, 2016, 65(2): 026201. doi: 10.7498/aps.65.026201
    [6] Ye Yang, Wang Shu-Lin. Characteristics of micro fine copper particles impact damping. Acta Physica Sinica, 2014, 63(22): 224304. doi: 10.7498/aps.63.224304
    [7] Zhang Yu, Ge Chang-Chun, Shen Wei-Ping, Qiu Cheng-Jie. Microstructure of spray-formed superalloy FGH4095. Acta Physica Sinica, 2012, 61(19): 196101. doi: 10.7498/aps.61.196101
    [8] Zhang Yu, Ge Chang-Chun, Guo Biao, Shen Wei-Ping. Hot deformation behavior of spray formed FGH4095. Acta Physica Sinica, 2012, 61(21): 218102. doi: 10.7498/aps.61.218102
    [9] Cui Zhi-Wen, Liu Jin-Xia, Wang Chun-Xia, Wang Ke-Xie. Elastic waves in Maxwell fluid-saturated porous media with the squirt flow mechanism. Acta Physica Sinica, 2010, 59(12): 8655-8661. doi: 10.7498/aps.59.8655
    [10] Zhang Yu, Ge Chang-Chun, Shen Wei-Ping, Qiu Cheng-Jie. Microstructure of spray-formed FGH4095 after static recrystallization. Acta Physica Sinica, 2012, 61(20): 208101. doi: 10.7498/aps.61.208101
    [11] Wang Tian-Tian, Ge Chang-Chun, Jia Chong-Lin, Wang Jie, Gu Tian-Fu, Wu Hai-Xin. Fabrication and microstucture of spray formed powder metallurgy superalloy FGH4095M. Acta Physica Sinica, 2015, 64(10): 106103. doi: 10.7498/aps.64.106103
    [12] Feng Pei-Pei, Wu Han, Zhang Nan. Study of the time-resolved emission spectra of the ejected plume generated by ultrashort laser ablation of graphite. Acta Physica Sinica, 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [13] Hu Hao-Feng, Wang Xiao-Lei, Li Zhi-Lei, Zhang Nan, Zhai Hong-Chen. Ultra-fast pulsed digital holographic diagnosis of ejected material in femtosecond laser ablation of aluminum. Acta Physica Sinica, 2009, 58(11): 7662-7667. doi: 10.7498/aps.58.7662
    [14] Meng Fan-Jing, Liu Kun. Velocity fluctuation and self diffusion character in a dense granular sheared flow studied by discrete element method. Acta Physica Sinica, 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [15] Wang Xin-Liang, Chen Jie, Wang Ye-Bing, Gao Feng, Zhang Shou-Gang, Liu Hai-Feng, Chang Hong. Measurement of velocity distribution for strontium atom beam by Zeeman Scanning technology. Acta Physica Sinica, 2011, 60(10): 103201. doi: 10.7498/aps.60.103201
    [16] ZHENG SHI-HAI, LI DE-HUA, CHEN YAN-SONG, DAI LUN. EXPERIMENTAL STUDY ON DIFFRACTIVE PERFORMANCE OF CONCAVE GROOVES WITH SUBMICRON WIDTH. Acta Physica Sinica, 1996, 45(8): 1292-1296. doi: 10.7498/aps.45.1292
    [17] Yang Jing-Hui, Zhang Nan, Zhu Xiao-Nong. Investigation of the ultrafast phase evolution of the ejected material generated during femtosecond laser ablation of aluminum by the coherent light illuminated schlieren apparatus. Acta Physica Sinica, 2013, 62(13): 134203. doi: 10.7498/aps.62.134203
    [18] Bi Jin-Shun, Hai Chao-He, Han Zheng-Sheng. Study on power characteristics of deep sub-micron SOI RF LDMOS. Acta Physica Sinica, 2011, 60(1): 018501. doi: 10.7498/aps.60.018501
    [19] Bo Xiao-Qing, Liu Chang-Bai, Li Hai-Ying, Liu Li, Guo Xin, Liu Zhen, Liu Li-Li, Su Chang. Synthesis of porous micro-sphere ZnO and its excellent sensing properties to acetone. Acta Physica Sinica, 2014, 63(17): 176803. doi: 10.7498/aps.63.176803
    [20] Jiang Jian-Jun, Yuan Lin, Deng Lian-Wen, He Hua-Hui. Micromagnetics study of the magnetic nano-granular films. Acta Physica Sinica, 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
  • Citation:
Metrics
  • Abstract views:  982
  • PDF Downloads:  189
  • Cited By: 0
Publishing process
  • Received Date:  11 November 2016
  • Accepted Date:  28 February 2017
  • Published Online:  05 May 2017

Dynamical behaviors of Sn micro-sphere particles under shock wave action

    Corresponding author: Li Xin-Zhu, yy_stroller@163.com
  • 1. Laboratory for Shockwave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
Fund Project:  Project supported by the Science Challenge Project, China (Grant No. JCKY2016212A501).

Abstract: In these decades, the turbulence mixing of micro-ejecta particles and gas has attracted considerable attention because it has great influence on inertial confinement fusion and some technologies of optical detection. It is significantly important for studying the evolution of micro-ejecta by investigating the influence of particle size and the transporting progress. In this paper, we experimentally investigate the micro-ejecta dynamical behaviors when a strong shockwave acts on Sn micro-sphere particles with different sizes of 0.1 μm, 1 μm, 5 μm and 10 μm. A strict experiment is carried out, in which a thin Ta flyer is accelerated by TNT explosion to load the Sn particles, and the velocity variation of ejecta particles transported in air is measured by the displacement interferometer system for any reflector. The results show that the tip-velocity of the micro-ejecta is very sensitive to the initial size of particle, where the larger size results in increased velocity. By analyzing the results of each case in detail, we discover that the formation of micro-ejecta is caused by the interaction between shockwave and the gap structure among several particles, where the larger gap structure induces faster ejecta tip-velocity. To verify this explanation, the effects of particle size on the ejecta tip-velocity is examined by simulating the cases of 5 μm and 10 μm in particle size through three-dimensional smooth particle hydrodynamics method. The simulated tip-velocity results are in good agreement with the corresponding experimental results. However, the scenario is different when the particle size is smaller than 1 μm, where the experimentally measured tip-velocity of 0.1 μm size particle is nearly the same as that of 1 μm size particle. We attribute this to the fact that the gap structure is too small to affect the micro-ejecta progress and the micro-ejecta is mainly caused by the large scale defects accumulated by a huge number of particles. Furthermore, by comparing with the experimentally measured velocity decay, we also estimate the size distribution of ejecta particles by simulating the decelerating processes of different-sized particles with different initial velocities in gas. This paper is helpful in comprehending in depth the micro-ejecta process caused by the shockwave acting on micro particles, and also in designing such experiments accurately.

Reference (26)

Catalog

    /

    返回文章
    返回