Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An optimization algorithm for single-molecule fluorescence resonance (smFRET) data processing

Lü Xi-Ming Li Hui You Jing Li Wei Wang Peng-Ye Li Ming Xi Xu-Guang Dou Shuo-Xing

Citation:

An optimization algorithm for single-molecule fluorescence resonance (smFRET) data processing

Lü Xi-Ming, Li Hui, You Jing, Li Wei, Wang Peng-Ye, Li Ming, Xi Xu-Guang, Dou Shuo-Xing
cstr: 32037.14.aps.66.118701
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The single-molecule fluorescence resonance energy transfer (smFRET) technique plays an important role in the development of biophysics. Measuring the changes of the fluorescence intensities of donor and acceptor and of the FRET efficiency can reveal the changes of distance between the labeling positions. The smFRET may be used to study conformational changes of DNA, proteins and other biomolecules. Traditional algorithm for smFRET data processing is highly dependent on manual operation, leading to high noise, low efficiency and low reliability of the outputs. In the present work, we propose an automatic and more accurate algorithm for smFRET data processing. It consists of three parts: algorithm for automatic pairing of donor and acceptor fluorescence spots based on negative correlation between their intensities; algorithm for data screening by eliminating invalid fluorescence spots sections; algorithm for global data fitting based on Baum-Welch algorithm of hidden Markov model (HMM). Based on the law of energy conservation, the light intensity of one pair of donor and acceptor shows a negative correlation. We can use this feature to find the active smFRET pairs automatically. The algorithm will first find out three active smFRET pairs with correlation coefficient lower than the threshold we set. This three active smFRET pairs will provide enough coordinate data for the algorithm to calculate the pairing matrix in the rest of automatic pairing work. After obtaining all the smFRET pairs, the algorithm for data screening will check the correlation coefficient for each pair. The invalid pairs with correlation coefficient higher than the threshold value will be eliminated. The rest of smFRET pairs will be analyzed by the data fitting algorithm. The Baum-Welch algorithm can be used for learning the global parameters. The global parameters we obtained will then be used to fit each FRET-time curve with Viterbi algorithm. The global parameter learning part will help us find the specific FRET efficiency for each state and the curve fitting part will provide more kinetic parameters. The optimization algorithm significantly simplifies the procedures of manual operation in the traditional algorithm and eliminate several types of noises from the experimental data automatically. We apply the new optimization algorithm to the analyses of folding kinetics data for human telomere repeat sequence, the G-quadruplex DNA. It is demonstrated that the optimization algorithm is more efficient to produce data with higher S/N ratio than the traditional algorithm. The final results reveal clearly the folding of G-quadruplex DNA in multiple states that are influenced by the K+ concentration.
      Corresponding author: Li Hui, huili@iphy.ac.cn;sxdou@iphy.ac.cn ; Dou Shuo-Xing, huili@iphy.ac.cn;sxdou@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674383, 11474346, 11274374), the National Basic Research Program of China (Grant No. 2013CB837200), and the National Key Research and Development Program of China (Grant No. 2016YFA0301500).
    [1]

    Zhou R, Kozlov A G, Roy R, Zhang J, Korolev S, Lohman T M, Ha T 2011 Cell 146 222

    [2]

    Honda M, Park J, Pugh R A, Ha T, Spies M 2009 Mol. Cell 35 694

    [3]

    Liu C, Mckinney M C, Chen Y H, Earnest T M, Shi X, Lin L J, Ishino Y, Dahmen K, Cann I K, Ha T 2011 Biophy. J. 100 1344

    [4]

    Wu J Y, Stone M D, Zhuang X 2010 Nucl. Acids Res. 38 e16

    [5]

    Hengesbach M, Kim N K, Feigon J, Stone M D 2012 Angew. Chem. 51 5876

    [6]

    Ha T, Tinnefeld P 2012 Annu. Rev. Phys. Chem. 63 595

    [7]

    He Z C, Li F, Li M Y, Wei L 2015 Acta Phys. Sin. 64 046802 (in Chinese) [何志聪, 李芳, 李牧野, 魏来 2015 物理学报 64 046802]

    [8]

    Li M Y, Li F, Wei L, He Z C, Zhang J P, Han J B, Lu P X 2015 Acta Phys. Sin. 64 108201 (in Chinese) [李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥 2015 物理学报 64 108201]

    [9]

    Roy R, Hohng S, Ha T 2008 Nat. Methods 5 507

    [10]

    Mckinney S A, Joo C, Ha T 2006 Biophys. J. 91 1941

    [11]

    Lee N K, Kapanidis A N, Wang Y, Michalet X, Mukhopadhyay J, Ebright R H, Weiss S 2005 Biophys. J. 88 2939

    [12]

    Sabanayagam C R, Eid J S, Meller A 2005 J. Chem. Phys. 122 061103

    [13]

    Deniz A A, Dahan M, Grunwell J R, Ha T J, Faulhaber A E, Chemla D S, Weiss S, Schultz P G 1999 PNAS 96 3670

    [14]

    Rabiner L R 1989 Proc. IEEE 77 257

    [15]

    Ambrus A, Chen D, Dai J, Bialis T, Jones R A, Yang D 2006 Nucl. Acids Res. 34 2723

    [16]

    Gray R D, Trent J O, Chaires J B 2014 J. Mol. Biol. 426 1629

    [17]

    Tippana R, Xiao W, Myong S 2014 Nucl. Acids Res. 42 8106

    [18]

    Li Y, Liu C, Feng X, Xu Y, Liu B F 2014 Anal. Chem. 86 4333

    [19]

    Cordes T, Vogelsang J, Tinnefeld P 2009 J. Am. Chem. Soc. 131 5018

    [20]

    Hubner C G, Renn A, Renge I, Wild U P 2001 J. Chem. Phys. 115 9619

    [21]

    Lee J Y, Okumus B, Kim D S, Ha T 2005 PNAS 102 18938

    [22]

    Noer S L, Preus S, Gudnason D, Aznauryan M, Mergny J L, Birkedal V 2016 Nucl. Acids Res. 44 464

  • [1]

    Zhou R, Kozlov A G, Roy R, Zhang J, Korolev S, Lohman T M, Ha T 2011 Cell 146 222

    [2]

    Honda M, Park J, Pugh R A, Ha T, Spies M 2009 Mol. Cell 35 694

    [3]

    Liu C, Mckinney M C, Chen Y H, Earnest T M, Shi X, Lin L J, Ishino Y, Dahmen K, Cann I K, Ha T 2011 Biophy. J. 100 1344

    [4]

    Wu J Y, Stone M D, Zhuang X 2010 Nucl. Acids Res. 38 e16

    [5]

    Hengesbach M, Kim N K, Feigon J, Stone M D 2012 Angew. Chem. 51 5876

    [6]

    Ha T, Tinnefeld P 2012 Annu. Rev. Phys. Chem. 63 595

    [7]

    He Z C, Li F, Li M Y, Wei L 2015 Acta Phys. Sin. 64 046802 (in Chinese) [何志聪, 李芳, 李牧野, 魏来 2015 物理学报 64 046802]

    [8]

    Li M Y, Li F, Wei L, He Z C, Zhang J P, Han J B, Lu P X 2015 Acta Phys. Sin. 64 108201 (in Chinese) [李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥 2015 物理学报 64 108201]

    [9]

    Roy R, Hohng S, Ha T 2008 Nat. Methods 5 507

    [10]

    Mckinney S A, Joo C, Ha T 2006 Biophys. J. 91 1941

    [11]

    Lee N K, Kapanidis A N, Wang Y, Michalet X, Mukhopadhyay J, Ebright R H, Weiss S 2005 Biophys. J. 88 2939

    [12]

    Sabanayagam C R, Eid J S, Meller A 2005 J. Chem. Phys. 122 061103

    [13]

    Deniz A A, Dahan M, Grunwell J R, Ha T J, Faulhaber A E, Chemla D S, Weiss S, Schultz P G 1999 PNAS 96 3670

    [14]

    Rabiner L R 1989 Proc. IEEE 77 257

    [15]

    Ambrus A, Chen D, Dai J, Bialis T, Jones R A, Yang D 2006 Nucl. Acids Res. 34 2723

    [16]

    Gray R D, Trent J O, Chaires J B 2014 J. Mol. Biol. 426 1629

    [17]

    Tippana R, Xiao W, Myong S 2014 Nucl. Acids Res. 42 8106

    [18]

    Li Y, Liu C, Feng X, Xu Y, Liu B F 2014 Anal. Chem. 86 4333

    [19]

    Cordes T, Vogelsang J, Tinnefeld P 2009 J. Am. Chem. Soc. 131 5018

    [20]

    Hubner C G, Renn A, Renge I, Wild U P 2001 J. Chem. Phys. 115 9619

    [21]

    Lee J Y, Okumus B, Kim D S, Ha T 2005 PNAS 102 18938

    [22]

    Noer S L, Preus S, Gudnason D, Aznauryan M, Mergny J L, Birkedal V 2016 Nucl. Acids Res. 44 464

  • [1] YANG Huan, ZHENG Yujun. Geometric Phase in Molecular Dynamics. Acta Physica Sinica, 2025, 74(15): . doi: 10.7498/aps.74.20250388
    [2] Zhou Han, Geng Yi-Zhao, Yan Shi-Wei. Full-atomistic molecular dynamics analysis of p53 active tetramer. Acta Physica Sinica, 2024, 73(4): 048701. doi: 10.7498/aps.73.20231515
    [3] Luo Ze-Wei, Wu Ge, Chen Zhi, Deng Chi-Nan, Wan Rong, Yang Tao, Zhuang Zheng-Fei, Chen Tong-Sheng. Dual-channel structured illumination super-resolution quantitative fluorescence resonance energy transfer imaging. Acta Physica Sinica, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [4] Zhang Yu-Hang, Xue Zhen-Yong, Sun Hao, Zhang Zhu-Wei, Chen Hu. Single molecule magnetic tweezers for unfolding dynamics of Acyl-CoA binding protein. Acta Physica Sinica, 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [5] Zhang Yue-Yue, Han Wei-Jing, Chen Tong-Sheng, Wang Shuang. Mechanism of Sen1 translocation. Acta Physica Sinica, 2023, 72(10): 108701. doi: 10.7498/aps.72.20230187
    [6] Xu Yi-Dan, Jiang Wen-Yu, Tong Ji-Hong, Han Lu-Lu, Zuo Zi-Tan, Xu Li-Ming, Gong Xiao-Chun, Wu Jian. Precise measurement of attosecond dynamics of NO molecular shape resonance. Acta Physica Sinica, 2022, 71(23): 233301. doi: 10.7498/aps.71.20221735
    [7] Zhu Dong, Xu Han, Zhou Yin, Wu Bin, Cheng Bing, Wang Kai-Nan, Chen Pei-Jun, Gao Shi-Teng, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Qiao Zhong-Kun, Wang Xiao-Long, Lin Qiang. Data processing of shipborne absolute gravity measurement based on extended Kalman filter algorithm. Acta Physica Sinica, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [8] Wang Qiong, Wang Kai-Ge, Meng Kang Kang, Sun Dan, Han Tong Yu, Gao Ai-Hua. Electrodynamic characteristics of λ-DNA molecule translocating through the microfluidic channel port studied with single molecular fluorescence imaging technology. Acta Physica Sinica, 2020, 69(16): 168202. doi: 10.7498/aps.69.20200074
    [9] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [10] Pan Deng, Liu Chang-Xin, Zhang Ze-Yang, Gao Yu-Jin, Hao Xiu-Hong. Effect of velocity on polytetrafluoroethylene friction coefficient using molecular dynamics simulaiton. Acta Physica Sinica, 2019, 68(17): 176801. doi: 10.7498/aps.68.20190495
    [11] Lu Yue, Ma Jian-Bing, Teng Cui-Juan, Lu Ying, Li Ming, Xu Chun-Hua. Binding process between E.coli SSB and ssDNA by single-molecule dynamics. Acta Physica Sinica, 2018, 67(8): 088201. doi: 10.7498/aps.67.20180109
    [12] Chen Ze, Ma Jian-Bing, Huang Xing-Yuan, Jia Qi, Xu Chun-Hua, Zhang Hui-Dong, Lu Ying. T7 helicase unwinding and stand switching investigated via single-molecular technology. Acta Physica Sinica, 2018, 67(11): 118201. doi: 10.7498/aps.67.20180501
    [13] Qin Ya-Qiang, Chen Rui-Yun, Shi Ying, Zhou Hai-Tao, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. The role of chain conformation in energy transfer properties of single conjugated polymer molecule. Acta Physica Sinica, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [14] Zhao Zhen-Ye, Xu Chun-Hua, Li Jing-Hua, Huang Xing-Yuan, Ma Jian-Bing, Lu Ying. Study of Bloom resolving G-quadruplex process by using high resolution magnetic tweezer with illumination of total internal reflection. Acta Physica Sinica, 2017, 66(18): 188701. doi: 10.7498/aps.66.188701
    [15] He Zhi-Cong, Li Fang, Li Mu-Ye, Wei Lai. Fluorescence resonance energy transfer between CdTe quantum dots and copper phthalocyanine. Acta Physica Sinica, 2015, 64(4): 046802. doi: 10.7498/aps.64.046802
    [16] Zhang Zhe, Obergfell Kyle, Xianming L. Han, Chen Xiang-Jun. Monte-Carlo fitting and its application in electron momentum spectroscopy data processing. Acta Physica Sinica, 2010, 59(3): 1695-1701. doi: 10.7498/aps.59.1695
    [17] Cao Li-Xia, Wang Chong-Yu. Molecular dynamics simulation of fracture in α-iron. Acta Physica Sinica, 2007, 56(1): 413-422. doi: 10.7498/aps.56.413
    [18] Yu Da-Qi, Chen Min. Rigid multibody molecular dynamics algorithm in canonical ensemble. Acta Physica Sinica, 2006, 55(4): 1628-1633. doi: 10.7498/aps.55.1628
    [19] CHI LING-FEI, LIN KUI-XUN, YAO RUO-HE, LIN XUAN-YING, YU CHU-YING, YU YUN-PENG. DIAGNOSTIC OF RF PLASMA BY USING LANGMUIR PROBE AND ITS NUMERICAL PROCESSING. Acta Physica Sinica, 2001, 50(7): 1313-1317. doi: 10.7498/aps.50.1313
    [20] HUANG SHI-HUA, LOU LI-REN. TRANSFER FUNCTION THEORY FOR FLUORESCENCE DYNAMICS. Acta Physica Sinica, 1989, 38(3): 422-429. doi: 10.7498/aps.38.422
Metrics
  • Abstract views:  9089
  • PDF Downloads:  259
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2016
  • Accepted Date:  14 March 2017
  • Published Online:  05 June 2017
  • /

    返回文章
    返回