搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长红外双波长共聚焦超透镜设计研究

徐平 李雄超 肖钰斐 杨拓 张旭琳 黄海漩 王梦禹 袁霞 徐海东

引用本文:
Citation:

长红外双波长共聚焦超透镜设计研究

徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东

Design and research of long-infrared dual-wavelength confocal metalens

Xu Ping, Li Xiong-Chao, Xiao Yu-Fei, Yang Tuo, Zhang Xu-Lin, Huang Hai-Xuan, Wang Meng-Yu, Yuan Xia, Xu Hai-Dong
PDF
HTML
导出引用
  • 本文提出并设计了一种由简单微元结构组成的超透镜, 可同时实现长红外双波长共聚焦功能. 基于广义斯涅耳定律和传输相位调制机理, 通过建立科学评价函数选取最优的微元结构排列组成超透镜. 设计结果表明, 该超透镜实现了波长为10.6和9.3 μm的双波长共聚焦, 且具有较高聚焦效率、聚焦光斑接近于衍射极限, 并定量分析了超透镜微元结构参数冗余度, 得到其对聚焦效率的影响趋势. 本文设计的超透镜有望满足长红外光学共聚焦系统集成化、微型化的需求, 在激光外科手术、工业切割焊接等领域有着重要的应用价值.
    Multi-wavelength confocal lens is an indispensable part of optical system, the traditional optical confocal system is often added by a certain number of optical lenses, or uses a different combination of optical lenses of different materials to implement multi-wavelength co-focusing,making the system possess a larger volume and weight, which, however, is difficult to meet the requirements for high integration and miniaturization of the system. As an optical element composed of two-dimensional planar subwavelength micro-element structure, the metalens has the advantages of flatness, ultra-thinness and regulating light waves, and has great potential applications in highly integrated and miniaturized optical confocal systems. According to relevant research reports, it is known that the existing research schemes of multi-wavelength confocal metalens have some shortcomings, such as relatively complex structure and relatively low focusing efficiency. In this work, a kind of metalens composed of simple micro-element structure is proposed and designed, which can simultaneously realize the long infrared dual wavelength confocal function. Based on the generalized Snell's law and the transmission phase modulation mechanism, a scientific evaluation function is established to select the optimal array of micro-elements structure to form a metalens. With the elliptical nano silicon column in a simple micro-element structure, the wavefront phase of the long infrared dual wavelength in the orthogonal linear polarization state can be adjusted independently and efficiently , while reducing the wavelength crosstalk and improving the focusing efficiency. The design results show that the proposed metalens achieves dual wavelength co-focused with a wavelength of 10.6 and 9.3 μm, and has a high focusing efficiency, The focusing spot is close to the diffraction limit. The quantitative analysis of the redundancy of the structural parameters of the metalens micro-element structure is made, and the trend of its influence on the focusing efficiency and the allowable deviation range of the micro-element structure parameters are obtained, which provides a theoretical basis for further precisely controlling the device fabrication. The matalens designed in this work is expected to meet the requirements for integration and miniaturization of long infrared optical confocal system, and has important applications in laser surgery, industrial cutting and welding and other fields.
      通信作者: 杨拓, yangtuo@szu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61275167), 深圳市高等院校稳定支持计划(批准号: 20200812103045003)和深圳市基础研究自由探索项目(批准号: JCYJ20180305125430954, JCYJ20170817102315892, JCYJ2017081701827765)资助的课题.
      Corresponding author: Yang Tuo, yangtuo@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275167), the Shenzhen Higher Institution Stability Support Plan, China (Grant No. 20200812103045003), and the Basic Research Free Exploration Project of Shenzhen, China (Grant Nos. JCYJ20180305125430954, JCYJ20170817102315892, JCYJ2017081701827765).
    [1]

    Vitruk P 2017 Dental Town 17 62

    [2]

    Linden E, Vitruk P 2015 Implant Pract. 8 30

    [3]

    Bhadra R, Biswas P, Sankar M R 2015 Lasers based manufacturing (New Delhi: Springer) pp381–398

    [4]

    Khorasaninejad M, Capasso F 2017 Science 358 1146Google Scholar

    [5]

    Lalanne P, Chavel P 2017 Laser Photonics Rev. 11 1600295Google Scholar

    [6]

    Ming L T, Hsiao H H, Cheng H C, Mu K C, Sun G, & Liu A Q, Tsai D P 2018 Adv. Opt. Mater. 6 1800554Google Scholar

    [7]

    Chen M K, Wu Y, Feng L, Fan Q, Lu M, Xu T, Tsai D P 2021 Adv. Opt. Mater. 9 2001414Google Scholar

    [8]

    Banerji S, Meem M, Sensale-Rodriguez B, Majμmder A, Vasquez F G, Menon R 2019 Optica 6 805Google Scholar

    [9]

    Zou X, Zheng G, Yuan Q, Zang W, Zhu S 2020 Photoni X 1 2Google Scholar

    [10]

    Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar

    [11]

    Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342Google Scholar

    [12]

    Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P, Rousso D, Capasso F 2015 Nano Lett. 15 5358Google Scholar

    [13]

    Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139Google Scholar

    [14]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Optica 3 628Google Scholar

    [15]

    Lin D, Holsteen A L, Maguid E, Wetzstein G, Kik P G, Hasman E, Brongersma M L 2016 Nano Lett. 16 7671Google Scholar

    [16]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Sci. Rep. 6 32803Google Scholar

    [17]

    Avayu O, Almeida E, Prior Y, Ellenbogen T 2017 Nat. Commun. 8 14992Google Scholar

    [18]

    Yang H, Li G, Cao G, Yu F, Zhao Z, Ou K, Chen X, Lu Wei 2018 Opt. Mater. Express 8 1940Google Scholar

    [19]

    Fan Q, Liu M, Yang C, Yu L, Yan F, Xu T 2018 Appl. Phys. Lett. 113 01104

    [20]

    Fan Q, Wang Y, Liu M, Xu T 2018 Opt. Lett. 43 6005Google Scholar

    [21]

    Zuo H, Choi D Y, Gai X, Ma P, Xu L, Neshev D N, Zhang B, Luther-Davies B 2017 Adv. Opt. Mater. 5 1700585Google Scholar

    [22]

    Yu N F, Genevet P, Kats M A, Aieta F 2011 Science 334 333Google Scholar

    [23]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702Google Scholar

    [24]

    Luo X 2015 Sci. Chin.-Phys., Mech. Astron. 58 594201Google Scholar

    [25]

    Khorasaninejad M, Capasso F 2015 Nano Lett. 15 6709Google Scholar

    [26]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, et al. 2016 Nano Lett. 16 7229Google Scholar

    [27]

    Mueller J, Rubin N A, Devlin R C, Groever B, Capasso F 2017 Phys. Rev. Lett 118 113901Google Scholar

    [28]

    Yan C, Li X, Pu M, Ma X, Zhang F, Gao P, Liu K, Luo X 2019 Appl. Phys. Lett. 114 161904Google Scholar

    [29]

    Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J 2016 Sci. Rep. 6 30613Google Scholar

    [30]

    徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东 2021 物理学报 70 084201Google Scholar

    Xu P, Xiao Y F, Huang H X, Yang T, Zhang X L, Yuan X, Li X C, Wang M Y, Xu H D 2021 Acta Phys. Sin. 70 084201Google Scholar

    [31]

    Sajedian I, Lee H, Rho J 2019 Sci. Rep. 9 10899Google Scholar

    [32]

    刘逸天, 陈琦凯, 唐志远, 赵庆, 片思杰, 刘鑫航, 林宏焘, 郝翔, 刘旭, 马耀光 2021 中国光学 14 831Google Scholar

    Liu Y T, Chen Q K, Tang Z Y, Zhao Q, Pian S J, Liu X H, Lin H T, Hao X, Liu X, Ma Y G 2021 Chin. Opt. 14 831Google Scholar

  • 图 1  (a) 超透镜在波长10.6 μm的x线偏振光和波长9.3 μm的 y线偏振态入射条件下实现共聚焦示意图; (b) 超透镜微元结构示意图(主视图); (c) 超透镜微元结构示意图(俯视图)

    Fig. 1.  (a) Schematic diagram of metalens confocal at the incident conditions of wavelength 10.6 and 9.3 μm with x and y orthogonal linear polarizations; (b) diagram of metalens unit cell structure (three-dimensional view); (c) diagram of metalens unit cell structure (top view).

    图 2  超透镜微元-相位偏移量分布图 (a) 波长10.6 μm, x线偏振态; (b) 波长9.3 μm, y线偏振态. 超透镜微元-透过效率分布图; (c) 波长10.6 μm, x线偏振态; (d) 波长9.3 μm, y线偏振态

    Fig. 2.  Phase shift of metalens unit cell: (a) Wavelength 10.6 μm with x linear polarizations; (b) wavelength 9.3 μm with y linear polarizations. Transmission efficiency of metalens unit cell; (c) wavelength 10.6 μm with x linear polarizations; (d) wavelength 9.3 μm with y linear polarizations.

    图 3  超透镜-目标相位偏移量分布图 (a) 波长10.6 μm, x线偏振态; (d) 波长9.3 μm, y线偏振态. 超透镜-实际相位偏移量分布图; (b) 波长10.6 μm, x线偏振态; (e) 波长9.3 μm, y线偏振态. 超透镜目标相位偏移量-实际相位偏移量差值图; (c) 波长10.6 μm, x线偏振态; (f) 波长9.3 μm, y线偏振态

    Fig. 3.  Target phase shift of metalens: (a) Wavelength 10.6 μm with x linear polarizations; (d) wavelength 9.3 μm with y linear polarizations. Real phase shift of metalens; (b) wavelength 10.6 μm with x linear polarizations; (e) wavelength 9.3 μm with y linear polarizations. Difference value of Target phase shift and Real phase shift of metalens; (c) wavelength 10.6 μm with x linear polarizations; (f) wavelength 9.3 μm with y linear polarizations.

    图 4  仿真得到的超透镜像平面聚焦光斑图 (a) 波长10.6 μm, x线偏振态, x-z接收面; (b) 波长10.6 μm, x线偏振态、y-z接收面; (c) 波长9.3 μm, y线偏振态, x-z接收面; (d) 波长9.3 μm, y线偏振态、y-z接收面

    Fig. 4.  Focus spot pattern of image plane of metalens obtained by simulation: (a) Wavelength 10.6 μm with x linear polarizations at x-z plane; (b) wavelength 10.6 μm with x linear polarizations at y-z plane; (c) wavelength 9.3 μm with y linear polarizations at x-z plane; (d) wavelength 9.3 μm with y linear polarizations at y-z plane;

    图 5  仿真得到的超透镜焦平面聚焦光斑图 (a)波长10.6 μm, x线偏振态、x-y接收面; (b) 波长9.3 μm, y线偏振态、x-y接收面. 聚焦光斑剖面图 (c) 波长10.6 μm, x线偏振态、x-y接收面; (d) 波长9.3 μm, y线偏振态、x-y接收面

    Fig. 5.  Focus spot pattern of focal plane of metalens obtained by simulation: (a) Wavelength 10.6 μm with x linear polarizations at x-y plane; (b) wavelength 9.3 μm with y linear polarizations at x-y plane. Section views of focus spot; (c) wavelength 10.6 μm with x linear polarizations at x-y plane; (d) wavelength 9.3 μm with y linear polarizations at x-y plane.

    图 6  定量分析超透镜的微元结构参数变化对聚焦效率&半峰全宽的影响示意图 (a) 超透镜椭圆纳米硅柱的高度H变化影响示意图; (b) 超透镜椭圆纳米硅柱的参数Dx变化影响示意图; (c)超透镜椭圆纳米硅柱的参数Dy变化影响示意图

    Fig. 6.  Schematic diagram of quantitative analysis of the influence of the variation of the parameters of unit cell of the metalens on the focusing efficiency & the full width at half maximum: (a) Schematic diagram of the influence of the height H variation on elliptic silicon nanopillar of the metalens; (b) schematic diagram of the influence of the parameter Dx variation on elliptic silicon nanopillar of the metalens; (c) schematic diagram of the influence of the parameter Dy variation on elliptic silicon nanopillar of the metalens.

  • [1]

    Vitruk P 2017 Dental Town 17 62

    [2]

    Linden E, Vitruk P 2015 Implant Pract. 8 30

    [3]

    Bhadra R, Biswas P, Sankar M R 2015 Lasers based manufacturing (New Delhi: Springer) pp381–398

    [4]

    Khorasaninejad M, Capasso F 2017 Science 358 1146Google Scholar

    [5]

    Lalanne P, Chavel P 2017 Laser Photonics Rev. 11 1600295Google Scholar

    [6]

    Ming L T, Hsiao H H, Cheng H C, Mu K C, Sun G, & Liu A Q, Tsai D P 2018 Adv. Opt. Mater. 6 1800554Google Scholar

    [7]

    Chen M K, Wu Y, Feng L, Fan Q, Lu M, Xu T, Tsai D P 2021 Adv. Opt. Mater. 9 2001414Google Scholar

    [8]

    Banerji S, Meem M, Sensale-Rodriguez B, Majμmder A, Vasquez F G, Menon R 2019 Optica 6 805Google Scholar

    [9]

    Zou X, Zheng G, Yuan Q, Zang W, Zhu S 2020 Photoni X 1 2Google Scholar

    [10]

    Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar

    [11]

    Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342Google Scholar

    [12]

    Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P, Rousso D, Capasso F 2015 Nano Lett. 15 5358Google Scholar

    [13]

    Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139Google Scholar

    [14]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Optica 3 628Google Scholar

    [15]

    Lin D, Holsteen A L, Maguid E, Wetzstein G, Kik P G, Hasman E, Brongersma M L 2016 Nano Lett. 16 7671Google Scholar

    [16]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Sci. Rep. 6 32803Google Scholar

    [17]

    Avayu O, Almeida E, Prior Y, Ellenbogen T 2017 Nat. Commun. 8 14992Google Scholar

    [18]

    Yang H, Li G, Cao G, Yu F, Zhao Z, Ou K, Chen X, Lu Wei 2018 Opt. Mater. Express 8 1940Google Scholar

    [19]

    Fan Q, Liu M, Yang C, Yu L, Yan F, Xu T 2018 Appl. Phys. Lett. 113 01104

    [20]

    Fan Q, Wang Y, Liu M, Xu T 2018 Opt. Lett. 43 6005Google Scholar

    [21]

    Zuo H, Choi D Y, Gai X, Ma P, Xu L, Neshev D N, Zhang B, Luther-Davies B 2017 Adv. Opt. Mater. 5 1700585Google Scholar

    [22]

    Yu N F, Genevet P, Kats M A, Aieta F 2011 Science 334 333Google Scholar

    [23]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702Google Scholar

    [24]

    Luo X 2015 Sci. Chin.-Phys., Mech. Astron. 58 594201Google Scholar

    [25]

    Khorasaninejad M, Capasso F 2015 Nano Lett. 15 6709Google Scholar

    [26]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, et al. 2016 Nano Lett. 16 7229Google Scholar

    [27]

    Mueller J, Rubin N A, Devlin R C, Groever B, Capasso F 2017 Phys. Rev. Lett 118 113901Google Scholar

    [28]

    Yan C, Li X, Pu M, Ma X, Zhang F, Gao P, Liu K, Luo X 2019 Appl. Phys. Lett. 114 161904Google Scholar

    [29]

    Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J 2016 Sci. Rep. 6 30613Google Scholar

    [30]

    徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东 2021 物理学报 70 084201Google Scholar

    Xu P, Xiao Y F, Huang H X, Yang T, Zhang X L, Yuan X, Li X C, Wang M Y, Xu H D 2021 Acta Phys. Sin. 70 084201Google Scholar

    [31]

    Sajedian I, Lee H, Rho J 2019 Sci. Rep. 9 10899Google Scholar

    [32]

    刘逸天, 陈琦凯, 唐志远, 赵庆, 片思杰, 刘鑫航, 林宏焘, 郝翔, 刘旭, 马耀光 2021 中国光学 14 831Google Scholar

    Liu Y T, Chen Q K, Tang Z Y, Zhao Q, Pian S J, Liu X H, Lin H T, Hao X, Liu X, Ma Y G 2021 Chin. Opt. 14 831Google Scholar

  • [1] 王焱, 彭妙, 程伟, 彭政, 成浩, 臧圣寅, 刘浩, 任孝东, 帅雨贝, 黄承志, 吴加贵, 杨俊波. 基于低损光学相变和超透镜的可控多阱光镊. 物理学报, 2023, 72(2): 027801. doi: 10.7498/aps.72.20221794
    [2] 沈晓红, 曾盈莹, 毛琳, 朱仁江, 王涛, 罗海军, 佟存柱, 汪丽杰, 宋晏蓉, 张鹏. 双波长自锁模半导体薄片激光器. 物理学报, 2022, 71(20): 204202. doi: 10.7498/aps.71.20220483
    [3] 李军依, 叶玉儿, 凌晨, 李林, 刘泱, 夏勇. 超透镜聚焦光环的产生及其在冷分子光学囚禁中的应用. 物理学报, 2021, 70(16): 167802. doi: 10.7498/aps.70.20210443
    [4] 丁继飞, 刘文兵, 李含辉, 罗奕, 谢陈凯, 黄黎蓉. 大焦深离轴超透镜的设计与制作. 物理学报, 2021, 70(19): 197802. doi: 10.7498/aps.70.20202235
    [5] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法. 物理学报, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [6] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [7] 窦微, 浦双双, 牛娜, 曲大鹏, 孟祥峻, 赵岭, 郑权. 双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器. 物理学报, 2019, 68(5): 054202. doi: 10.7498/aps.68.20182018
    [8] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器. 物理学报, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [9] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉. 双波长外腔面发射激光器. 物理学报, 2019, 68(11): 114204. doi: 10.7498/aps.68.20182261
    [10] 秦飞, 洪明辉, 曹耀宇, 李向平. 平面超透镜的远场超衍射极限聚焦和成像研究进展. 物理学报, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [11] 廖宇, 简小华, 崔崤峣, 张麒. 一种基于双波长的光声测温技术. 物理学报, 2017, 66(11): 117802. doi: 10.7498/aps.66.117802
    [12] 赵光远, 郑程, 方月, 匡翠方, 刘旭. 基于点扫描的超分辨显微成像进展. 物理学报, 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [13] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦. 物理学报, 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [14] 孙悟, 邓小玖, 李耀东, 张永明, 郑赛晶, 王维妙. 双波长抗干扰光电感烟探测机理. 物理学报, 2013, 62(3): 030201. doi: 10.7498/aps.62.030201
    [15] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究. 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [16] 关宝璐, 郭霞, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 沈光地. 双波长垂直腔面发射激光器及特性研究. 物理学报, 2011, 60(1): 014209. doi: 10.7498/aps.60.014209
    [17] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [18] 林燕凤, 张戈, 朱海永, 黄呈辉, 李爱红, 魏勇. Nd:YAG调Q激光器双波长振荡机理分析. 物理学报, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [19] 顾晓玲, 郭 霞, 梁 庭, 林巧明, 郭 晶, 吴 迪, 徐丽华, 沈光地. GaN基双波长发光二极管电致发光谱特性研究. 物理学报, 2007, 56(9): 5531-5535. doi: 10.7498/aps.56.5531
    [20] 刘德森. 聚焦透镜棒的色差分析. 物理学报, 1982, 31(2): 226-233. doi: 10.7498/aps.31.226
计量
  • 文章访问数:  3308
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 修回日期:  2022-09-25
  • 上网日期:  2022-12-23
  • 刊出日期:  2023-01-05

/

返回文章
返回