Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Subwavelength electromagnetics below the diffraction limit

Pu Ming-Bo Wang Chang-Tao Wang Yan-Qin Luo Xian-Gang

Subwavelength electromagnetics below the diffraction limit

Pu Ming-Bo, Wang Chang-Tao, Wang Yan-Qin, Luo Xian-Gang
PDF
Get Citation
  • As a fundamental property of waves, diffraction plays an important role in many physical problems. However, diffraction makes waves in free space unable to be focused into an arbitrarily small space, setting a fundamental limit (the so-called diffraction limit) to applications such as imaging, lithography, optical recording and waveguiding, etc. Although the diffraction effect can be suppressed by increasing the refractive index of the surrounding medium in which the electromagnetic and optical waves propagate, such a technology is restricted by the fact that natural medium has a limited refractive index. In the past decades, surface plasmon polaritons (SPPs) have received special attention, owing to its ability to break through the diffraction limit by shrinking the effective wavelength in the form of collective excitation of free electrons. By combining the short wavelength property of SPPs and subwavelength structure in the two-dimensional space, many exotic optical effects, such as extraordinary light transmission and optical spin Hall effect have been discovered and utilized to realize functionalities that control the electromagnetic characteristics (amplitudes, phases, and polarizations etc.) on demand. Based on SPPs and artificial subwavelength structures, a new discipline called subwavelength electromagnetics emerged in recent years, thus opening a door for the next-generation integrated and miniaturized electromagnetic and optical devices and systems. In this paper, we review the theories and methods used to break through the diffraction limit by briefly introducing the history from the viewpoint of electromagnetic optics. It is shown that by constructing plasmonic metamaterials and metasurfaces on a subwavelength scale, one can realize the localized phase modulation and broadband dispersion engineering, which could surpass many limits of traditional theory and lay the basis of high-performance electromagnetic and optical functional devices. For instance, by constructing gradient phase on the metasurfaces, the traditional laws of reflection and refraction can be rewritten, while the electromagnetic and geometric shapes could be decoupled, both of which are essential for realizing the planar and conformal lenses and other functional devices. At the end of this paper, we discuss the future development trends of subwavelength electromagnetics. Based on the fact that different concepts, such as plasmonics, metamaterials and photonic crystals, are closely related to each other on a subwavelength scale, we think, the future advancements and even revolutions in subwavelength electromagnetics may rise from the in-depth intersection of physical, chemical and even biological areas. Additionally, we envision that the material genome initiative can be borrowed to promote the information exchange between different engineering and scientific teams and to enable the fast designing and implementing of subwavelength structured materials.
      Corresponding author: Luo Xian-Gang, lxg@ioe.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01700) and the National Natural Science Foundation of China (Grant Nos. 61622508, 61575201).
    [1]

    Luo X 2015 Sci. China: Phys. Mech. Astron. 58 594201

    [2]

    Lauterbach M A 2012 Opt. Nanoscopy 1 1

    [3]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [4]

    Raguin D H, Morris G H 1993 Appl. Opt. 32 1154

    [5]

    Ribot C, Lalanne P, Lee M S L, Loiseaux B, Huignard J P 2007 J. Opt. Soc. Am. A 24 3819

    [6]

    Luo X 2016 Front. Optoelectron. 9 138

    [7]

    Luo X G 2017 Sub-wavelength Electromagnetics (Vol. 1) (Beijing: Science Press) pp4-5 (in Chinese) [罗先刚 2017 亚波长电磁学(上册)(北京: 科学出版社) 第4-5页]

    [8]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [9]

    Xu T, Wang C, Du C, Luo X 2008 Opt. Express 16 4753

    [10]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [11]

    Li Y, Li X, Pu M, Zhao Z, Ma X, Wang Y, Luo X 2016 Sci. Rep. 6 19885

    [12]

    Feng Q, Pu M, Hu C, Luo X 2012 Opt. Lett. 37 2133

    [13]

    Pu M, Zhao Z, Wang Y, Li X, Ma X, Hu C, Wang C, Huang C, Luo X 2015 Sci. Rep. 5 9822

    [14]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [15]

    Martin Moreno L, Garcia Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [16]

    Genet C, Ebbesen T W 2007 Nature 445 39

    [17]

    Liu H, Lalanne P 2008 Nature 452 728

    [18]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martin Moreno L, Garcia Vidal F J, Ebbesen T W 2002 Science 297 820

    [19]

    Luo X, Pu M, Li X, Ma X 2017 Light Sci. Appl. 6 e16276

    [20]

    Dudley A, Lavery M P J, Padgett M J, Forbes A 2013 Opt. Photon. News 22 24

    [21]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396

    [22]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [23]

    Li X, Pu M, Wang Y, Ma X, Li Y, Gao H, Zhao Z, Gao P, Wang C, Luo X 2016 Adv. Opt. Mater. 4 659

    [24]

    Wang Y, Pu M, Zhang Z, Li X, Ma X, Zhao Z, Luo X 2015 Sci. Rep. 5 17733

    [25]

    Ozbay E 2006 Science 311 189

    [26]

    Atwater H A 2007 Sci. Am. 296 56

    [27]

    Luo X, Ishihara T 2004 Opt. Express 12 3055

    [28]

    Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, L Y, Lin X, Yao H 2005 Opt. Express 13 10795

    [29]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83

    [30]

    Yablonovitch E 1993 J. Opt. Soc. Am. B 10 283

    [31]

    Russell P 2003 Science 299 358

    [32]

    Aguirre C I, Reguera E, Stein A 2010 Adv. Funct. Mater. 20 2565

    [33]

    Li Z Y, Meng Z M 2014 J. Mater. Chem. C 2 783

    [34]

    Choi J H, No Y S, Hwang M S, Kwon S Y, Jeong K Y, Kwon S H, Yang J K, Park H G 2014 Appl. Phys. Lett. 104 91120

    [35]

    Chen W D, Dong X Y, Chen Y, Zhu Q G, Wang N 2014 Acta Phys. Sin. 63 154207 (in Chinese) [陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁 2014 物理学报 63 154207]

    [36]

    Huang X, Lai Y, Hang Z H, Zheng H, Chan C T 2011 Nat. Mater. 10 582

    [37]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196

    [38]

    Turner M D, Saba M, Zhang Q, Cumming B P, Schroder Turk G E, Gu M 2013 Nat. Photon. 7 801

    [39]

    Raman A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540

    [40]

    Rybin M V, Filonov D S, Samusev K B, Belov P A, Kivshar Y S, Limonov M F 2015 Nat. Commun. 6 10102

    [41]

    Smith D, Padilla W, Vier D, Nemat Nasser S, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [42]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [43]

    Pendry J B, Aubry A, Smith D R, Maier S A 2012 Science 337 549

    [44]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889

    [45]

    Pu M, Ma X, Li X, Guo Y, Luo X 2017 J. Mater. Chem. C 5 4361

    [46]

    Kamali S M, Arbabi A, Arbabi E, Horie Y, Faraon A 2016 Nat. Commun. 7 11618

    [47]

    Luo X, Pu M, Ma X, Li X 2015 Int. J. Antennas Propag. 2015 204127

    [48]

    Wood R W 1902 Proc. R. Soc. Lond. 18 269

    [49]

    Hutley M C, Maystre D 1976 Opt. Commun. 19 431

    [50]

    Senior T 1981 IEEE Trans. Antennas Propag. 29 826

    [51]

    Li Y F, Qu S B, Xu Z 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 屈绍波, 徐卓 2014 物理学报 63 084103]

    [52]

    Yu N, Capasso F 2014 Nat. Mater. 13 139

    [53]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photon. Rev. 9 195

    [54]

    Sun H 2016 Sci. China: Phys. Mech. Astron. 59 614202

    [55]

    Xu T, Wu Y K, Luo X, Guo L J 2010 Nat. Commun. 1 59

    [56]

    Hong M 2016 Sci. Bull. 61 112

    [57]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [58]

    Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N, Min B 2011 Nature 470 369

    [59]

    Lalanne P, Astilean S, Chavel P, Cambril E, Launois H 1998 Opt. Lett. 23 1081

    [60]

    Smith D, Mock J, Starr A, Schurig D 2005 Phys. Rev. E 71 36609

    [61]

    Pu M, Chen P, Wang C, Wang Y, Zhao Z, Hu C, Luo X 2013 AIP Adv. 3 52136

    [62]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190

    [63]

    Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 13682

    [64]

    Luo X G, Xu T, Du C L, Wang C T 2008 China Patent ZL200710177752.5 [2008-4-9] (in Chinese) [罗先刚, 徐挺, 杜春雷, 王长涛 2008 中国专利 ZL200710177752.5 [2008-4-9]]

    [65]

    Zhao Z Y, Pu M B, Wang Y Q, Luo X G 2017 Opto-Elec. Eng. 44 129 (in Chinese) [赵泽宇, 蒲明博, 王彦钦, 罗先刚 2017 光电工程 44 129]

    [66]

    Pu M, Chen P, Wang Y, Zhao Z, Huang C, Wang C, Ma X, Luo X 2013 Appl. Phys. Lett. 102 131906

    [67]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [68]

    Zheng G, Mhlenbernd H, Kenney M, Li G, Zhang S 2015 Nat. Nanotechnol. 10 308

    [69]

    Zhang L, Zhou P, Chen H, Lu H, Xie J, Deng L 2015 J. Opt. 17 105105

    [70]

    Zhang Z, Luo J, Song M, Yu H 2015 Appl. Phys. Lett. 107 241904

    [71]

    Guo Y H, Pu M B, Ma X L, Li X, Luo X G 2017 Opto-Elec. Eng. 44 3 (in Chinese) [郭迎辉,蒲明博,马晓亮,李雄,罗先刚 2017 光电工程 44 3]

    [72]

    Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett. 111 187402

    [73]

    Guo Y, Wang Y, Pu M, Zhao Z, Wu X, Ma X, Wang C, Yan L, Luo X 2015 Sci. Rep. 5 8434

    [74]

    Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Feng Q, Luo X 2011 Opt. Express 19 17413

    [75]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230

    [76]

    Gustafsson M, Sjoberg D 2011 IEEE Trans. Antennas Propag. 59 2196

    [77]

    Lier E, Werner D H, Scarborough C P, Wu Q, Bossard J A 2011 Nat. Mater. 10 216

    [78]

    Chen P Y, Argyropoulos C, Al A 2013 Phys. Rev. Lett. 111 233001

    [79]

    Wang C, Gao P, Tao X, Zhao Z, Pu M, Chen P, Luo X 2013 Appl. Phys. Lett. 103 31911

    [80]

    Liu L, Gao P, Liu K, Kong W, Zhao Z, Pu M, Wang C, Luo X 2017 Mater. Horiz. 4 290

    [81]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [82]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [83]

    Zijlstra P, Chon J W M, Gu M 2009 Nature 459 410

    [84]

    Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C, Luo X 2015 Appl. Phys. Lett. 106 93110

    [85]

    Wang C T, Zhao Z Y, Gao P, Luo Y F, Luo X G 2016 Chin. Sci. Bull. 61 585 (in Chinese) [王长涛, 赵泽宇, 高平, 罗云飞, 罗先刚 2016 科学通报 61 585]

    [86]

    Zhao Z, Luo Y, Zhang W, Wang C, Gao P, Wang Y, Pu M, Yao N, Zhao C, Luo X 2015 Sci. Rep. 5 15320

    [87]

    Garcia Vidal F J, Martin Moreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [88]

    Grzegorczyk T M, Nikku M, Chen X, Wu B I, Kong J A 2005 IEEE Trans. Microw. Theory Tech. 53 1443

    [89]

    Verslegers L, Catrysse P B, Yu Z, White J S, Barnard E S, Brongersma M L, Fan S 2009 Nano Lett. 9 235

    [90]

    Goh X M, Lin L, Roberts A 2010 Opt. Express 18 11683

    [91]

    Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photon. Rev. 9 713

    [92]

    Ma X, Pu M, Li X, Huang C, Wang Y, Pan W, Zhao B, Cui J, Wang C, Zhao Z, Luo X 2015 Sci. Rep. 5 10365

    [93]

    Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X 2015 Sci. Rep. 5 15781

    [94]

    Li X, Ren H, Chen X, Liu J, Li Q, Li C, Xue G, Jia J, Cao L, Sahu A, Hu B, Wang Y, Jin G, Gu M 2015 Nat. Commun. 6 6984

    [95]

    Li X, Chen L, Li Y, Zhang X, Pu M, Zhao Z, Ma X, Wang Y, Hong M, Luo X 2016 Sci. Adv. 2 e1601102

    [96]

    Jin J, Pu M, Wang Y, Li X, Ma X, Luo J, Zhao Z, Gao P, Luo X 2017 Adv. Mater. Technol. 2 1600201

    [97]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310

    [98]

    Qu Y, Li Q, Gong H, Du K, Bai S, Zhao D, Ye H, Qiu M 2016 Adv. Opt. Mater. 4 480

    [99]

    Pu M, Hu C, Huang C, Wang C, Zhao Z, Wang Y, Luo X 2013 Opt. Express 21 992

    [100]

    Bossard J A, Lin L, Yun S, Liu L, Werner D H, Mayer T S 2014 ACS Nano 8 1517

    [101]

    Pu M, Feng Q, Wang M, Hu C, Huang C, Ma X, Zhao Z, Wang C, Luo X 2012 Opt. Express 20 2246

    [102]

    Li S, Duan Q, Li S, Yin Q, Lu W, Li L, Gu B, Hou B, Wen W 2015 Appl. Phys. Lett. 107 181112

    [103]

    Li W, Guler U, Kinsey N, Naik G V, Boltasseva A, Guan J, Shalaev V M, Kildishev A V 2014 Adv. Mater. 26 7959

    [104]

    Kohiyama A, Shimizu M, Yugami H 2016 Appl. Phys. Express 9 112302

    [105]

    Poddubny A, Iorsh I, Belov P, Kivshar Y 2013 Nat. Photon. 7 948

    [106]

    Hoffman A J, Alekseyev L, Howard S S, Franz K J, Wasserman D, Podolskiy V A, Narimanov E E, Sivco D L, Gmachl C 2007 Nat. Mater. 6 946

    [107]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264

    [108]

    Guler U, Boltasseva A, Shalaev V M 2014 Science 344 263

    [109]

    Wang D, Zhang L, Gu Y, Mehmood M Q, Gong Y, Srivastava A, Jian L, Venkatesan T, Qiu C W, Hong M 2015 Sci. Rep. 5 15020

  • [1]

    Luo X 2015 Sci. China: Phys. Mech. Astron. 58 594201

    [2]

    Lauterbach M A 2012 Opt. Nanoscopy 1 1

    [3]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [4]

    Raguin D H, Morris G H 1993 Appl. Opt. 32 1154

    [5]

    Ribot C, Lalanne P, Lee M S L, Loiseaux B, Huignard J P 2007 J. Opt. Soc. Am. A 24 3819

    [6]

    Luo X 2016 Front. Optoelectron. 9 138

    [7]

    Luo X G 2017 Sub-wavelength Electromagnetics (Vol. 1) (Beijing: Science Press) pp4-5 (in Chinese) [罗先刚 2017 亚波长电磁学(上册)(北京: 科学出版社) 第4-5页]

    [8]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [9]

    Xu T, Wang C, Du C, Luo X 2008 Opt. Express 16 4753

    [10]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [11]

    Li Y, Li X, Pu M, Zhao Z, Ma X, Wang Y, Luo X 2016 Sci. Rep. 6 19885

    [12]

    Feng Q, Pu M, Hu C, Luo X 2012 Opt. Lett. 37 2133

    [13]

    Pu M, Zhao Z, Wang Y, Li X, Ma X, Hu C, Wang C, Huang C, Luo X 2015 Sci. Rep. 5 9822

    [14]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [15]

    Martin Moreno L, Garcia Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [16]

    Genet C, Ebbesen T W 2007 Nature 445 39

    [17]

    Liu H, Lalanne P 2008 Nature 452 728

    [18]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martin Moreno L, Garcia Vidal F J, Ebbesen T W 2002 Science 297 820

    [19]

    Luo X, Pu M, Li X, Ma X 2017 Light Sci. Appl. 6 e16276

    [20]

    Dudley A, Lavery M P J, Padgett M J, Forbes A 2013 Opt. Photon. News 22 24

    [21]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396

    [22]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [23]

    Li X, Pu M, Wang Y, Ma X, Li Y, Gao H, Zhao Z, Gao P, Wang C, Luo X 2016 Adv. Opt. Mater. 4 659

    [24]

    Wang Y, Pu M, Zhang Z, Li X, Ma X, Zhao Z, Luo X 2015 Sci. Rep. 5 17733

    [25]

    Ozbay E 2006 Science 311 189

    [26]

    Atwater H A 2007 Sci. Am. 296 56

    [27]

    Luo X, Ishihara T 2004 Opt. Express 12 3055

    [28]

    Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, L Y, Lin X, Yao H 2005 Opt. Express 13 10795

    [29]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83

    [30]

    Yablonovitch E 1993 J. Opt. Soc. Am. B 10 283

    [31]

    Russell P 2003 Science 299 358

    [32]

    Aguirre C I, Reguera E, Stein A 2010 Adv. Funct. Mater. 20 2565

    [33]

    Li Z Y, Meng Z M 2014 J. Mater. Chem. C 2 783

    [34]

    Choi J H, No Y S, Hwang M S, Kwon S Y, Jeong K Y, Kwon S H, Yang J K, Park H G 2014 Appl. Phys. Lett. 104 91120

    [35]

    Chen W D, Dong X Y, Chen Y, Zhu Q G, Wang N 2014 Acta Phys. Sin. 63 154207 (in Chinese) [陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁 2014 物理学报 63 154207]

    [36]

    Huang X, Lai Y, Hang Z H, Zheng H, Chan C T 2011 Nat. Mater. 10 582

    [37]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196

    [38]

    Turner M D, Saba M, Zhang Q, Cumming B P, Schroder Turk G E, Gu M 2013 Nat. Photon. 7 801

    [39]

    Raman A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540

    [40]

    Rybin M V, Filonov D S, Samusev K B, Belov P A, Kivshar Y S, Limonov M F 2015 Nat. Commun. 6 10102

    [41]

    Smith D, Padilla W, Vier D, Nemat Nasser S, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [42]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [43]

    Pendry J B, Aubry A, Smith D R, Maier S A 2012 Science 337 549

    [44]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889

    [45]

    Pu M, Ma X, Li X, Guo Y, Luo X 2017 J. Mater. Chem. C 5 4361

    [46]

    Kamali S M, Arbabi A, Arbabi E, Horie Y, Faraon A 2016 Nat. Commun. 7 11618

    [47]

    Luo X, Pu M, Ma X, Li X 2015 Int. J. Antennas Propag. 2015 204127

    [48]

    Wood R W 1902 Proc. R. Soc. Lond. 18 269

    [49]

    Hutley M C, Maystre D 1976 Opt. Commun. 19 431

    [50]

    Senior T 1981 IEEE Trans. Antennas Propag. 29 826

    [51]

    Li Y F, Qu S B, Xu Z 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 屈绍波, 徐卓 2014 物理学报 63 084103]

    [52]

    Yu N, Capasso F 2014 Nat. Mater. 13 139

    [53]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photon. Rev. 9 195

    [54]

    Sun H 2016 Sci. China: Phys. Mech. Astron. 59 614202

    [55]

    Xu T, Wu Y K, Luo X, Guo L J 2010 Nat. Commun. 1 59

    [56]

    Hong M 2016 Sci. Bull. 61 112

    [57]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [58]

    Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N, Min B 2011 Nature 470 369

    [59]

    Lalanne P, Astilean S, Chavel P, Cambril E, Launois H 1998 Opt. Lett. 23 1081

    [60]

    Smith D, Mock J, Starr A, Schurig D 2005 Phys. Rev. E 71 36609

    [61]

    Pu M, Chen P, Wang C, Wang Y, Zhao Z, Hu C, Luo X 2013 AIP Adv. 3 52136

    [62]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190

    [63]

    Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 13682

    [64]

    Luo X G, Xu T, Du C L, Wang C T 2008 China Patent ZL200710177752.5 [2008-4-9] (in Chinese) [罗先刚, 徐挺, 杜春雷, 王长涛 2008 中国专利 ZL200710177752.5 [2008-4-9]]

    [65]

    Zhao Z Y, Pu M B, Wang Y Q, Luo X G 2017 Opto-Elec. Eng. 44 129 (in Chinese) [赵泽宇, 蒲明博, 王彦钦, 罗先刚 2017 光电工程 44 129]

    [66]

    Pu M, Chen P, Wang Y, Zhao Z, Huang C, Wang C, Ma X, Luo X 2013 Appl. Phys. Lett. 102 131906

    [67]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [68]

    Zheng G, Mhlenbernd H, Kenney M, Li G, Zhang S 2015 Nat. Nanotechnol. 10 308

    [69]

    Zhang L, Zhou P, Chen H, Lu H, Xie J, Deng L 2015 J. Opt. 17 105105

    [70]

    Zhang Z, Luo J, Song M, Yu H 2015 Appl. Phys. Lett. 107 241904

    [71]

    Guo Y H, Pu M B, Ma X L, Li X, Luo X G 2017 Opto-Elec. Eng. 44 3 (in Chinese) [郭迎辉,蒲明博,马晓亮,李雄,罗先刚 2017 光电工程 44 3]

    [72]

    Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett. 111 187402

    [73]

    Guo Y, Wang Y, Pu M, Zhao Z, Wu X, Ma X, Wang C, Yan L, Luo X 2015 Sci. Rep. 5 8434

    [74]

    Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Feng Q, Luo X 2011 Opt. Express 19 17413

    [75]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230

    [76]

    Gustafsson M, Sjoberg D 2011 IEEE Trans. Antennas Propag. 59 2196

    [77]

    Lier E, Werner D H, Scarborough C P, Wu Q, Bossard J A 2011 Nat. Mater. 10 216

    [78]

    Chen P Y, Argyropoulos C, Al A 2013 Phys. Rev. Lett. 111 233001

    [79]

    Wang C, Gao P, Tao X, Zhao Z, Pu M, Chen P, Luo X 2013 Appl. Phys. Lett. 103 31911

    [80]

    Liu L, Gao P, Liu K, Kong W, Zhao Z, Pu M, Wang C, Luo X 2017 Mater. Horiz. 4 290

    [81]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [82]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [83]

    Zijlstra P, Chon J W M, Gu M 2009 Nature 459 410

    [84]

    Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C, Luo X 2015 Appl. Phys. Lett. 106 93110

    [85]

    Wang C T, Zhao Z Y, Gao P, Luo Y F, Luo X G 2016 Chin. Sci. Bull. 61 585 (in Chinese) [王长涛, 赵泽宇, 高平, 罗云飞, 罗先刚 2016 科学通报 61 585]

    [86]

    Zhao Z, Luo Y, Zhang W, Wang C, Gao P, Wang Y, Pu M, Yao N, Zhao C, Luo X 2015 Sci. Rep. 5 15320

    [87]

    Garcia Vidal F J, Martin Moreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [88]

    Grzegorczyk T M, Nikku M, Chen X, Wu B I, Kong J A 2005 IEEE Trans. Microw. Theory Tech. 53 1443

    [89]

    Verslegers L, Catrysse P B, Yu Z, White J S, Barnard E S, Brongersma M L, Fan S 2009 Nano Lett. 9 235

    [90]

    Goh X M, Lin L, Roberts A 2010 Opt. Express 18 11683

    [91]

    Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photon. Rev. 9 713

    [92]

    Ma X, Pu M, Li X, Huang C, Wang Y, Pan W, Zhao B, Cui J, Wang C, Zhao Z, Luo X 2015 Sci. Rep. 5 10365

    [93]

    Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X 2015 Sci. Rep. 5 15781

    [94]

    Li X, Ren H, Chen X, Liu J, Li Q, Li C, Xue G, Jia J, Cao L, Sahu A, Hu B, Wang Y, Jin G, Gu M 2015 Nat. Commun. 6 6984

    [95]

    Li X, Chen L, Li Y, Zhang X, Pu M, Zhao Z, Ma X, Wang Y, Hong M, Luo X 2016 Sci. Adv. 2 e1601102

    [96]

    Jin J, Pu M, Wang Y, Li X, Ma X, Luo J, Zhao Z, Gao P, Luo X 2017 Adv. Mater. Technol. 2 1600201

    [97]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310

    [98]

    Qu Y, Li Q, Gong H, Du K, Bai S, Zhao D, Ye H, Qiu M 2016 Adv. Opt. Mater. 4 480

    [99]

    Pu M, Hu C, Huang C, Wang C, Zhao Z, Wang Y, Luo X 2013 Opt. Express 21 992

    [100]

    Bossard J A, Lin L, Yun S, Liu L, Werner D H, Mayer T S 2014 ACS Nano 8 1517

    [101]

    Pu M, Feng Q, Wang M, Hu C, Huang C, Ma X, Zhao Z, Wang C, Luo X 2012 Opt. Express 20 2246

    [102]

    Li S, Duan Q, Li S, Yin Q, Lu W, Li L, Gu B, Hou B, Wen W 2015 Appl. Phys. Lett. 107 181112

    [103]

    Li W, Guler U, Kinsey N, Naik G V, Boltasseva A, Guan J, Shalaev V M, Kildishev A V 2014 Adv. Mater. 26 7959

    [104]

    Kohiyama A, Shimizu M, Yugami H 2016 Appl. Phys. Express 9 112302

    [105]

    Poddubny A, Iorsh I, Belov P, Kivshar Y 2013 Nat. Photon. 7 948

    [106]

    Hoffman A J, Alekseyev L, Howard S S, Franz K J, Wasserman D, Podolskiy V A, Narimanov E E, Sivco D L, Gmachl C 2007 Nat. Mater. 6 946

    [107]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264

    [108]

    Guler U, Boltasseva A, Shalaev V M 2014 Science 344 263

    [109]

    Wang D, Zhang L, Gu Y, Mehmood M Q, Gong Y, Srivastava A, Jian L, Venkatesan T, Qiu C W, Hong M 2015 Sci. Rep. 5 15020

  • [1] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [2] Yang Jiu-Long, Yuan Qing-Chen, Chen Run-Feng, Fang Han-Lin, Xiao Fa-Jun, Li Jun-Tao, Jiang Bi-Qiang, Zhao Jian-Lin, Gan Xue-Tao. Enhanced third-harmonic generation in silicon metasurface. Acta Physica Sinica, 2019, 68(21): 214207. doi: 10.7498/aps.68.20190789
    [3] Zhang Li-Wei, Zhao Yu-Huan, Wang Qin, Fang Kai, Li Wei-Bin, Qiao Wen-Tao. Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Physica Sinica, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [4] Huang Qian, Cao Li-Ran, Sun Jian, Zhang Xiao-Dan, Geng Wei-Dong, Xiong Shao-Zhen, Zhao Ying, Wang Jing. Research of surface enhanced Raman scattering caused by surface plasmon of Ag nano-structures. Acta Physica Sinica, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [5] Xu Jin, Li Rong-Qiang, Jiang Xiao-Ping, Wang Shen-Yun, Han Tian-Cheng. Ultra-wideband linear polarization converter based on square split ring. Acta Physica Sinica, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [6] Ma Xiao-Liang, Li Xiong, Guo Ying-Hui, Zhao Ze-Yu, Luo Xian-Gang. Meta-antenna: principle, device and application. Acta Physica Sinica, 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [7] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [8] Wang Mei-Ou, Xiao Qian, Jin Xia, Cao Yan-Yan, Xu Ya-Dong. Mid-infrared large-angle high-efficiency retroreflector based on subwavelenght metallic metagrating. Acta Physica Sinica, 2020, 69(1): 014211. doi: 10.7498/aps.69.20191144
    [9] Liu Fang, Li Yun-Xiang, Huang Yi-Dong. Nanolithography based on two-surface-plasmon-polariton-absorption. Acta Physica Sinica, 2017, 66(14): 148101. doi: 10.7498/aps.66.148101
    [10] Lin Dan-Ying, Qu Jun-Le. Recent progress on super-resolution imaging and correlative super-resolution microscopy. Acta Physica Sinica, 2017, 66(14): 148703. doi: 10.7498/aps.66.148703
    [11] Liu Hong-Ji, Liu Shuang-Long, Niu Han-Ben, Chen Dan-Ni, Liu Wei. A super-resolution infrared microscopy based on a doughnut pump beam. Acta Physica Sinica, 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [12] Chen Hua, Wang Li. Terahertz surface plasmon polariton couping on brass rods. Acta Physica Sinica, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [13] Quan Jia-Qi, Sheng Zong-Qiang, Wu Hong-Wei. Omnidirectional cloaking based on spoof surface plasmonic structure. Acta Physica Sinica, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [14] Gao Jian-Xia, Song Guo-Feng, Guo Bao-Shan, Gan Qiao-Qiang, Chen Liang-Hui. Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser. Acta Physica Sinica, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
    [15] Hua Lei, Song Guo-Feng, Guo Bao-Shan, Wang Wei-Min, Zhang Yu. Enhanced mid-infrared transmission in heavily doped n-type semiconductor film based on surface plasmons. Acta Physica Sinica, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [16] Wang Ling-Ling, Zhou Ren-Long, Chen Xiao-Shuang, Zeng Yong, Zhang Jian-Biao, Chen Hong-Bo, Wang Shao-Wei, Lu Wei, Li Hong-Jian, Xia Hui. Enhanced transmission through metal-film hole arrays and the surface plasmon resonance. Acta Physica Sinica, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [17] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [18] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [19] Cai Xin-Yang, Wang Xin-Wei, Zhang Yu-Ping, Wang Deng-Kui, Fang Xuan, Fang Dan, Wang Xiao-Hua, Wei Zhi-Peng. Reduction of surface plasma loss of indium tin oxide thin films by regulating substrate temperature. Acta Physica Sinica, 2018, 67(18): 180201. doi: 10.7498/aps.67.20180794
    [20] A Symmetrical Wedge-To-Wedge THz Hybrid SPPs Waveguide with Low Propagation Loss. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191666
  • Citation:
Metrics
  • Abstract views:  778
  • PDF Downloads:  821
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2017
  • Accepted Date:  19 May 2017
  • Published Online:  20 July 2017

Subwavelength electromagnetics below the diffraction limit

    Corresponding author: Luo Xian-Gang, lxg@ioe.ac.cn
  • 1. State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2013CBA01700) and the National Natural Science Foundation of China (Grant Nos. 61622508, 61575201).

Abstract: As a fundamental property of waves, diffraction plays an important role in many physical problems. However, diffraction makes waves in free space unable to be focused into an arbitrarily small space, setting a fundamental limit (the so-called diffraction limit) to applications such as imaging, lithography, optical recording and waveguiding, etc. Although the diffraction effect can be suppressed by increasing the refractive index of the surrounding medium in which the electromagnetic and optical waves propagate, such a technology is restricted by the fact that natural medium has a limited refractive index. In the past decades, surface plasmon polaritons (SPPs) have received special attention, owing to its ability to break through the diffraction limit by shrinking the effective wavelength in the form of collective excitation of free electrons. By combining the short wavelength property of SPPs and subwavelength structure in the two-dimensional space, many exotic optical effects, such as extraordinary light transmission and optical spin Hall effect have been discovered and utilized to realize functionalities that control the electromagnetic characteristics (amplitudes, phases, and polarizations etc.) on demand. Based on SPPs and artificial subwavelength structures, a new discipline called subwavelength electromagnetics emerged in recent years, thus opening a door for the next-generation integrated and miniaturized electromagnetic and optical devices and systems. In this paper, we review the theories and methods used to break through the diffraction limit by briefly introducing the history from the viewpoint of electromagnetic optics. It is shown that by constructing plasmonic metamaterials and metasurfaces on a subwavelength scale, one can realize the localized phase modulation and broadband dispersion engineering, which could surpass many limits of traditional theory and lay the basis of high-performance electromagnetic and optical functional devices. For instance, by constructing gradient phase on the metasurfaces, the traditional laws of reflection and refraction can be rewritten, while the electromagnetic and geometric shapes could be decoupled, both of which are essential for realizing the planar and conformal lenses and other functional devices. At the end of this paper, we discuss the future development trends of subwavelength electromagnetics. Based on the fact that different concepts, such as plasmonics, metamaterials and photonic crystals, are closely related to each other on a subwavelength scale, we think, the future advancements and even revolutions in subwavelength electromagnetics may rise from the in-depth intersection of physical, chemical and even biological areas. Additionally, we envision that the material genome initiative can be borrowed to promote the information exchange between different engineering and scientific teams and to enable the fast designing and implementing of subwavelength structured materials.

Reference (109)

Catalog

    /

    返回文章
    返回