搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

p53活性四聚体全原子分子动力学分析

周晗 耿轶钊 晏世伟

引用本文:
Citation:

p53活性四聚体全原子分子动力学分析

周晗, 耿轶钊, 晏世伟

Full-atomistic molecular dynamics analysis of p53 active tetramer

Zhou Han, Geng Yi-Zhao, Yan Shi-Wei
PDF
HTML
导出引用
  • p53是一种肿瘤抑制蛋白, 对阻碍癌症发展、维持遗传完整性起着至关重要的作用. 在细胞核内, 4个p53分子通过高度协同的方式、通过DNA结合域与DNA结合, 形成稳定的四聚体活性结构, 并转录激活或抑制其靶向基因. 然而, 大多数肿瘤细胞中存在大量p53的突变, 其中绝大部分突变发生在p53的DNA结合域, 而p53的DNA结合域又是p53形成四聚体活性结构、调控下游靶基因转录的重要区域. 本文通过全原子分子动力学模拟, 研究了野生型p53四聚体内分子间的相互作用机制. 结果表明, 位于DNA两侧的对称二聚体是一个稳定的二聚体, 在与DNA结合前后都能维持稳定的结构. 位于DNA同侧的两个单体依靠两个接触面提供的蛋白-蛋白相互作用和DNA的骨架作用使四聚体活性结构保持稳定, 这些相互作用为四聚体的形成机制提供了重要支撑. 该工作厘清了p53四聚体在动力学过程中的内部相互作用机制和关键残基, 揭示了四聚化过程中各个相互作用界面的关键位点, 对于理解p53的抑癌机制、探索有效治癌策略、发展治癌药物具有重要意义.
    p53 is a tumor suppressor protein that plays a crucial role in inhibiting cancer development and maintaining the genetic integrity. Within the cell nucleus, four p53 molecules constitute a stable tetrameric active structure through highly cooperative interactions, bind to DNA via its DNA-binding domain, and transcriptionally activate or inhibit their target genes. However, in most human tumor cells, there are numerous p53 mutations. The majority of these mutations are formed in the p53 DNA-binding domain, importantly, the p53 DNA-binding domain is critical for p53 to form the tetrameric active structures and to regulate the transcription of its downstream target genes. In this work, the all-atom molecular dynamics simulation is conducted to investigate the mechanism of interaction within the wild-type p53 tetramers. This study indicates that the symmetric dimers on either side of the DNA are stable ones, keeping stable structures before and after DNA binding. The binding of two monomers on the same side of the DNA depends on protein-protein interaction provided by two contact surfaces. DNA scaffold stabilizes the tetrameric active structure. Such interactions crucially contribute to the tetramer formation. This study clarifies the internal interactions and key residues within the p53 tetramer in dynamic process, as well as the critical sites at various interaction interfaces. The findings of this study may provide a significant foundation for us to further understand the p53’s anticancer mechanisms, to explore the effective cancer treatment strategies, and in near future, to develop the effective anti-cancer drugs.
      通信作者: 晏世伟, yansw@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11675018, 11735005)资助的课题.
      Corresponding author: Yan Shi-Wei, yansw@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675018, 11735005).
    [1]

    Schuijer M, Berns E M 2003 Hum. Mutat. 21 285Google Scholar

    [2]

    Funk W D, Pak D T, Karas R H, Wright W E, Shay J W 1992 Mol. Cell. Biol. 12 2866

    [3]

    Levine A J, Oren M 2009 Nat. Rev. Cancer 9 749Google Scholar

    [4]

    Riley T, Sontag E, Chen P, Levine A 2008 Nat. Rev. Mol. Cell Biol. 9 402Google Scholar

    [5]

    Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian S V, Hainaut P, Olivier M 2007 Hum. Mutat. 28 622Google Scholar

    [6]

    Olivier M, Hollstein M, Hainaut P 2010 CSH Perspect Biol. 2 a001008Google Scholar

    [7]

    Silva J L, Cino E A, Soares I N, Ferreira V F, de Oliveira G A P 2018 Acc. Chem. Res. 51 181Google Scholar

    [8]

    Joerger A, Fersht A R 2007 Oncogene 26 2226Google Scholar

    [9]

    张丽娟, 晏世伟, 卓益忠 2007 物理学报 56 2442Google Scholar

    Zhang L J, Yan S W, Zhuo Y Z 2007 Acta Phys. Sin. 56 2442Google Scholar

    [10]

    Liu S X, Geng Y Z, Yan S W 2017 Front. Phys. 12 1Google Scholar

    [11]

    周晗, 耿轶钊, 晏世伟 2023 物理学报 72 068702Google Scholar

    Zhou H, Geng Y Z, Yan S W 2023 Acta Phys. Sin. 72 068702Google Scholar

    [12]

    Gomes A S, Ramos H, Inga A, Sousa E, Saraiva L 2021 Cancers 13 3344Google Scholar

    [13]

    Wang H, Guo M, Wei H, Chen Y 2023 Signal Transduct Target Ther. 8 92Google Scholar

    [14]

    Cho Y, Gorina S, Jeffrey P D, Pavletich N P 1994 Science 265 346Google Scholar

    [15]

    Liu X, Tian W, Cheng J, Li D, Liu T, Zhang L 2020 Comput. Biol. Chem. 84 107194Google Scholar

    [16]

    Tang Y, Yao Y, Wei G 2021 J. Phys. Chem. B 125 10138

    [17]

    Zhao K, Chai X, Johnston K, Clements A, Marmorstein R 2001 J. Biol. Chem. 276 12120Google Scholar

    [18]

    Balagurumoorthy P, Sakamoto H, Lewis M S, Zambrano N, Clore G M, Gronenborn A M, Appella E, Harrington R E 1995 PNAS 92 8591Google Scholar

    [19]

    Nicholls C D, McLure K G, Shields M A, Lee P W 2002 J. Biol. Chem. 277 12937Google Scholar

    [20]

    Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran T E, Shakked Z 2006 Mol. Cell 22 741Google Scholar

    [21]

    McLure K G, Lee P W 1998 EMBO J 17 3342Google Scholar

    [22]

    Weinberg R L, Veprintsev D B, Fersht A R 2004 J. Mol. Biol. 341 1145Google Scholar

    [23]

    Chen Y, Dey R, Chen L 2010 Structure 18 246Google Scholar

    [24]

    Malecka K A, Ho W C, Marmorstein R 2009 Oncogene 28 325Google Scholar

    [25]

    Nagaich A K, Zhurkin V B, Durell S R, Jernigan R L, Appella E, Harrington R E 1999 PNAS 96 1875Google Scholar

    [26]

    Ho W C, Fitzgerald M X, Marmorstein R 2006 J. Biol. Chem. 281 20494Google Scholar

    [27]

    Kamaraj B, Bogaerts A 2015 PLoS One 10 e0134638Google Scholar

    [28]

    Pradhan M R, Siau J W, Kannan S, Nguyen M N, Ouaray Z, Kwoh C K, Lane D P, Ghadessy F, Verma C S 2019 Nucleic Acids Res. 47 1637Google Scholar

    [29]

    Ma B, Pan Y, Gunasekaran K, Venkataraghavan R B, Levine A J, Nussinov R 2005 PNAS 102 3988Google Scholar

    [30]

    Pan Y, Nussinov R 2007 J. Biol. Chem. 282 691Google Scholar

    [31]

    Terakawa T, Takada S 2015 Sci. Rep. 5 17107Google Scholar

    [32]

    Lu Q, Tan Y H, Luo R 2007 J. Phys. Chem. B 111 11538Google Scholar

    [33]

    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B, Lindahl E 2015 SoftwareX 1 19

    [34]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [35]

    Arunan E, Desiraju G R, Klein R A, et al. 2011 Pure Appl. Chem. 83 1637Google Scholar

    [36]

    Musafia B, Buchner V, Arad D 1995 J. Mol. Biol. 254 761Google Scholar

    [37]

    Miller III B R, McGee Jr T D, Swails J M, Homeyer N, Gohlke H, Roitberg A E 2012 J. Chem. Theory Comput. 8 3314Google Scholar

    [38]

    Wilcken R, Liu X, Zimmermann M O, Rutherford T J, Fersht A R, Joerger A C, Boeckler F M 2012 J. Am. Chem. Soc. 134 6810Google Scholar

    [39]

    Klein C, Planker E, Diercks T, Kessler H, Kunkele K P, Lang K, Hansen S, Schwaiger M 2001 J. Biol. Chem. 276 49020Google Scholar

    [40]

    Sabapathy K, Lane D P 2018 Nat. Rev. Clin. Oncol. 15 13Google Scholar

    [41]

    Freed-Pastor W A, Prives C 2012 Genes Dev. 26 1268Google Scholar

    [42]

    Dolma L, Muller P A 2022 Cancers 14 5091Google Scholar

    [43]

    Wei H, Qu L, Dai S, et al. 2021 Nat. Commun. 12 2280Google Scholar

    [44]

    Joo W S, Jeffrey P D, Cantor S B, Finnin M S, Livingston D M, Pavletich N P 2002 Genes Dev. 16 583Google Scholar

    [45]

    Gorina S, Pavletich N P 1996 Science 274 1001Google Scholar

    [46]

    Torrie G M, Valleau J P 1977 J. Comput. Phys. 23 187Google Scholar

    Torrie G M, Valleau J P 1977 J. Comput. Phys. 23 187Google Scholar

    [47]

    Klein C, Georges G, Kunkele K P, Huber R, Engh R A, Hansen S 2001 J. Biol. Chem. 276 37390Google Scholar

    [48]

    McCammon J A, Harvey S C 1988 Dynamics of Proteins and Nucleic Acids (Cambridge: Cambridge University Press) pp289–302

    [49]

    McCammon J 1984 Rep. Prog. Phys. 47 1Google Scholar

    [50]

    Joerger A C, Fersht A R 2008 Annu. Rev. Biochem. 77 557Google Scholar

  • 图 1  p53 核心结合域四聚体结构: A链(蓝色); B链(红色); C链(绿色); D链(橙色). 蓝线表示对称二聚体界面, 红线表示二聚体-二聚体界面

    Fig. 1.  The p53 core binding domain tetramer structure: Chain A (blue); Chain B (red); Chain C (green); Chain D (orange). Blue lines represent symmetric dimer interfaces, while red lines represent dimer-dimer interfaces.

    图 2  p53对称二聚体与DNA复合物的初始结构 (a)由A, B链和DNA组成的p53对称二聚体结构; (b) Zn离子的配位结构; (c) DNA轴垂直于图平面的对称二聚体

    Fig. 2.  Initial structure of the p53 symmetric dimer-DNA complex: (a) The p53 symmetric dimer structure composed of chains A, B and DNA; (b) coordination structure of Zn ions; (c) symmetric dimer with the DNA axis perpendicular to the plane of the figure

    图 3  “无”DNA的p53对称二聚体初始结构

    Fig. 3.  Initial structure of the p53 symmetric dimer without DNA.

    图 4  对称二聚体在“有”和“无”DNA结合时的RMSD演化

    Fig. 4.  Evolution of RMSD for the symmetric dimer with and without DNA.

    图 5  A-B单体间的相互作用残基 (a) A-B单体间形成盐桥的残基; (b) A-B单体间参与范德瓦耳斯作用的残基

    Fig. 5.  Residues involved in interactions between A and B monomers: (a) Residues forming salt bridges between A and B monomers; (b) residues involved in van der Waals interaction between A and B monomers.

    图 6  与DNA结合前(a)后(b)对称二聚体的残基能量贡献分布

    Fig. 6.  Residue energy contribution distribution of symmetric dimers with (a) and without (b) DNA.

    图 7  对称二聚体与DNA结合的关键残基. 黄色残基表示A, B单体与DNA结合的一致残基, 绿色表示与DNA结合不一致的残基

    Fig. 7.  Key residues involved in the binding of the symmetric dimer to DNA. Yellow residues represent consistent residues between monomers A and B and DNA binding, while green residues represent inconsistent residues with DNA binding.

    图 8  由 A, D和DNA组成的复合物初始结构

    Fig. 8.  Initial structure of composite molecule including A, D and DNA.

    图 9  有/无DNA结合时, A-D二聚体构象上的差别 (a) A, D两个单体质心间距的概率密度分布; (b) A, D分子间接触面积的概率密度分布; (c)有DNA的A, D分子间二聚接触面; (d)无DNA的A, D分子间二聚接触面

    Fig. 9.  Differences in the A-D dimer conformation with/without DNA binding: (a) Probability density distribution of the distance between the centers of mass of A and D monomers; (b) probability density distribution of the interfacial contact area between A and D molecules; (c) dimeric contact area between A and D molecules in the presence of DNA; (d) dimeric contact area between A and D molecules in the absence of DNA.

    图 10  (a)无DNA结合时A-D二聚体的RMSD演化; (b) 120 ns前后A-D二聚体的构象重叠, 两单体的构象发生了明显的偏移, 使得A-D之间的相互作用增加. 120 ns前后的构象分别用银色和橙色表示

    Fig. 10.  (a) RMSD evolution of the A-D dimer in the absence of DNA binding; (b) at around 120 ns, there is an overlap in the conformation of the A-D dimer, with noticeable deviations in the conformations of the two monomers, leading to an increased interaction between A and D. Conformations before and after 120 ns are represented in silver and orange, respectively.

    图 11  无DNA时的A-D二聚体不能与DNA结合

    Fig. 11.  A-D dimer can’t bind to DNA in the absence of DNA.

    图 12  (a)二聚体上的弹性应力; (b)稳定后, 弹性应力作用下A-D二聚体的结构

    Fig. 12.  (a) Elastic stress on the dimer; (b) structure of the A-D dimer under the action of elastic stress after stabilization.

    图 13  有DNA时, A-D二聚体的稳定性 (a) RMSD; (b) RMSF

    Fig. 13.  Stability of A-D dimer in the presence of DNA: (a) RMSD; (b) RMSF.

    图 14  与DNA结合的A-D二聚体间的(a)接触面和(b)相互作用残基

    Fig. 14.  Contact surface (a) and residues involved in the interaction (b) between the A-D dimer bound to DNA.

    图 15  单体A, D与DNA间相互作用的关键残基. 黄色残基表示A, D单体与DNA结合的一致残基, 绿色表示与DNA结合不一致的残基

    Fig. 15.  Key residues involved in the interaction between monomers A and D with DNA. Yellow residues represent consistent residues between monomers A and D and DNA binding, while green residues represent inconsistent residues with DNA binding.

    图 16  与DNA结合的A-D二聚体的能量分解

    Fig. 16.  Energy decomposition of the A-D dimer binding to DNA.

    图 17  结构域之间的动态互相关图

    Fig. 17.  Dynamic cross-correlation map between domains.

    表 1  氢键、盐桥稳定性

    Table 1.  Hydrogen bond and salt bridge stability.

    单体A 单体D 占有率/%
    S94 L201 88.9
    N210 D228 55.5
    S94 G199 54.7
    L264 V225 54.3
    S99 D228 35.1, 30.0
    S96 T231 33.1
    N263 V225 31.8, 26.1
    N210 S227 25.1
    R267 D228 78.83 (盐桥)
    R209 E224 35.88 (盐桥)
    下载: 导出CSV

    表 2  与DNA结合时A-D二聚体间的氢键、盐桥稳定性

    Table 2.  Stability of hydrogen bonds and salt bridges between A-D dimers when binding to DNA.

    单体A 单体D 持续度/%
    T170 G199 49.3
    K101 P222 19.9
    K101 P223 13.0
    Q100 P223 16.9
    P92 D186 12.6, 12.8
    K101 E224 45.89 (盐桥)
    下载: 导出CSV
  • [1]

    Schuijer M, Berns E M 2003 Hum. Mutat. 21 285Google Scholar

    [2]

    Funk W D, Pak D T, Karas R H, Wright W E, Shay J W 1992 Mol. Cell. Biol. 12 2866

    [3]

    Levine A J, Oren M 2009 Nat. Rev. Cancer 9 749Google Scholar

    [4]

    Riley T, Sontag E, Chen P, Levine A 2008 Nat. Rev. Mol. Cell Biol. 9 402Google Scholar

    [5]

    Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian S V, Hainaut P, Olivier M 2007 Hum. Mutat. 28 622Google Scholar

    [6]

    Olivier M, Hollstein M, Hainaut P 2010 CSH Perspect Biol. 2 a001008Google Scholar

    [7]

    Silva J L, Cino E A, Soares I N, Ferreira V F, de Oliveira G A P 2018 Acc. Chem. Res. 51 181Google Scholar

    [8]

    Joerger A, Fersht A R 2007 Oncogene 26 2226Google Scholar

    [9]

    张丽娟, 晏世伟, 卓益忠 2007 物理学报 56 2442Google Scholar

    Zhang L J, Yan S W, Zhuo Y Z 2007 Acta Phys. Sin. 56 2442Google Scholar

    [10]

    Liu S X, Geng Y Z, Yan S W 2017 Front. Phys. 12 1Google Scholar

    [11]

    周晗, 耿轶钊, 晏世伟 2023 物理学报 72 068702Google Scholar

    Zhou H, Geng Y Z, Yan S W 2023 Acta Phys. Sin. 72 068702Google Scholar

    [12]

    Gomes A S, Ramos H, Inga A, Sousa E, Saraiva L 2021 Cancers 13 3344Google Scholar

    [13]

    Wang H, Guo M, Wei H, Chen Y 2023 Signal Transduct Target Ther. 8 92Google Scholar

    [14]

    Cho Y, Gorina S, Jeffrey P D, Pavletich N P 1994 Science 265 346Google Scholar

    [15]

    Liu X, Tian W, Cheng J, Li D, Liu T, Zhang L 2020 Comput. Biol. Chem. 84 107194Google Scholar

    [16]

    Tang Y, Yao Y, Wei G 2021 J. Phys. Chem. B 125 10138

    [17]

    Zhao K, Chai X, Johnston K, Clements A, Marmorstein R 2001 J. Biol. Chem. 276 12120Google Scholar

    [18]

    Balagurumoorthy P, Sakamoto H, Lewis M S, Zambrano N, Clore G M, Gronenborn A M, Appella E, Harrington R E 1995 PNAS 92 8591Google Scholar

    [19]

    Nicholls C D, McLure K G, Shields M A, Lee P W 2002 J. Biol. Chem. 277 12937Google Scholar

    [20]

    Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran T E, Shakked Z 2006 Mol. Cell 22 741Google Scholar

    [21]

    McLure K G, Lee P W 1998 EMBO J 17 3342Google Scholar

    [22]

    Weinberg R L, Veprintsev D B, Fersht A R 2004 J. Mol. Biol. 341 1145Google Scholar

    [23]

    Chen Y, Dey R, Chen L 2010 Structure 18 246Google Scholar

    [24]

    Malecka K A, Ho W C, Marmorstein R 2009 Oncogene 28 325Google Scholar

    [25]

    Nagaich A K, Zhurkin V B, Durell S R, Jernigan R L, Appella E, Harrington R E 1999 PNAS 96 1875Google Scholar

    [26]

    Ho W C, Fitzgerald M X, Marmorstein R 2006 J. Biol. Chem. 281 20494Google Scholar

    [27]

    Kamaraj B, Bogaerts A 2015 PLoS One 10 e0134638Google Scholar

    [28]

    Pradhan M R, Siau J W, Kannan S, Nguyen M N, Ouaray Z, Kwoh C K, Lane D P, Ghadessy F, Verma C S 2019 Nucleic Acids Res. 47 1637Google Scholar

    [29]

    Ma B, Pan Y, Gunasekaran K, Venkataraghavan R B, Levine A J, Nussinov R 2005 PNAS 102 3988Google Scholar

    [30]

    Pan Y, Nussinov R 2007 J. Biol. Chem. 282 691Google Scholar

    [31]

    Terakawa T, Takada S 2015 Sci. Rep. 5 17107Google Scholar

    [32]

    Lu Q, Tan Y H, Luo R 2007 J. Phys. Chem. B 111 11538Google Scholar

    [33]

    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B, Lindahl E 2015 SoftwareX 1 19

    [34]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [35]

    Arunan E, Desiraju G R, Klein R A, et al. 2011 Pure Appl. Chem. 83 1637Google Scholar

    [36]

    Musafia B, Buchner V, Arad D 1995 J. Mol. Biol. 254 761Google Scholar

    [37]

    Miller III B R, McGee Jr T D, Swails J M, Homeyer N, Gohlke H, Roitberg A E 2012 J. Chem. Theory Comput. 8 3314Google Scholar

    [38]

    Wilcken R, Liu X, Zimmermann M O, Rutherford T J, Fersht A R, Joerger A C, Boeckler F M 2012 J. Am. Chem. Soc. 134 6810Google Scholar

    [39]

    Klein C, Planker E, Diercks T, Kessler H, Kunkele K P, Lang K, Hansen S, Schwaiger M 2001 J. Biol. Chem. 276 49020Google Scholar

    [40]

    Sabapathy K, Lane D P 2018 Nat. Rev. Clin. Oncol. 15 13Google Scholar

    [41]

    Freed-Pastor W A, Prives C 2012 Genes Dev. 26 1268Google Scholar

    [42]

    Dolma L, Muller P A 2022 Cancers 14 5091Google Scholar

    [43]

    Wei H, Qu L, Dai S, et al. 2021 Nat. Commun. 12 2280Google Scholar

    [44]

    Joo W S, Jeffrey P D, Cantor S B, Finnin M S, Livingston D M, Pavletich N P 2002 Genes Dev. 16 583Google Scholar

    [45]

    Gorina S, Pavletich N P 1996 Science 274 1001Google Scholar

    [46]

    Torrie G M, Valleau J P 1977 J. Comput. Phys. 23 187Google Scholar

    Torrie G M, Valleau J P 1977 J. Comput. Phys. 23 187Google Scholar

    [47]

    Klein C, Georges G, Kunkele K P, Huber R, Engh R A, Hansen S 2001 J. Biol. Chem. 276 37390Google Scholar

    [48]

    McCammon J A, Harvey S C 1988 Dynamics of Proteins and Nucleic Acids (Cambridge: Cambridge University Press) pp289–302

    [49]

    McCammon J 1984 Rep. Prog. Phys. 47 1Google Scholar

    [50]

    Joerger A C, Fersht A R 2008 Annu. Rev. Biochem. 77 557Google Scholar

  • [1] 张宇航, 薛振勇, 孙皓, 张珠伟, 陈虎. 酰基辅酶A结合蛋白去折叠动力学的单分子磁镊研究. 物理学报, 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [2] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟. 物理学报, 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [3] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [4] 林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉. 聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟. 物理学报, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [5] 齐玉, 曲昌荣, 王丽, 方腾. Fe50Cu50合金熔体相分离过程的分子动力学模拟. 物理学报, 2014, 63(4): 046401. doi: 10.7498/aps.63.46401
    [6] 董垒, 王卫国. 纯铜[0 1 1]倾侧型非共格3晶界结构稳定性分子动力学模拟研究. 物理学报, 2013, 62(15): 156102. doi: 10.7498/aps.62.156102
    [7] 坚增运, 高阿红, 常芳娥, 唐博博, 张龙, 李娜. Ni熔体凝固过程中临界晶核和亚临界晶核的分子动力学模拟. 物理学报, 2013, 62(5): 056102. doi: 10.7498/aps.62.056102
    [8] 邓阳, 刘让苏, 周群益, 刘海蓉, 梁永超, 莫云飞, 张海涛, 田泽安, 彭平. 熔体初始温度对液态金属Ni凝固过程中微观结构演变影响的模拟研究. 物理学报, 2013, 62(16): 166101. doi: 10.7498/aps.62.166101
    [9] 颜笑, 辛子华, 张娇娇. 碳硅二炔结构及性质分子动力学模拟研究. 物理学报, 2013, 62(23): 238101. doi: 10.7498/aps.62.238101
    [10] 张崇龙, 孔伟, 杨芳, 刘松芬, 胡北来. 修正屏蔽库仑势下二维尘埃等离子体的动力学和结构特性. 物理学报, 2013, 62(9): 095201. doi: 10.7498/aps.62.095201
    [11] 宋青, 吉利, 权伟龙, 张磊, 田苗, 李红轩, 陈建敏. 含氢碳膜的生长机制: 分子动力学模拟研究低能量CH基团的作用. 物理学报, 2012, 61(3): 030701. doi: 10.7498/aps.61.030701
    [12] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究. 物理学报, 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [13] 李美丽, 付兴烨, 孙宏宁, 赵洪安, 李丛, 段永平, 闫元, 孙民华. 高压作用下相分离液体玻璃转变的分子动力学研究. 物理学报, 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [14] 开花, 李运超, 郭德成, 李双, 李之杰. 斜入射离子束辅助沉积对类金刚石薄膜结构影响的分子动力学模拟. 物理学报, 2009, 58(7): 4888-4894. doi: 10.7498/aps.58.4888
    [15] 陈育祥, 谢国锋, 马颖, 周益春. BaTiO3晶体结构及弹性的分子动力学模拟. 物理学报, 2009, 58(6): 4085-4089. doi: 10.7498/aps.58.4085
    [16] 侯兆阳, 刘丽霞, 刘让苏, 田泽安. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究. 物理学报, 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [17] 侯兆阳, 刘让苏, 王 鑫, 田泽安, 周群益, 陈振华. 熔体初始温度对液态金属Na凝固过程中微观结构影响的模拟研究. 物理学报, 2007, 56(1): 376-383. doi: 10.7498/aps.56.376
    [18] 马天宝, 胡元中, 王 慧. 超薄类金刚石膜生长和结构特性的分子动力学模拟. 物理学报, 2006, 55(6): 2922-2927. doi: 10.7498/aps.55.2922
    [19] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究. 物理学报, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [20] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 物理学报, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
计量
  • 文章访问数:  1499
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-17
  • 修回日期:  2023-10-23
  • 上网日期:  2023-11-09
  • 刊出日期:  2024-02-20

/

返回文章
返回