搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于加权乘代数算法分析全球平流层臭氧垂直分布差异

徐自强 杨太平 钱园园 司福祺

引用本文:
Citation:

基于加权乘代数算法分析全球平流层臭氧垂直分布差异

徐自强, 杨太平, 钱园园, 司福祺

Analysis of vertical distribution differences of global stratospheric ozone based on weighted multiplication algebraic algorithm

Xu Zi-Qiang, Yang Tai-Ping, Qian Yuan-Yuan, Si Fu-Qi
PDF
HTML
导出引用
  • 全球气候变化与南极臭氧空洞的形成促使人们关注大气臭氧含量的变化. 臭氧通常通过天底卫星实现全球连续观测, 进而获得全球柱浓度, 但随着对臭氧的深入研究, 全球臭氧分层观测问题也随之出现. 本文将加权乘代数算法与辐射传输模型SCIATRAN相结合, 采用2011年Chappuis-Wulf波段的SCIAMACHY临边辐射数据, 反演出15—40 km高度之间的平流层臭氧廓线, 解决了全球臭氧分层观测问题. 在全球臭氧分层图中, 观测到全球臭氧传输从低纬度地区的形成上升到中高纬度地区的消耗下降的整个过程, 这与布鲁尔-多布森环流直接相关. 在9—10月南极臭氧空洞最严重时期, 南极极地环流对臭氧传输的阻碍作用明显, 极地环流出现“透明墙”效果. 一方面赤道臭氧难以传输至南极地区进行补充, 另一方面南极地区上空存在的臭氧消耗物质滞留导致臭氧消耗加速, 低补充和高消耗共同造成南极臭氧空洞. 全球臭氧分层观测为全球臭氧研究提供了新的视角, 将会促进人们对臭氧形成、传输以及消耗过程的研究.
    Global climate change and the formation of the Antarctic ozone hole have prompted people to pay attention to the changes in atmospheric ozone content. The global continuous observation of ozone is achieved by retrieving the global total column concentration from nadir satellite data. In this work, the weighted multiplication algebraic algorithm is combined with the radiative transfer model SCIATRAN, by using the 2011 Chappuis-Wulf band SCIAMACHY limb radiation data to retrieve the stratospheric ozone profile between 15- and 40 km altitude, solving the ozone global stratified observation problems. In the ozone global stratification map, the whole process of the global transmission of ozone formed in low latitude regions to high latitude regions is observed, which is directly related to the Brewer-Dobson circulation. During the most severe period of the Antarctic ozone hole from September to October, the Antarctic polar vortex has an obvious hindering effect on ozone transmission, and the polar vortex has a “transparent wall” effect. On the one hand, it is difficult to transfer ozone from the equatorial region to the Antarctic region for replenishment. On the other hand, the retention of ozone-depleting substances over the Antarctic region leads to the acceleration of ozone depletion, and the combination of low replenishment and high depletion contributes to the Antarctic ozone hole. Compared with the global total column concentration of ozone, the observation of global ozone stratification is very valuable for scientific research and will promote the detailed study of the whole process of ozone formation, transmission, and consumption.
      通信作者: 司福祺, sifuqi@aiofm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFC0214702)和国家自然科学基金(批准号: 41705016)资助的课题.
      Corresponding author: Si Fu-Qi, sifuqi@aiofm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFC0214702), and the National Natural Science Foundation of China (Grant No. 41705016 ).
    [1]

    Sofieva V F, Tamminen J, Kyrölä E, Mielonen T, Veefkind P., Hassler B, Bodeker G E 2014 Atmospheric Chem. Phys. 14 283Google Scholar

    [2]

    刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰 2016 物理学报 65 113301Google Scholar

    Liu Y Z, Deng X L, Li S, Gan Y, Li J, Long J Y 2016 Acta Phys. Sin. 65 113301Google Scholar

    [3]

    郑彬,施春华 2007 物理学报 56 4277Google Scholar

    Zheng S, Deng S H 2007 Acta Phys. Sin. 56 4277Google Scholar

    [4]

    Dhomse S S, Kinnison D, Chipperfield M P, Salawitch R J, Cionni I, Hegglin M I, Zeng G. 2018 Atmospheric Chem. Phys. 18 8409Google Scholar

    [5]

    Meul S, Dameris M, Langematz U, Abalichin J, Kerschbaumer A, Kubin A, Oberländer H S 2016 Geophys. Res. Lett. 43 2919Google Scholar

    [6]

    Fang X, Pyle J A, Chipperfield M P, Daniel J S, Park S, Prinn R G 2019 Nat. Geosci. 12 592Google Scholar

    [7]

    Montzka S A, Dutton G S, Yu P, Ray E, Portmann R W, Daniel J S, Elkins J W 2018 Nature 557 413Google Scholar

    [8]

    曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, Polyakov A V 2021 物理学报 70 200201Google Scholar

    Zeng X Y, Liu C, Shan C G, Xie Y, Hu Q H, Sun Y W, Polyakov A V 2021 Acta Phys. Sin. 70 200201Google Scholar

    [9]

    Oman L D, Douglass A R, Salawitch R J, Canty T P, Ziemke J R, Manyin M 2016 Geophys. Res. Lett. 43 9869Google Scholar

    [10]

    Wargan K, Kramarova N, Weir B, Pawson S, Davis S M 2020 Geophys. Res. Atmos. 125 e2019JD031892

    [11]

    Noel S, Bovensmann H, Wuttke M W, Burrows J P, Gottwald M, Krieg E, Muller C 2002 Adv. Space Res. 29 1819Google Scholar

    [12]

    Stolarski R S, Bloomfield P, McPeters R D, Herman J R 1991 Geophys. Res. Lett. 18 1015Google Scholar

    [13]

    Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207Google Scholar

    [14]

    Burrows J P, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, Perner D 1999 J. Atmos. Sci. 56 151Google Scholar

    [15]

    Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Goede A P H 1999 J. Atmos. Sci. 56 127Google Scholar

    [16]

    Thomas R J, Barth C A, Rusch D W, Sanders R W 1984 J. Geophys. Res. Atmos. 89 9569Google Scholar

    [17]

    Degenstein D A, Bourassa A E, Lloyd N D, Llewellyn E J, McLinden C A, Piché L P, Roth C Z 2015 Optical Payloads for Space Missions (Beijing: World Book Publishing Company) p677

    [18]

    Kizer S, Roell M, Flittner D, Damadeo R, Leavor K, Roller C, Querel R 2022 Continuing the Legacy of SAGE Data Products Vienna, Austria, May 23–27, 2022, EGU22-13523

    [19]

    Taha G, Loughman R, Zhu T, Thomason L, Kar J, Rieger L, Bourassa A 2021 Atmos. Meas. Tech. 14 1015Google Scholar

    [20]

    刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清 2014 物理学报 63 214204Google Scholar

    Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Wang Y, Liu W Q 2014 Acta Phys. Sin. 63 214204Google Scholar

    [21]

    赵敏杰, 司福祺, 陆亦怀, 汪世美, 江宇, 周海金, 刘文清 2013 物理学报 62 249301Google Scholar

    Zhao M J, Si F Q, Lu Y H, Wang S M, Jiang Y, Zhou H J, Liu W Q 2013 Acta Phys. Sin. 62 249301Google Scholar

    [22]

    Aruga T, Heath D F 1982 Appl. Opt. 21 3047Google Scholar

    [23]

    Guo X, Lu Y, Lü D 2004 Prog. Mater. Sci. 14 504

    [24]

    Auvinen H, Oikarinen L, Kyrölä E 2002 J. Geophys. Res. 107 ACH

    [25]

    Rohen G J, Savigny C., Llewellyn E J, Kaiser J W, Eichmann K U, Bracher A, Burrows J P 2006 Adv. Space Res. 37 2263Google Scholar

    [26]

    汪自军 2011 博士学位论文 (吉林: 吉林大学)

    Wang Z J 2011 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)

    [27]

    Wang Z, Chen S 2011 Chin Geogr Sci 21 554Google Scholar

    [28]

    朱芳, 司福祺, 詹锴, 窦科, 周海金 2021 光学学报 41 0401005

    Zhu F, Si F Q, Zhan K, Dou K, Zhou H J Acta Opt. Sin. 41 0401005 (in Chinese)

    [29]

    Flittner D E, Bhartia P K, Herman B M 2000 Geophys. Res. Lett. 27 2601Google Scholar

    [30]

    Degenstein D A, Bourassa A E, Roth C Z, Llewellyn E J 2009 Atmospheric Chem. Phys. 9 6521Google Scholar

    [31]

    Roth C Z, Degenstein D A, Bourassa A E, Llewellyn E J 2007 Can. J. Phys. 85 1225Google Scholar

    [32]

    Pohl C, Rozanov V V, Mei L, Burrows J P, Heygster G, Spreen G 2020 J. Quant. Spectrosc. Radiat. Transf. 253 107118Google Scholar

    [33]

    Kovar, P, Sommer, M 2021 Remote Sens. 13 1274Google Scholar

    [34]

    Butchart N 2014 Rev. Geophys. 52 157Google Scholar

  • 图 1  临边观测几何图

    Fig. 1.  Limb observation geometry.

    图 2  临边观测原理图

    Fig. 2.  Limb observation schematic.

    图 3  辐射归一化与波长配对图

    Fig. 3.  Radiance normalization and wavelength pairing diagram.

    图 4  臭氧数密度图

    Fig. 4.  Ozone number density profile.

    图 5  15 km处2011年臭氧分布图 (a) 1月; (b) 4月; (c) 7月; (d) 10月

    Fig. 5.  Ozone distribution map at 15 km in 2011: (a) January; (b) April; (c) July; (d) October.

    图 8  40 km处2011年臭氧分布图 (a) 1月; (b) 4月; (c) 7月; (d) 10月

    Fig. 8.  Ozone distribution map at 40 km in 2011: (a) January; (b) April; (c) July; (d) October.

    图 6  20 km处2011年臭氧分布图 (a) 1月; (b) 4月; (c) 7月; (d) 10月

    Fig. 6.  Ozone distribution map at 20 km in 2011: (a) January; (b) April; (c) July; (d) October.

    图 7  30 km处2011年臭氧分布图 (a) 1月; (b) 4月; (c) 7月; (d) 10月

    Fig. 7.  Ozone distribution map at 30 km in 2011: (a) January; (b) April; (c) July; (d) October.

    图 9  平流层2011年臭氧分布图 (a) 1月; (b) 4月; (c) 7月; (d) 10月

    Fig. 9.  Ozone distribution map in the stratosphere for 2011: (a) January; (b) April; (c) July; (d) October.

    图 10  南极地区2011年平流层臭氧空洞图 (a) 8月; (b) 9月; (c) 10月; (d) 11月

    Fig. 10.  Antarctic stratospheric ozone hole map in 2011: (a) August; (b) September; (c) October; (d) November.

    图 11  9月9日49821轨臭氧结果 (a) SCIAMACHY V3.5; (b)本文结果

    Fig. 11.  49821 orbital ozone results on 9 September: (a) SCIAMAHY V3.5; (b) the results of this paper.

    图 12  9月9日49821轨误差分析 (a)相关系数; (b)绝对误差;

    Fig. 12.  Error analysis of 49821 orbital on 9 September: (a) Correlation coefficient; (b) absolute error.

  • [1]

    Sofieva V F, Tamminen J, Kyrölä E, Mielonen T, Veefkind P., Hassler B, Bodeker G E 2014 Atmospheric Chem. Phys. 14 283Google Scholar

    [2]

    刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰 2016 物理学报 65 113301Google Scholar

    Liu Y Z, Deng X L, Li S, Gan Y, Li J, Long J Y 2016 Acta Phys. Sin. 65 113301Google Scholar

    [3]

    郑彬,施春华 2007 物理学报 56 4277Google Scholar

    Zheng S, Deng S H 2007 Acta Phys. Sin. 56 4277Google Scholar

    [4]

    Dhomse S S, Kinnison D, Chipperfield M P, Salawitch R J, Cionni I, Hegglin M I, Zeng G. 2018 Atmospheric Chem. Phys. 18 8409Google Scholar

    [5]

    Meul S, Dameris M, Langematz U, Abalichin J, Kerschbaumer A, Kubin A, Oberländer H S 2016 Geophys. Res. Lett. 43 2919Google Scholar

    [6]

    Fang X, Pyle J A, Chipperfield M P, Daniel J S, Park S, Prinn R G 2019 Nat. Geosci. 12 592Google Scholar

    [7]

    Montzka S A, Dutton G S, Yu P, Ray E, Portmann R W, Daniel J S, Elkins J W 2018 Nature 557 413Google Scholar

    [8]

    曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, Polyakov A V 2021 物理学报 70 200201Google Scholar

    Zeng X Y, Liu C, Shan C G, Xie Y, Hu Q H, Sun Y W, Polyakov A V 2021 Acta Phys. Sin. 70 200201Google Scholar

    [9]

    Oman L D, Douglass A R, Salawitch R J, Canty T P, Ziemke J R, Manyin M 2016 Geophys. Res. Lett. 43 9869Google Scholar

    [10]

    Wargan K, Kramarova N, Weir B, Pawson S, Davis S M 2020 Geophys. Res. Atmos. 125 e2019JD031892

    [11]

    Noel S, Bovensmann H, Wuttke M W, Burrows J P, Gottwald M, Krieg E, Muller C 2002 Adv. Space Res. 29 1819Google Scholar

    [12]

    Stolarski R S, Bloomfield P, McPeters R D, Herman J R 1991 Geophys. Res. Lett. 18 1015Google Scholar

    [13]

    Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207Google Scholar

    [14]

    Burrows J P, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, Perner D 1999 J. Atmos. Sci. 56 151Google Scholar

    [15]

    Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Goede A P H 1999 J. Atmos. Sci. 56 127Google Scholar

    [16]

    Thomas R J, Barth C A, Rusch D W, Sanders R W 1984 J. Geophys. Res. Atmos. 89 9569Google Scholar

    [17]

    Degenstein D A, Bourassa A E, Lloyd N D, Llewellyn E J, McLinden C A, Piché L P, Roth C Z 2015 Optical Payloads for Space Missions (Beijing: World Book Publishing Company) p677

    [18]

    Kizer S, Roell M, Flittner D, Damadeo R, Leavor K, Roller C, Querel R 2022 Continuing the Legacy of SAGE Data Products Vienna, Austria, May 23–27, 2022, EGU22-13523

    [19]

    Taha G, Loughman R, Zhu T, Thomason L, Kar J, Rieger L, Bourassa A 2021 Atmos. Meas. Tech. 14 1015Google Scholar

    [20]

    刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清 2014 物理学报 63 214204Google Scholar

    Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Wang Y, Liu W Q 2014 Acta Phys. Sin. 63 214204Google Scholar

    [21]

    赵敏杰, 司福祺, 陆亦怀, 汪世美, 江宇, 周海金, 刘文清 2013 物理学报 62 249301Google Scholar

    Zhao M J, Si F Q, Lu Y H, Wang S M, Jiang Y, Zhou H J, Liu W Q 2013 Acta Phys. Sin. 62 249301Google Scholar

    [22]

    Aruga T, Heath D F 1982 Appl. Opt. 21 3047Google Scholar

    [23]

    Guo X, Lu Y, Lü D 2004 Prog. Mater. Sci. 14 504

    [24]

    Auvinen H, Oikarinen L, Kyrölä E 2002 J. Geophys. Res. 107 ACH

    [25]

    Rohen G J, Savigny C., Llewellyn E J, Kaiser J W, Eichmann K U, Bracher A, Burrows J P 2006 Adv. Space Res. 37 2263Google Scholar

    [26]

    汪自军 2011 博士学位论文 (吉林: 吉林大学)

    Wang Z J 2011 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)

    [27]

    Wang Z, Chen S 2011 Chin Geogr Sci 21 554Google Scholar

    [28]

    朱芳, 司福祺, 詹锴, 窦科, 周海金 2021 光学学报 41 0401005

    Zhu F, Si F Q, Zhan K, Dou K, Zhou H J Acta Opt. Sin. 41 0401005 (in Chinese)

    [29]

    Flittner D E, Bhartia P K, Herman B M 2000 Geophys. Res. Lett. 27 2601Google Scholar

    [30]

    Degenstein D A, Bourassa A E, Roth C Z, Llewellyn E J 2009 Atmospheric Chem. Phys. 9 6521Google Scholar

    [31]

    Roth C Z, Degenstein D A, Bourassa A E, Llewellyn E J 2007 Can. J. Phys. 85 1225Google Scholar

    [32]

    Pohl C, Rozanov V V, Mei L, Burrows J P, Heygster G, Spreen G 2020 J. Quant. Spectrosc. Radiat. Transf. 253 107118Google Scholar

    [33]

    Kovar, P, Sommer, M 2021 Remote Sens. 13 1274Google Scholar

    [34]

    Butchart N 2014 Rev. Geophys. 52 157Google Scholar

  • [1] 李建新. 自旋涨落与非常规超导配对. 物理学报, 2021, 70(1): 017408. doi: 10.7498/aps.70.20202180
    [2] 杨李, 宋玉蓉, 李因伟. 考虑边聚类与扩散特性的信息传播网络结构优化算法. 物理学报, 2018, 67(19): 190502. doi: 10.7498/aps.67.20180395
    [3] 范爽, 张亚萍, 王帆, 高云龙, 钱晓凡, 张永安, 许蔚, 曹良才. 面向真彩色三维显示的分层角谱算法和Gerchberg-Saxton算法研究. 物理学报, 2018, 67(9): 094203. doi: 10.7498/aps.67.20172464
    [4] 吴佳键, 龚凯, 王聪, 王磊. 相依网络上基于相连边的择优恢复算法. 物理学报, 2018, 67(8): 088901. doi: 10.7498/aps.67.20172526
    [5] 冷雪冬, 王大鸣, 巴斌, 王建辉. 基于渐进添边的准循环压缩感知时延估计算法. 物理学报, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [6] 项正, 谈家强, 倪彬彬, 顾旭东, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 贺丰明, 郑程耀, 殷倩, 王豪. 基于范阿伦卫星观测数据的等离子体层嘶声全球分布的统计分析. 物理学报, 2017, 66(3): 039401. doi: 10.7498/aps.66.039401
    [7] 罗仕龙, 龚凯, 唐朝生, 周靖. 加权网络中基于冗余边过滤的k-核分解排序算法. 物理学报, 2017, 66(18): 188902. doi: 10.7498/aps.66.188902
    [8] 王树志, 朱光武, 白伟华, 柳聪亮, 孙越强, 杜起飞, 王先毅, 孟祥广, 杨光林, 杨忠东, 张效信, 毕研盟, 王冬伟, 夏俊明, 吴迪, 蔡跃荣, 韩英. 风云三号C星全球导航卫星掩星探测仪首次实现北斗掩星探测. 物理学报, 2015, 64(8): 089301. doi: 10.7498/aps.64.089301
    [9] 刘洋洋, 廉保旺, 赵宏伟, 刘亚擎. Kalman滤波辅助的室内伪卫星相对定位算法. 物理学报, 2014, 63(22): 228402. doi: 10.7498/aps.63.228402
    [10] 苏勇, 范东明, 游为. 利用GOCE卫星数据确定全球重力场模型. 物理学报, 2014, 63(9): 099101. doi: 10.7498/aps.63.099101
    [11] 刘诚, 白文广, 张鹏, 孙友文, 司福祺. 基于卫星平台的全球大气一氧化碳柱浓度反演方法及结果分析. 物理学报, 2013, 62(3): 030704. doi: 10.7498/aps.62.030704
    [12] 吕天阳, 谢文艳, 郑纬民, 朴秀峰. 加权复杂网络社团的评价指标及其发现算法分析. 物理学报, 2012, 61(21): 210511. doi: 10.7498/aps.61.210511
    [13] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法的多波长激光相干合成. 物理学报, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [14] 卢伟涛, 王顺金, 张 华. 人造地球卫星运动方程的代数动力学算法数值解. 物理学报, 2007, 56(7): 3655-3661. doi: 10.7498/aps.56.3655
    [15] 黄思训, 盛 峥. 一种全球定位系统接收机单点定位的新算法及数值试验. 物理学报, 2006, 55(12): 6720-6726. doi: 10.7498/aps.55.6720
    [16] 龚志强, 封国林, 万仕全, 李建平. 基于启发式分割算法检测华北和全球气候变化的特征. 物理学报, 2006, 55(1): 477-484. doi: 10.7498/aps.55.477
    [17] 曹天德, 徐丽娜. 配对对称性与带间作用. 物理学报, 2005, 54(3): 1406-1409. doi: 10.7498/aps.54.1406
    [18] 周世平, 瞿海, 廖红印. 高温超导混合配对态与磁通涡旋格子. 物理学报, 2002, 51(10): 2355-2361. doi: 10.7498/aps.51.2355
    [19] 周世平, 徐克西, 牛金海, 瞿 海. 混合配对态波函数方程的解. 物理学报, 1999, 48(2): 342-351. doi: 10.7498/aps.48.342
    [20] 严济慈, 锺盛標. 臭氧之紫外吸收光谱. 物理学报, 1933, 1(1): 38-50. doi: 10.7498/aps.1.38
计量
  • 文章访问数:  2375
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-09-27
  • 上网日期:  2022-10-27
  • 刊出日期:  2023-01-05

/

返回文章
返回