Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress of point-wise scanning superresolution methods

Zhao Guang-Yuan Zheng Cheng Fang Yue Kuang Cui-Fang Liu Xu

Progress of point-wise scanning superresolution methods

Zhao Guang-Yuan, Zheng Cheng, Fang Yue, Kuang Cui-Fang, Liu Xu
PDF
Get Citation
  • Optical microscope has been giving impetus to the development of modern technology. As the advancement of these techniques, high resolution microscopy becomes crucial in biological and material researches. However, the diffraction limit restricts the resolution of conventional microscopy. In 1968, confocal microscopy, the first pointwise scanning superresolution method, appeared. It improves the imaging resolution, enhances the contrast, and thus breaks through the diffraction limit. Since then many superresolution methods have come into being, among which the pointwise scanning superresolution method earns reputation for its high imaging resolution and contrast. The stimulated emission depletion microscopy becomes the most prominent method with an achievable resolution of about 2.4 nm and then widely used. Besides, the newly developed fluorescence emission difference microscopy (FED) and the saturated absorption competition microscopy (SAC) have their advantages of non-constraint on fluorescent dyes, low saturated beam power, simplified optical setups, while they achieve a resolution of lower than /6. Further explorations of FED will be keen on vivo biological observations by using it, while that of SAC can concentrate on enhancing the resolution on a nanoscale and reducing the signal-to-noise ratio. In addition, the Airyscan technique in which a detector array is used for image acquisition, can serve as a complementary tool to further enhance the imaging quality of pointwise scanning superresolution method. The detector-array enables both the narrowed size of pinhole and the increasing of the acquired signal intensity by 1.84 folds. The other methods, e.g. superoscillation lens and high-index resolution enhancement by scattering, have the potentialities to obtain superresolved image in material science or deep tissues. After being developed in the past three decades, the superresolution methods now encounter a new bottleneck. Further improvement of the current methods is aimed at imaging depth, and being used more practically and diversely. In this review, we detailedly describe the above pointwise scanning superresolution methods, and explain their principles and techniques. In addition, the deficiencies and potentialities of these methods are presented in this review. Finally, we compare the existing methods and envision the next generation of the pointwise scanning superresolution methods.
      Corresponding author: Kuang Cui-Fang, cfkuang@zju.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB352003), the National Key Research and Development Program of China(Grant No. 2016YFF0101400), the National Natural Science Foundation of China (Grant Nos. 61335003, 61377013, 61378051, 61427818), the Natural Science Foundation of Zhejiang Province, China (Grant No. LR16F050001), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Abbe E 1873 Archiv fr Mikroskopische Anatomie 9 413

    [2]

    Stephenson J W 1877 Monthly Microsc. J. 17 82

    [3]

    Rayleigh L 1874 Philos. Mag. Ser. 47 81

    [4]

    Houston W V 1927 Phys. Rev. 29 478

    [5]

    Kirz J, Jacobsen C, Howells M 1995 Q. Rev. Biophys. 28 33

    [6]

    Petrň M, Hadravsky M, Egger M D, Galambos R 1968 J. Opt. Soc. Am. A 58 661

    [7]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [8]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642

    [9]

    Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642

    [10]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [11]

    Douglass K M, Sieben C, Archetti A, Lambert A, Manley S 2016 Nat. Photon. 10 705

    [12]

    Shechtman Y, Weiss L E A, Backer S, Lee M Y, Moerner W E 2016 Nat. Photon. 10 590

    [13]

    Gustafsson M G 2000 J. Microsc. 198 82

    [14]

    Heintzmann R, Cremer C G 1999 Proceedings of SPIE-The International Society for Optical Engineering 3568 1399

    [15]

    Mudry E, Belkebir K, Girard J, Savatier J, Moal E L, Nicoletti C, Allain M, Sentenac A 2012 Nat. Photon. 6 312

    [16]

    Heintzmann R, Gustafsson M G L 2009 Nat. Photon. 3 362

    [17]

    Webb R H 1996 Rep. Prog. Phys. 59 427

    [18]

    Sheppard C J, Wilson T 1981 J. Microsc. 124 107

    [19]

    Wilson T 2011 J. Microsc. 154 143

    [20]

    Ellinger P 2008 Biol. Rev. 15 323

    [21]

    Brakenhoff G J, Ht V D V, Spronsen E A, Nanninga N 1989 J. Microsc. 153 151

    [22]

    Brakenhoff G J, Blom P, Barends P 1979 J. Microsc. 117 219

    [23]

    Borlinghaus R T, Kappel C 2016 Nat. Methods 13

    [24]

    Kuang C, Li S, Liu W, Hao X, Gu Z, Wang Y, Ge J, Li H, Liu X 2013 Sci. Rep. 3 1441

    [25]

    Willig K I, Harke B, Medda R, Hell S W 2007 Nat. Methods 4 915

    [26]

    Westphal V, Hell S W 2005 Phys. Rev. Lett. 94 143903

    [27]

    Rittweger E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144

    [28]

    Xie H, Liu Y, Jin D, Santangelo P J, Xi P 2013 J. Opt. Soc. Am. A 30 1640

    [29]

    Hao X, Kuang C, Wang T, X Liu 2010 J. Opt. 12 115707

    [30]

    Hao X, Kuang C, Li Y, Liu X 2012 J. Optics 14 045702

    [31]

    Zhang C, Li H, Wang S, Zhao W, Feng X, Wang K, Wang G, Bai J 2016 J. Laser Micro Nanoen. 11 290

    [32]

    Zhu B, Shen S, Zheng Y, Gong W, Si K 2016 Opt. Express 24 19138

    [33]

    Hao X, Kuang C, Gu Z, Li S 2012 Commun. Photon. Conference 1 3

    [34]

    Hell S W, Kroug M 1995 Appl. Phys. B 60 495

    [35]

    Keller J 2006 Ph. D. Dissertation (Heidelberg: Heidelberg University)

    [36]

    Wildanger D, Patton B R, Schill H, Marseglia L, Hadden J P, Knauer S, Schnle A, Rarity J G, O'Brien J L, Hell S W 2011 Adv. Mater. 24 OP309

    [37]

    Gigan S 2017 Nat. Photon. 11 14

    [38]

    Zhang P, Goodwin P M, Werner J H 2014 Opt. Express 22 12398

    [39]

    Yu W, Ji Z, Dong D, Yang X, Xiao Y, Gong Q, Xi P, Shi K 2015 Laser Photon. Rev. 10 147

    [40]

    Patton B R, Burke D, Owald D T J, Bewersdorf Gould J, Booth M J 2016 Opt. Express 24 8862

    [41]

    Wang Y, Hao X, Liu X 2013 Opt. Engineer. 52 093107

    [42]

    Wildanger D, Rittweger E, Kastrup L, Hell S W 2008 Opt. Express 16 9614

    [43]

    Winter F R, Loidolt M, Westphal V, Butkevich A N, Gregor C, Sahl S J, Hell S W 2017 Sci. Rep. 7 46492

    [44]

    Reuss M, Engelhardt J, Hell S W 2010 Opt. Express 18 1049

    [45]

    Bingen P, Reuss M, Engelhardt J, Hell S W 2011 Opt. Express 19 23716

    [46]

    Yang B, Przybilla F, Mestre M, Trebbia J B, Lounis B 2014 Opt. Express 22 5581

    [47]

    Chmyrov A, Leutenegger M, Grotjohann T, Schnle A, Kellerfindeisen J, Kastrup L, Jakobs S, Donnert G, Sahl S J, Hell S W 2017 Sci. Rep. 7 44619

    [48]

    Bergermann F, Alber L, Sahl S J, Engelhardt J, Hell S W 2015 Opt. Express 23 211

    [49]

    Hanne J, Falk H J, Grlitz F, Hoyer P, Engelhardt J, Sahl S J, Hell S W 2015 Nat. Commun. 6 7127

    [50]

    Gao P, Prunsche B, Zhou L, Nienhaus K, Nienhaus G U 2017 Nat. Photon. 11 163

    [51]

    Bordenave M D, Balzarottt F, Stefani F D, Hell S W 2016 J. Phys. D: Appl. Phys. 49 365102

    [52]

    Liu Y, Lu Y, Yang X, Zheng X, Wen S, Fan W, Vidal X, Zhao J, Liu D, Zhou Z 2017 Nature 543 229

    [53]

    Yang X, Xie H, Alonas E, Liu Y, Chen X, Santangelo P J, Ren Q, Xi P, Jin D 2016 Light-Sci. Appl. 5 e16134

    [54]

    Danzl J G, Sidenstein S C, Gregor C, Urban N T, Ilgen P, Jakobs S, Hell S W 2016 Nat. Photon. 10 122

    [55]

    Gttfert F, Pleiner T, Heine J, Westphal V, Grlich D, Sahl S J, Hell S W 2017 Proc. Natl. Acad. Sci. USA 114 2125

    [56]

    Zhao G, Kabir M M, Toussaint K C, Kuang C, Zheng C, Yu Z, Liu X 2017 Optica 4 633

    [57]

    Vesel P, Lcers H, Riehle M, Bereiterhahn J 1994 Cell Motility the Cytoskeleton 29 231

    [58]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73

    [59]

    Wilson T, Hamilton D K 1984 J. Mod. Opt. 31 453

    [60]

    Heintzmann R, Sarafis V, Munroe P, Nailon J, Hanley Q S, Jovin T M 2013 Micron 34 293

    [61]

    Dehez H, Pich M, De K Y 2013 Opt. Express 21 15912

    [62]

    Wang D, Liu S, Chen Y, Song J, Liu W, Xiong M, Wang G, Peng X, Qu J 2016 Opt. Express 25 10276

    [63]

    You S, Kuang C, Rong Z, Liu X 2014 Opt. Express 22 26375

    [64]

    Wang N, Kobayashi T 2014 Opt. Express 22 28819

    [65]

    Wang N, Kobayashi T 2015 Opt. Express 23 13704

    [66]

    Rong Z, Kuang C, Fang Y, Zhao G, Xu Y, Liu X 2015 Opt. Commun. 354 71

    [67]

    Segawa S, Kozawa Y, Sato S 2014 Opt. Lett. 39 3118

    [68]

    Segawa S, Kozawa Y, Sato S 2014 Opt. Lett. 39 4529

    [69]

    Zhao G, Kuang C, Ding Z, Liu X 2016 Opt Express 24 23596

    [70]

    Korobchevskaya K, Peres C, Li Z, Antipov A, Sheppard C J, Diaspro A, Bianchini P 2016 Sci. Rep. 6 25816

    [71]

    Zhao G, Rong Z, Zheng C, Liu X, Kuang C 2016 J. Innov. Opt. Heal. Sci. 9 1793

    [72]

    Sheppard C J 1988 Optik 80 53

    [73]

    Sheppard C J, Mehta S B, Heintzmann R 2013 Opt. Lett. 38 2889

    [74]

    Huff J 2015 Nat. Methods 12

    [75]

    Mller C B, Enderlein J 2010 Phys. Rev. Lett. 104 198101

    [76]

    Roth S, Sheppard C J, Kai W, Heintzmann R 2013 Opt. Nanoscopy 2 1

    [77]

    York A G, Parekh S H, Nogare D D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A, Shroff H 2012 Nat. Methods 9 749

    [78]

    de Luca G M, Breedijk R M, Brandt R A, Zeelenberg C H, de Jong B E, Timmermans W, Azar L N, Hoebe R A, Stallinga S, Manders E M 2013 Biomed. Opt. Express 4 2644

    [79]

    Sheppard C J, Roth S, Heintzmann R, Castello M, Vicidomini G, Chen R, Chen X, Diaspro A 2016 Opt. Express 24 27280

    [80]

    Kuang C, Ma Y, Zhou R, Zheng G, Fang Y, Xu Y, Liu X, So P T 2016 Phys. Rev. Lett. 117 028102

    [81]

    Ge B, Wang Y, Huang Y, Kuang C, Fang Y, Xiu P, Rong Z, Liu X 2016 Opt. Lett. 41 2013

    [82]

    Schulz O, Pieper C, Clever M, Pfaff J, Ruhlandt A, Kehlenbach R H, Wouters F S, Grohans J, Bunt G, Enderlein J 2013 Proc. Natl. Acad. Sci. USA 110 21000

    [83]

    Wang P, Slipchenko M N, Mitchell J, Yang C, Potma E O, Xu X, Cheng J X 2013 Nat. Photon. 7 449

    [84]

    Jin N, Rahmat-Samii Y 2007 IEEE Trans. Antenn. Propag. 55 556

    [85]

    Rogers E T, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R, Zheludev N I 2012 Nat. Mater. 11 432

    [86]

    van Putten E G, Akbulut D, Bertolotti J, Vos W L, Lagendijk A, Mosk A P 2011 Phys. Rev. Lett. 106 193905

    [87]

    Park J H, Park C, Yu H S, Park J, Han S, Shin J, Ko S H, Nam K T, Cho Y H, Park Y K 2013 Nat. Photon. 7 454

    [88]

    Fang Z, Zhu X 2013 Adv. Mater. 25 253840

    [89]

    Zhang W, Fang Z, Zhu X 2016 Chem. Rev. 117 5095

    [90]

    Diekmann R, Helle O I, Oie C I, McCourt P, Huser T R, Schttpelz M, Ahluwalia B S 2017 Nat. Photon. 11 322

    [91]

    Roider C, Ritsch-Marte M, Jesacher A 2016 Opt. Lett. 41 3825

  • [1]

    Abbe E 1873 Archiv fr Mikroskopische Anatomie 9 413

    [2]

    Stephenson J W 1877 Monthly Microsc. J. 17 82

    [3]

    Rayleigh L 1874 Philos. Mag. Ser. 47 81

    [4]

    Houston W V 1927 Phys. Rev. 29 478

    [5]

    Kirz J, Jacobsen C, Howells M 1995 Q. Rev. Biophys. 28 33

    [6]

    Petrň M, Hadravsky M, Egger M D, Galambos R 1968 J. Opt. Soc. Am. A 58 661

    [7]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [8]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642

    [9]

    Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642

    [10]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [11]

    Douglass K M, Sieben C, Archetti A, Lambert A, Manley S 2016 Nat. Photon. 10 705

    [12]

    Shechtman Y, Weiss L E A, Backer S, Lee M Y, Moerner W E 2016 Nat. Photon. 10 590

    [13]

    Gustafsson M G 2000 J. Microsc. 198 82

    [14]

    Heintzmann R, Cremer C G 1999 Proceedings of SPIE-The International Society for Optical Engineering 3568 1399

    [15]

    Mudry E, Belkebir K, Girard J, Savatier J, Moal E L, Nicoletti C, Allain M, Sentenac A 2012 Nat. Photon. 6 312

    [16]

    Heintzmann R, Gustafsson M G L 2009 Nat. Photon. 3 362

    [17]

    Webb R H 1996 Rep. Prog. Phys. 59 427

    [18]

    Sheppard C J, Wilson T 1981 J. Microsc. 124 107

    [19]

    Wilson T 2011 J. Microsc. 154 143

    [20]

    Ellinger P 2008 Biol. Rev. 15 323

    [21]

    Brakenhoff G J, Ht V D V, Spronsen E A, Nanninga N 1989 J. Microsc. 153 151

    [22]

    Brakenhoff G J, Blom P, Barends P 1979 J. Microsc. 117 219

    [23]

    Borlinghaus R T, Kappel C 2016 Nat. Methods 13

    [24]

    Kuang C, Li S, Liu W, Hao X, Gu Z, Wang Y, Ge J, Li H, Liu X 2013 Sci. Rep. 3 1441

    [25]

    Willig K I, Harke B, Medda R, Hell S W 2007 Nat. Methods 4 915

    [26]

    Westphal V, Hell S W 2005 Phys. Rev. Lett. 94 143903

    [27]

    Rittweger E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144

    [28]

    Xie H, Liu Y, Jin D, Santangelo P J, Xi P 2013 J. Opt. Soc. Am. A 30 1640

    [29]

    Hao X, Kuang C, Wang T, X Liu 2010 J. Opt. 12 115707

    [30]

    Hao X, Kuang C, Li Y, Liu X 2012 J. Optics 14 045702

    [31]

    Zhang C, Li H, Wang S, Zhao W, Feng X, Wang K, Wang G, Bai J 2016 J. Laser Micro Nanoen. 11 290

    [32]

    Zhu B, Shen S, Zheng Y, Gong W, Si K 2016 Opt. Express 24 19138

    [33]

    Hao X, Kuang C, Gu Z, Li S 2012 Commun. Photon. Conference 1 3

    [34]

    Hell S W, Kroug M 1995 Appl. Phys. B 60 495

    [35]

    Keller J 2006 Ph. D. Dissertation (Heidelberg: Heidelberg University)

    [36]

    Wildanger D, Patton B R, Schill H, Marseglia L, Hadden J P, Knauer S, Schnle A, Rarity J G, O'Brien J L, Hell S W 2011 Adv. Mater. 24 OP309

    [37]

    Gigan S 2017 Nat. Photon. 11 14

    [38]

    Zhang P, Goodwin P M, Werner J H 2014 Opt. Express 22 12398

    [39]

    Yu W, Ji Z, Dong D, Yang X, Xiao Y, Gong Q, Xi P, Shi K 2015 Laser Photon. Rev. 10 147

    [40]

    Patton B R, Burke D, Owald D T J, Bewersdorf Gould J, Booth M J 2016 Opt. Express 24 8862

    [41]

    Wang Y, Hao X, Liu X 2013 Opt. Engineer. 52 093107

    [42]

    Wildanger D, Rittweger E, Kastrup L, Hell S W 2008 Opt. Express 16 9614

    [43]

    Winter F R, Loidolt M, Westphal V, Butkevich A N, Gregor C, Sahl S J, Hell S W 2017 Sci. Rep. 7 46492

    [44]

    Reuss M, Engelhardt J, Hell S W 2010 Opt. Express 18 1049

    [45]

    Bingen P, Reuss M, Engelhardt J, Hell S W 2011 Opt. Express 19 23716

    [46]

    Yang B, Przybilla F, Mestre M, Trebbia J B, Lounis B 2014 Opt. Express 22 5581

    [47]

    Chmyrov A, Leutenegger M, Grotjohann T, Schnle A, Kellerfindeisen J, Kastrup L, Jakobs S, Donnert G, Sahl S J, Hell S W 2017 Sci. Rep. 7 44619

    [48]

    Bergermann F, Alber L, Sahl S J, Engelhardt J, Hell S W 2015 Opt. Express 23 211

    [49]

    Hanne J, Falk H J, Grlitz F, Hoyer P, Engelhardt J, Sahl S J, Hell S W 2015 Nat. Commun. 6 7127

    [50]

    Gao P, Prunsche B, Zhou L, Nienhaus K, Nienhaus G U 2017 Nat. Photon. 11 163

    [51]

    Bordenave M D, Balzarottt F, Stefani F D, Hell S W 2016 J. Phys. D: Appl. Phys. 49 365102

    [52]

    Liu Y, Lu Y, Yang X, Zheng X, Wen S, Fan W, Vidal X, Zhao J, Liu D, Zhou Z 2017 Nature 543 229

    [53]

    Yang X, Xie H, Alonas E, Liu Y, Chen X, Santangelo P J, Ren Q, Xi P, Jin D 2016 Light-Sci. Appl. 5 e16134

    [54]

    Danzl J G, Sidenstein S C, Gregor C, Urban N T, Ilgen P, Jakobs S, Hell S W 2016 Nat. Photon. 10 122

    [55]

    Gttfert F, Pleiner T, Heine J, Westphal V, Grlich D, Sahl S J, Hell S W 2017 Proc. Natl. Acad. Sci. USA 114 2125

    [56]

    Zhao G, Kabir M M, Toussaint K C, Kuang C, Zheng C, Yu Z, Liu X 2017 Optica 4 633

    [57]

    Vesel P, Lcers H, Riehle M, Bereiterhahn J 1994 Cell Motility the Cytoskeleton 29 231

    [58]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73

    [59]

    Wilson T, Hamilton D K 1984 J. Mod. Opt. 31 453

    [60]

    Heintzmann R, Sarafis V, Munroe P, Nailon J, Hanley Q S, Jovin T M 2013 Micron 34 293

    [61]

    Dehez H, Pich M, De K Y 2013 Opt. Express 21 15912

    [62]

    Wang D, Liu S, Chen Y, Song J, Liu W, Xiong M, Wang G, Peng X, Qu J 2016 Opt. Express 25 10276

    [63]

    You S, Kuang C, Rong Z, Liu X 2014 Opt. Express 22 26375

    [64]

    Wang N, Kobayashi T 2014 Opt. Express 22 28819

    [65]

    Wang N, Kobayashi T 2015 Opt. Express 23 13704

    [66]

    Rong Z, Kuang C, Fang Y, Zhao G, Xu Y, Liu X 2015 Opt. Commun. 354 71

    [67]

    Segawa S, Kozawa Y, Sato S 2014 Opt. Lett. 39 3118

    [68]

    Segawa S, Kozawa Y, Sato S 2014 Opt. Lett. 39 4529

    [69]

    Zhao G, Kuang C, Ding Z, Liu X 2016 Opt Express 24 23596

    [70]

    Korobchevskaya K, Peres C, Li Z, Antipov A, Sheppard C J, Diaspro A, Bianchini P 2016 Sci. Rep. 6 25816

    [71]

    Zhao G, Rong Z, Zheng C, Liu X, Kuang C 2016 J. Innov. Opt. Heal. Sci. 9 1793

    [72]

    Sheppard C J 1988 Optik 80 53

    [73]

    Sheppard C J, Mehta S B, Heintzmann R 2013 Opt. Lett. 38 2889

    [74]

    Huff J 2015 Nat. Methods 12

    [75]

    Mller C B, Enderlein J 2010 Phys. Rev. Lett. 104 198101

    [76]

    Roth S, Sheppard C J, Kai W, Heintzmann R 2013 Opt. Nanoscopy 2 1

    [77]

    York A G, Parekh S H, Nogare D D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A, Shroff H 2012 Nat. Methods 9 749

    [78]

    de Luca G M, Breedijk R M, Brandt R A, Zeelenberg C H, de Jong B E, Timmermans W, Azar L N, Hoebe R A, Stallinga S, Manders E M 2013 Biomed. Opt. Express 4 2644

    [79]

    Sheppard C J, Roth S, Heintzmann R, Castello M, Vicidomini G, Chen R, Chen X, Diaspro A 2016 Opt. Express 24 27280

    [80]

    Kuang C, Ma Y, Zhou R, Zheng G, Fang Y, Xu Y, Liu X, So P T 2016 Phys. Rev. Lett. 117 028102

    [81]

    Ge B, Wang Y, Huang Y, Kuang C, Fang Y, Xiu P, Rong Z, Liu X 2016 Opt. Lett. 41 2013

    [82]

    Schulz O, Pieper C, Clever M, Pfaff J, Ruhlandt A, Kehlenbach R H, Wouters F S, Grohans J, Bunt G, Enderlein J 2013 Proc. Natl. Acad. Sci. USA 110 21000

    [83]

    Wang P, Slipchenko M N, Mitchell J, Yang C, Potma E O, Xu X, Cheng J X 2013 Nat. Photon. 7 449

    [84]

    Jin N, Rahmat-Samii Y 2007 IEEE Trans. Antenn. Propag. 55 556

    [85]

    Rogers E T, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R, Zheludev N I 2012 Nat. Mater. 11 432

    [86]

    van Putten E G, Akbulut D, Bertolotti J, Vos W L, Lagendijk A, Mosk A P 2011 Phys. Rev. Lett. 106 193905

    [87]

    Park J H, Park C, Yu H S, Park J, Han S, Shin J, Ko S H, Nam K T, Cho Y H, Park Y K 2013 Nat. Photon. 7 454

    [88]

    Fang Z, Zhu X 2013 Adv. Mater. 25 253840

    [89]

    Zhang W, Fang Z, Zhu X 2016 Chem. Rev. 117 5095

    [90]

    Diekmann R, Helle O I, Oie C I, McCourt P, Huser T R, Schttpelz M, Ahluwalia B S 2017 Nat. Photon. 11 322

    [91]

    Roider C, Ritsch-Marte M, Jesacher A 2016 Opt. Lett. 41 3825

  • [1] He Yi, Zhang Yu-Dong, Lu Jing, Li Hao, Shi Guo-Hua. Superresolution in adaptive optics confocal scanning laser ophthalmoscope. Acta Physica Sinica, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [2] Zhao Wei-Qian, Chen Shan-Shan, Feng Zheng-De. A confocal measurement method based on superresolution image restoration and shaped annular beam. Acta Physica Sinica, 2006, 55(7): 3363-3367. doi: 10.7498/aps.55.3363
    [3] Zhi Shao-Tao, Zhang Hai-Jun, Zhang Dong-Xian. Super-resolution optical microscopic imaging method based on annular illumination with high numerical aperture. Acta Physica Sinica, 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [4] Hu Rui-Xuan, Pan Bing-Yang, Yang Yu-Long, Zhang Wei-Hua. Brief retrospect of super-resolution optical microscopy techniques. Acta Physica Sinica, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [5] Qin Fei, Hong Ming-Hui, Cao Yao-Yu, Li Xiang-Ping. Advances in the far-field sub-diffraction limit focusing and super-resolution imaging by planar metalenses. Acta Physica Sinica, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [6] Jiang Zhong-Jun, Liu Jian-Jun. Progress in far-field focusing and imaging with super-oscillation. Acta Physica Sinica, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [7] Li Xiao-Nan, Guan Guo-Rong, Liu Yi-Kun, Liang Hao-Wen, Zhang Ai-Qin, Zhou Jian-Ying. Fabrication and physical measurement accuracy of nanoscale standard samples for vector beams confocal laser scanning microscopy. Acta Physica Sinica, 2019, 68(14): 148102. doi: 10.7498/aps.68.20190252
    [8] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a thickness-graded silver-plated strip probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [9] Zhao Tian-Yu, Zhou Xing, Dan Dan, Qian Jia, Wang Zhao-Jun, Lei Ming, Yao Bao-Li. Polarization control methods in structured illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148704. doi: 10.7498/aps.66.148704
    [10] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
  • Citation:
Metrics
  • Abstract views:  517
  • PDF Downloads:  449
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2017
  • Accepted Date:  02 May 2017
  • Published Online:  20 July 2017

Progress of point-wise scanning superresolution methods

    Corresponding author: Kuang Cui-Fang, cfkuang@zju.edu.cn
  • 1. State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2015CB352003), the National Key Research and Development Program of China(Grant No. 2016YFF0101400), the National Natural Science Foundation of China (Grant Nos. 61335003, 61377013, 61378051, 61427818), the Natural Science Foundation of Zhejiang Province, China (Grant No. LR16F050001), and the Fundamental Research Funds for the Central Universities, China.

Abstract: Optical microscope has been giving impetus to the development of modern technology. As the advancement of these techniques, high resolution microscopy becomes crucial in biological and material researches. However, the diffraction limit restricts the resolution of conventional microscopy. In 1968, confocal microscopy, the first pointwise scanning superresolution method, appeared. It improves the imaging resolution, enhances the contrast, and thus breaks through the diffraction limit. Since then many superresolution methods have come into being, among which the pointwise scanning superresolution method earns reputation for its high imaging resolution and contrast. The stimulated emission depletion microscopy becomes the most prominent method with an achievable resolution of about 2.4 nm and then widely used. Besides, the newly developed fluorescence emission difference microscopy (FED) and the saturated absorption competition microscopy (SAC) have their advantages of non-constraint on fluorescent dyes, low saturated beam power, simplified optical setups, while they achieve a resolution of lower than /6. Further explorations of FED will be keen on vivo biological observations by using it, while that of SAC can concentrate on enhancing the resolution on a nanoscale and reducing the signal-to-noise ratio. In addition, the Airyscan technique in which a detector array is used for image acquisition, can serve as a complementary tool to further enhance the imaging quality of pointwise scanning superresolution method. The detector-array enables both the narrowed size of pinhole and the increasing of the acquired signal intensity by 1.84 folds. The other methods, e.g. superoscillation lens and high-index resolution enhancement by scattering, have the potentialities to obtain superresolved image in material science or deep tissues. After being developed in the past three decades, the superresolution methods now encounter a new bottleneck. Further improvement of the current methods is aimed at imaging depth, and being used more practically and diversely. In this review, we detailedly describe the above pointwise scanning superresolution methods, and explain their principles and techniques. In addition, the deficiencies and potentialities of these methods are presented in this review. Finally, we compare the existing methods and envision the next generation of the pointwise scanning superresolution methods.

Reference (91)

Catalog

    /

    返回文章
    返回