Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principle study of structure stability and electronic structures of graphyne derivatives

Chen Xian Cheng Mei-Juan Wu Shun-Qing Zhu Zi-Zhong

First-principle study of structure stability and electronic structures of graphyne derivatives

Chen Xian, Cheng Mei-Juan, Wu Shun-Qing, Zhu Zi-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A new carbon allotropegraphyne has attracted a lot of attention in the field of material sciences and condensed-matter physics due to its unique structure and excellent electronic, optical and mechanical properties. First-principles calculations based on the density functional theory (DFT) are performed to investigate the structures, energetic stabilities and electronic structures of -graphyne derivatives ( -N). The studied -graphyne derivative consists of hexagon carbon rings connected by onedimensional carbon chains with various numbers of carbon atoms (N=1-6) on the chain. The calculation results show that the parity of number of carbon atoms on the carbon chains has a great influence on the structural configuration, the structural stability and the electronic property of the system. The -graphyne derivatives with odd-numbered carbon chains possess continuous CC double bonds, energetically less stable than those with even-numbered carbon chains which have alternating single and triple CC bonds. The electronic structure calculations indicate that -graphyne derivatives can be either metallic (when N is odd) or direct band gap semiconducting (when N is even). The existence of direct band gap can promote the efficient conversion of photoelectric energy, which indicates the advantage of -graphyne in the optoelectronic device. The band gaps of -2, 4, 6 are between 0.94 eV and 0.84 eV, the gap decreases with the number of triple CC bonds increasing, and increases with the augment of length of carbon chains in -2, 4, 6. Our first-principles studies show that introducing carbon chains between the hexagon carbon rings of graphene gives us a method to switch between metallic and semiconducting electronic structures by tuning the number of carbon atoms on the chains and provides a theoretical basis for designing and preparing the tunable s-p hybridized two-dimensional materials and nanoelectronic devices based on carbon atoms.
      Corresponding author: Zhu Zi-Zhong, zzhu@xmu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program (Grant Nos. 2016YFA0202601, 2016YFB0901502).
    [1]

    Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [6]

    Kong X Y, Ding Y, Yang R, Wang Z L 2004 Science 303 1348

    [7]

    Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U 2009 New J. Phys. 11 083019

    [8]

    Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 205501

    [9]

    Fan X F, Liu L, Lin J Y, Shen Z X, Kuo J L 2009 ACS Nano 3 3788

    [10]

    Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I 2013 ACS Nano 7 10075

    [11]

    Liu Y, Jones R O, Zhao X L, Ando Y 2003 Phys. Rev. B 68 125413

    [12]

    Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [13]

    Cao R G, Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京 2010 物理学报 59 6438]

    [14]

    Qiu M, Zhang Z H, Deng X Q 2010 Acta Phys. Sin. 59 4162 (in Chinese) [邱明, 张振华, 邓小清 2010 物理学报 59 4162]

    [15]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [16]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [17]

    Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S 2008 Nanotechnology 3 206

    [18]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris P 2010 Science 327 662

    [19]

    Sun M L, Tang W C, Ren Q Q, Zhao Y M, Du Y H, Yu J, Du Y H, Hao Y T 2016 Physica E 80 142

    [20]

    Wang S K, Wang J 2015 Phys. Rev. B 92 075419

    [21]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

    [22]

    Kang J, Li J, Wu F, Li S S, Xia J B 2011 J. Phys. Chem. C 115 20466

    [23]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951

    [24]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687

    [25]

    Coluci V R, Braga S F, Legoas S B, Galvao D S, Baughman R H 2004 Nanotechnology 15 S142

    [26]

    Falcao E H L, Wudl F 2007 J. Chem. Technol. Biotechnol. 82 524

    [27]

    Hirsch A 2010 Nat. Mater. 9 868

    [28]

    Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879

    [29]

    Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804

    [30]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [31]

    Zhang H, Zhao M, He X, Wang Z, Zhang X, Liu X 2011 J. Phys. Chem. C 115 8845

    [32]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951

    [33]

    Li C, Li J, Wu F, Li S S, Xia J B, Wang L W 2011 J. Phys. Chem. C 115 23221

    [34]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904

    [35]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919

    [36]

    Zhao W H, Yuan L F, Yang J L 2012 Chin. J. Chem. Phys. 25 434

    [37]

    Lin S C, Buehler M 2013 J. Nanoscale 5 11801

    [38]

    Novoselov K S, Jiang D, Schedin F, et al. 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [39]

    Ma Y, Dai Y, Guo M, Huang B 2012 Phys. Rev. B 85 235448

    [40]

    Brumfel G 2009 Nature 458 390

    [41]

    Kaloni T P, Cheng Y C, Schwingenschloegl U 2012 J. Mater. Chem. 22 919

    [42]

    Elias D C, Nair R R, Mohiuddin T M, et al. 2009 Science 323 610

    [43]

    Singh A K, Yakobson B I 2009 Nano Lett. 9 1540

    [44]

    Balog R, Jorgensen B, Nilsson L, et al. 2010 Nat. Mater. 9 315

    [45]

    Ma Y, Dai Y, Guo M, Niu C, Zhang Z, Huang B 2012 Phys. Chem. Chem. Phys. 14 3651

    [46]

    Burgess J S, Matis B R, Robinson J T, et al. 2011 Carbon 49 4420

    [47]

    Castellanos-Gomez A, Wojtaszek M, Arramel, Tombros N, van Wees B J 2012 Small 8 1607

    [48]

    Cocco G, Cadelano E, Colombo L 2010 Phys. Rev. B 81 241412

    [49]

    Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435

    [50]

    Pereira V M, Castro Neto A H, Peres N M R 2009 Phys. Rev. B 80 045401

    [51]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [52]

    Schirber M 2012 Physics 5 24

    [53]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [54]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [55]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [56]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [57]

    Lee S H, Chung H J, Heo J, Yang H, Shin J, Chung U I, Seo S 2011 ACS Nano 5 2964

    [58]

    Peierls R E 1955 Quantum Theory of Solids (Clarendon: Oxford) p108

  • [1]

    Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [6]

    Kong X Y, Ding Y, Yang R, Wang Z L 2004 Science 303 1348

    [7]

    Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U 2009 New J. Phys. 11 083019

    [8]

    Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 205501

    [9]

    Fan X F, Liu L, Lin J Y, Shen Z X, Kuo J L 2009 ACS Nano 3 3788

    [10]

    Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I 2013 ACS Nano 7 10075

    [11]

    Liu Y, Jones R O, Zhao X L, Ando Y 2003 Phys. Rev. B 68 125413

    [12]

    Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [13]

    Cao R G, Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京 2010 物理学报 59 6438]

    [14]

    Qiu M, Zhang Z H, Deng X Q 2010 Acta Phys. Sin. 59 4162 (in Chinese) [邱明, 张振华, 邓小清 2010 物理学报 59 4162]

    [15]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [16]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [17]

    Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S 2008 Nanotechnology 3 206

    [18]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris P 2010 Science 327 662

    [19]

    Sun M L, Tang W C, Ren Q Q, Zhao Y M, Du Y H, Yu J, Du Y H, Hao Y T 2016 Physica E 80 142

    [20]

    Wang S K, Wang J 2015 Phys. Rev. B 92 075419

    [21]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

    [22]

    Kang J, Li J, Wu F, Li S S, Xia J B 2011 J. Phys. Chem. C 115 20466

    [23]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951

    [24]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687

    [25]

    Coluci V R, Braga S F, Legoas S B, Galvao D S, Baughman R H 2004 Nanotechnology 15 S142

    [26]

    Falcao E H L, Wudl F 2007 J. Chem. Technol. Biotechnol. 82 524

    [27]

    Hirsch A 2010 Nat. Mater. 9 868

    [28]

    Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879

    [29]

    Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804

    [30]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [31]

    Zhang H, Zhao M, He X, Wang Z, Zhang X, Liu X 2011 J. Phys. Chem. C 115 8845

    [32]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951

    [33]

    Li C, Li J, Wu F, Li S S, Xia J B, Wang L W 2011 J. Phys. Chem. C 115 23221

    [34]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904

    [35]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919

    [36]

    Zhao W H, Yuan L F, Yang J L 2012 Chin. J. Chem. Phys. 25 434

    [37]

    Lin S C, Buehler M 2013 J. Nanoscale 5 11801

    [38]

    Novoselov K S, Jiang D, Schedin F, et al. 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [39]

    Ma Y, Dai Y, Guo M, Huang B 2012 Phys. Rev. B 85 235448

    [40]

    Brumfel G 2009 Nature 458 390

    [41]

    Kaloni T P, Cheng Y C, Schwingenschloegl U 2012 J. Mater. Chem. 22 919

    [42]

    Elias D C, Nair R R, Mohiuddin T M, et al. 2009 Science 323 610

    [43]

    Singh A K, Yakobson B I 2009 Nano Lett. 9 1540

    [44]

    Balog R, Jorgensen B, Nilsson L, et al. 2010 Nat. Mater. 9 315

    [45]

    Ma Y, Dai Y, Guo M, Niu C, Zhang Z, Huang B 2012 Phys. Chem. Chem. Phys. 14 3651

    [46]

    Burgess J S, Matis B R, Robinson J T, et al. 2011 Carbon 49 4420

    [47]

    Castellanos-Gomez A, Wojtaszek M, Arramel, Tombros N, van Wees B J 2012 Small 8 1607

    [48]

    Cocco G, Cadelano E, Colombo L 2010 Phys. Rev. B 81 241412

    [49]

    Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435

    [50]

    Pereira V M, Castro Neto A H, Peres N M R 2009 Phys. Rev. B 80 045401

    [51]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [52]

    Schirber M 2012 Physics 5 24

    [53]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [54]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [55]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [56]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [57]

    Lee S H, Chung H J, Heo J, Yang H, Shin J, Chung U I, Seo S 2011 ACS Nano 5 2964

    [58]

    Peierls R E 1955 Quantum Theory of Solids (Clarendon: Oxford) p108

  • [1] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [2] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [3] Lü Quan, Huang Wei-Qi, Wang Xiao-Yun, Meng Xiang-Xiang. The first-principle calculations and analysis on density of states of silion plane (111) formed by nitrogen film. Acta Physica Sinica, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [4] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [5] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [6] Yu Dong-Qi, Zhang Zhao-Hui. First principles calculations of interaction between an armchair-edge graphene nanoribbon and its graphite substrate. Acta Physica Sinica, 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [7] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [8] Hou Qing-Yu, Zhang Yue, Chen Yue, Shang Jia-Xiang, Gu Jing-Hua. Effects of the concentration of oxygen vacancy of anatase on electric conducting performance studied by frist principles calculations. Acta Physica Sinica, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [9] Zhang Shu-Ting, Sun Zhi, Zhao Lei. First-principles study of graphene nanoflakes with large spin property. Acta Physica Sinica, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [10] Li Rong, Luo Xiao-Ling, Liang Guo-Ming, Fu Wen-Sheng. First-principles study of influence of dopants Fe on the dehydrogenation properties of VH2. Acta Physica Sinica, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [11] Peng Qiong, He Chao-Yu, Li Jin, Zhong Jian-Xin. First-principles study of electronic properties of MoSi2 thin films. Acta Physica Sinica, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [12] Liu Qi, Guan Peng-Fei. First principle study on atomic structure of La65X35(X=Ni, Al) metallic glasses. Acta Physica Sinica, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [13] Song Qing-Gong, Wang Yan-Feng, Song Qing-Long, Kang Jian-Hai, Chu Yong. First-principle study on the electronic structures of intercalation compound Ag1/4TiSe2. Acta Physica Sinica, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [14] Hu Fang, Ming Xing, Chen Gang, Wang Chun-Zhong, Wei Ying-Jin, Huang Zu-Fei, Fan Hou-Gang. First-principles study on the electronic structures of the ladder compound NaV2O4F. Acta Physica Sinica, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [15] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [16] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [17] Gao Miao, Kong Xin, Lu Zhong-Yi, Xiang Tao. First-principles study of electron-phonon coupling and superconductivity in compound Li2C2. Acta Physica Sinica, 2015, 64(21): 214701. doi: 10.7498/aps.64.214701
    [18] Pei Hai-Lin, Kang Jian-Hai, Jiang En-Yong, Song Qing-Gong, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [19] Gao Pan, Liu Qing-Ju, Zhang Xue-Jun. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron. Acta Physica Sinica, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [20] Li Xue-Mei, Han Hui-Lei, He Guang-Pu. Lattice dynamical, dielectric and thermodynamic properties of LiNH2 from first principles. Acta Physica Sinica, 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
  • Citation:
Metrics
  • Abstract views:  849
  • PDF Downloads:  269
  • Cited By: 0
Publishing process
  • Received Date:  19 December 2016
  • Accepted Date:  11 March 2017
  • Published Online:  05 May 2017

First-principle study of structure stability and electronic structures of graphyne derivatives

    Corresponding author: Zhu Zi-Zhong, zzhu@xmu.edu.cn
  • 1. Department of Physics, Semiconductor Optoelectronic Material and High Efficiency Conversion Device Collaborative Innovation Center, Xiamen University, Xiamen 361005, China
Fund Project:  Project supported by the National Key Research and Development Program (Grant Nos. 2016YFA0202601, 2016YFB0901502).

Abstract: A new carbon allotropegraphyne has attracted a lot of attention in the field of material sciences and condensed-matter physics due to its unique structure and excellent electronic, optical and mechanical properties. First-principles calculations based on the density functional theory (DFT) are performed to investigate the structures, energetic stabilities and electronic structures of -graphyne derivatives ( -N). The studied -graphyne derivative consists of hexagon carbon rings connected by onedimensional carbon chains with various numbers of carbon atoms (N=1-6) on the chain. The calculation results show that the parity of number of carbon atoms on the carbon chains has a great influence on the structural configuration, the structural stability and the electronic property of the system. The -graphyne derivatives with odd-numbered carbon chains possess continuous CC double bonds, energetically less stable than those with even-numbered carbon chains which have alternating single and triple CC bonds. The electronic structure calculations indicate that -graphyne derivatives can be either metallic (when N is odd) or direct band gap semiconducting (when N is even). The existence of direct band gap can promote the efficient conversion of photoelectric energy, which indicates the advantage of -graphyne in the optoelectronic device. The band gaps of -2, 4, 6 are between 0.94 eV and 0.84 eV, the gap decreases with the number of triple CC bonds increasing, and increases with the augment of length of carbon chains in -2, 4, 6. Our first-principles studies show that introducing carbon chains between the hexagon carbon rings of graphene gives us a method to switch between metallic and semiconducting electronic structures by tuning the number of carbon atoms on the chains and provides a theoretical basis for designing and preparing the tunable s-p hybridized two-dimensional materials and nanoelectronic devices based on carbon atoms.

Reference (58)

Catalog

    /

    返回文章
    返回