Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Free-space optical communication based on hybrid optical mode array encoding

Xie Wan-Cai Huang Su-Juan Shao Wei Zhu Fu-Quan Chen Mu-Sheng

Free-space optical communication based on hybrid optical mode array encoding

Xie Wan-Cai, Huang Su-Juan, Shao Wei, Zhu Fu-Quan, Chen Mu-Sheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The generation, propagation and application of optical vortex have been hot research topics in recent years. Optical vortex carries orbital angular momentum (OAM) that potentially increases the capacity and the spectral efficiency of optical communication system as a new degree of freedom. The optical vortex can be used not only as information carrier for space-division multiplexing, but also for encoding/decoding. We present a novel free-space optical communication system based on hybrid optical mode array encoding/decoding. The array includes four modes that can easily be identified by image processing. The four modes are Gaussian beam, single optical vortex, and two different composite optical vortices. In this paper, the computer generated hologram (CGH) of the hybrid optical mode array is generated based on the object-oriented conjugate-symmetric extension Fourier holography. When the CGH is loaded onto the electronic addressing reflection-type spatial light modulator (SLM), a single light beam illuminates the SLM, and the desired hybrid optical mode array is generated. In the experiment, a m 32 pixel32 pixel Lena gray image is transferred. At the transmitter, the Lena gray image is scanned line by line. The gray value (0-255) of each pixel with 8-bit information is extracted from the image and converted into a 22 hybrid optical mode array, which is encoded into the CGH. Hence, the m 32 pixel32 pixel Lena gray image is corresponding to a sequence with 1024 CGHs. By switching the CGHs loaded onto the SLM, the Lena gray image is transmitted in the form of the hybrid optical mode array. At the receiver, each hybrid optical mode array is decoded to a pixel value. To distinguish different modes conveniently, two cross lines are set at the center of each mode. By counting the peaks of two intensity distribution lines, the modes can easily be identified. We demonstrate the image reproduction of Lena with zero bit error rate (BER). The experimental result shows the favorable performance of the free-space optical communication link based on hybrid optical mode array encoding/decoding. Compared to that of the traditional single-vortex encoding communication system, the information capacity of our system with 22 hybrid optical mode array increases by four times. In addition, the presented experimental system is feasible and has strong expansibility. The information capacity can increase by 16 times with a 44 hybrid optical mode array based on the same experimental setup. Therefore, the presented free-space optical communication system using hybrid optical mode array encoding/decoding has great significance for improving the capacity of free-space optical communication system.
      Corresponding author: Huang Su-Juan, sjhuang@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61475098) and the Shanghai Science and Technology Commission Research Plan, China (Grant No. 14440500100).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [2]

    Heckenberg N R, McDuff R, Smith C P, Rubinsztein-Dunlop H, Wegener M J 1992 Opt. Quant. Electron. 24 S951

    [3]

    Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁攀峰, 蒲继雄 2011 物理学报 60 094204]

    [4]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161

    [5]

    He Y L, Liu Z X, Liu Y C, Zhou J X, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 5506

    [6]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488

    [7]

    Fazal I M, Ahmed N, Wang J, Yang J Y, Yan Y, Shamee B, Huang H, Yue Y, Dolinar S, Tur M, Willner A E 2012 Opt. Lett. 37 4753

    [8]

    Huang H, Xie G D, Yan Y, Ahmed N, Ren Y X, Yue Y, Rogawski D, Willner M J, Erkmen B I, Birnbaum K M, Dolinar S J, Lavery M P J, Padgett M J, Tur M, Willner A E 2014 Opt. Lett. 39 197

    [9]

    Zhu Y X, Zou K H, Zheng Z N, Zhang F 2016 Opt. Express 24 3967

    [10]

    Li S H, Wang J 2017 Sci. Rep. 7 43233

    [11]

    Wang J, Li S, Luo M, Liu J, Zhu L, Li C, Xie D Q, Yang Q, Yu S H, Sun J Q, Zhang X L, Shieh W, Willner A E 2014 The European Conference on Optical Communication Cannes, France, September 21-25, Mo.4.5.1

    [12]

    Ramachandran S, Kristensen P 2013 Nanophotonics 2 455

    [13]

    Wang A D, Zhu L, Chen S, Du C, Mo Q, Wang J 2016 Opt. Express 24 11716

    [14]

    Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448

    [15]

    L H, Ke X Z 2009 Acta Opt. Sin. 29 331 (in Chinese) [吕宏, 柯熙政 2009 光学学报 29 331]

    [16]

    Krenn M, Fickler R, Fink M, Handsteiner J, Malik M, Scheidl T, Ursin R, Zeilinger A 2014 New. J. Phys. 16 113028

    [17]

    Zhao Y, Wang J 2015 Opt. Lett. 40 4843

    [18]

    Brning R, Ndagano B, McLaren M, Schroter S, Kobelke J, Duparre M, Forbes A 2016 J. Opt. 18 03LT01

    [19]

    Zhu L, Liu J, Mo Q, Cheng D, Wang J 2016 Opt. Express 24 16934

    [20]

    Xin J T, Gao C Q, Li C, Wang Z 2012 Acta Phys. Sin. 61 174202 (in Chinese) [辛璟焘, 高春清, 李辰, 王铮 2012 物理学报 61 174202]

    [21]

    Fu D Z, Jia J L, Zhou Y N, Chen D X, Gao H, Li F L, Zhang P 2015 Acta Phys. Sin. 64 130704 (in Chinese) [付栋之, 贾俊亮, 周英男, 陈东旭, 高宏, 李福利, 张沛 2015 物理学报 64 130704]

    [22]

    Li S, Xu Z, Liu J, Zhou N, Zhao Y F, Zhu L, Xia F, Wang J 2015 Conference on Lasers and Electro-Optics San Jose, USA, May 10-15, JTh2A.67

    [23]

    Huang S J, Wang S Z, Yu Y J 2009 Acta Phys. Sin. 58 952 (in Chinese) [黄素娟, 王朔中, 于瀛洁 2009 物理学报 58 952]

    [24]

    Huang S J, He C, Wang T W 2014 J. Opt. 16 035402

    [25]

    Huang S J, Gu T T, Miao Z, He C, Wang T Y 2014 Acta Phys. Sin. 63 244103 (in Chinese) [黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云 2014 物理学报 63 244103]

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [2]

    Heckenberg N R, McDuff R, Smith C P, Rubinsztein-Dunlop H, Wegener M J 1992 Opt. Quant. Electron. 24 S951

    [3]

    Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁攀峰, 蒲继雄 2011 物理学报 60 094204]

    [4]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161

    [5]

    He Y L, Liu Z X, Liu Y C, Zhou J X, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 5506

    [6]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488

    [7]

    Fazal I M, Ahmed N, Wang J, Yang J Y, Yan Y, Shamee B, Huang H, Yue Y, Dolinar S, Tur M, Willner A E 2012 Opt. Lett. 37 4753

    [8]

    Huang H, Xie G D, Yan Y, Ahmed N, Ren Y X, Yue Y, Rogawski D, Willner M J, Erkmen B I, Birnbaum K M, Dolinar S J, Lavery M P J, Padgett M J, Tur M, Willner A E 2014 Opt. Lett. 39 197

    [9]

    Zhu Y X, Zou K H, Zheng Z N, Zhang F 2016 Opt. Express 24 3967

    [10]

    Li S H, Wang J 2017 Sci. Rep. 7 43233

    [11]

    Wang J, Li S, Luo M, Liu J, Zhu L, Li C, Xie D Q, Yang Q, Yu S H, Sun J Q, Zhang X L, Shieh W, Willner A E 2014 The European Conference on Optical Communication Cannes, France, September 21-25, Mo.4.5.1

    [12]

    Ramachandran S, Kristensen P 2013 Nanophotonics 2 455

    [13]

    Wang A D, Zhu L, Chen S, Du C, Mo Q, Wang J 2016 Opt. Express 24 11716

    [14]

    Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448

    [15]

    L H, Ke X Z 2009 Acta Opt. Sin. 29 331 (in Chinese) [吕宏, 柯熙政 2009 光学学报 29 331]

    [16]

    Krenn M, Fickler R, Fink M, Handsteiner J, Malik M, Scheidl T, Ursin R, Zeilinger A 2014 New. J. Phys. 16 113028

    [17]

    Zhao Y, Wang J 2015 Opt. Lett. 40 4843

    [18]

    Brning R, Ndagano B, McLaren M, Schroter S, Kobelke J, Duparre M, Forbes A 2016 J. Opt. 18 03LT01

    [19]

    Zhu L, Liu J, Mo Q, Cheng D, Wang J 2016 Opt. Express 24 16934

    [20]

    Xin J T, Gao C Q, Li C, Wang Z 2012 Acta Phys. Sin. 61 174202 (in Chinese) [辛璟焘, 高春清, 李辰, 王铮 2012 物理学报 61 174202]

    [21]

    Fu D Z, Jia J L, Zhou Y N, Chen D X, Gao H, Li F L, Zhang P 2015 Acta Phys. Sin. 64 130704 (in Chinese) [付栋之, 贾俊亮, 周英男, 陈东旭, 高宏, 李福利, 张沛 2015 物理学报 64 130704]

    [22]

    Li S, Xu Z, Liu J, Zhou N, Zhao Y F, Zhu L, Xia F, Wang J 2015 Conference on Lasers and Electro-Optics San Jose, USA, May 10-15, JTh2A.67

    [23]

    Huang S J, Wang S Z, Yu Y J 2009 Acta Phys. Sin. 58 952 (in Chinese) [黄素娟, 王朔中, 于瀛洁 2009 物理学报 58 952]

    [24]

    Huang S J, He C, Wang T W 2014 J. Opt. 16 035402

    [25]

    Huang S J, Gu T T, Miao Z, He C, Wang T Y 2014 Acta Phys. Sin. 63 244103 (in Chinese) [黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云 2014 物理学报 63 244103]

  • [1] Huang Su-Juan, Gu Ting-Ting, Miao Zhuang, He Chao, Wang Ting-Yun. Experimental study on multiple-ring vortex beams. Acta Physica Sinica, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [2] Zhang Hao, Chang Chen-Liang, Xia Jun. Detection optical vortex topological charges with monocyclic multistage intensity distribution. Acta Physica Sinica, 2016, 65(6): 064101. doi: 10.7498/aps.65.064101
    [3] Xi Si-Xing, Wang Xiao-Lei, Huang Shuai, Chang Sheng-Jiang, Lin Lie. Generation of arbitrary vector beam based on optical holography. Acta Physica Sinica, 2015, 64(12): 124202. doi: 10.7498/aps.64.124202
    [4] Bai Yun-He, Zang Rui-Huan, Wang Pan, Rong Teng-Da, Ma Feng-Ying, Du Yan-Li, Duan Zhi-Yong, Gong Qiao-Xia. Single-shot incoherent digital holography based on spatial light modulator. Acta Physica Sinica, 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [5] Zhou Qiao-Qiao, Xu Shu-Wu, Lu Jun-Fa, Zhou Qi, Ji Xian-Ming, Yin Jian-Ping. Generation of the controllable triple-well optical trap by liquid-crystal spatial light modulator. Acta Physica Sinica, 2013, 62(15): 153701. doi: 10.7498/aps.62.153701
    [6] Cui Can, Wang Zhi, Li Qiang, Wu Chong-Qing, Wang Jian. Modulation of orbital angular momentum in long periodchirally-coupled-cores fiber. Acta Physica Sinica, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [7] Chen Wei, Gao Jun, Zhang Guang, Cao Xiang-Yu, Yang Huan-Huan, Zheng Yue-Jun. A wideband coding reflective metasurface with multiple functionalities. Acta Physica Sinica, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [8] Gan Tian, Feng Shao-Tong, Nie Shou-Ping, Zhu Zhu-Qing. Image fusion algorithm based on block-DCT in wavelet domain. Acta Physica Sinica, 2011, 60(11): 114205. doi: 10.7498/aps.60.114205
    [9] Xu Shu-Wu, Zhou Qiao-Qiao, Gu Song-Bo, Ji Xian-Ming, Yin Jian-Ping. Generation of the three-dimensional array of optical trap by spatial light modulator. Acta Physica Sinica, 2012, 61(22): 223702. doi: 10.7498/aps.61.223702
    [10] Tang Ming-Yu, Wu Meng-Ting, Zang Rui-Huan, Rong Teng-Da, Du Yan-Li, Ma Feng-Ying, Duan Zhi-Yong, Gong Qiao-Xia. Fresnel incoherent digital holography with large field-of-view. Acta Physica Sinica, 2019, 68(10): 104204. doi: 10.7498/aps.68.20182216
    [11] Gu Song-Bo, Xu Shu-Wu, Lu Jun-Fa, Ji Xian-Ming, Yin Jian-Ping. Generation of the array of optical traps by liquid crystal spatial light modulator. Acta Physica Sinica, 2012, 61(15): 153701. doi: 10.7498/aps.61.153701
    [12] Xin Jing-Tao, Gao Chun-Qing, Li Chen, Wang Zheng. Propagation of helical beams through amplitude diffractive optical elements and the measurement of topological charge. Acta Physica Sinica, 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [13] Yang Huan-Huan, Yang Fan, Xu Shen-Heng, Li Mao-Kun, Cao Xiang-Yu, Gao Jun. Design and verification of an electronically controllable ultrathin coding periodic element in Ku band. Acta Physica Sinica, 2016, 65(5): 054102. doi: 10.7498/aps.65.054102
    [14] Fang Gui-Juan, Sun Shun-Hong, Pu Ji-Xiong. Experimental study on fractional double-vortex beams. Acta Physica Sinica, 2012, 61(6): 064210. doi: 10.7498/aps.61.064210
    [15] Ge Ai-Ming, Sui Zhan, Xu Ke-Shu. Characteristics of phase-only modulation using a reflective liquid crystal on si licon device. Acta Physica Sinica, 2003, 52(10): 2481-2485. doi: 10.7498/aps.52.2481
    [16] Qi Shu-Xia, Liu Sheng, Li Peng, Han Lei, Cheng Hua-Chao, Wu Dong-Jing, Zhao Jian-Lin. A method of efficiently generating arbitrary vector beams. Acta Physica Sinica, 2019, 68(2): 024201. doi: 10.7498/aps.68.20181816
    [17] Zhao Juan-Ying, Deng Dong-Mei, Zhang Ze, Liu Jing-Jiao, Jiang Dong-Sheng. Theoretical and experimental study on self-accelerating Bessel-like Hermite-Gaussian beams. Acta Physica Sinica, 2014, 63(4): 044204. doi: 10.7498/aps.63.044204
    [18] Qi Xiao-Qing, Gao Chun-Qing. Experimental study of detecting orbital angular momentumstates of spiral phase beams. Acta Physica Sinica, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [19] Xia Jun, Chang Chen-Liang, Lei Wei. Holographic display based on liquid crystal spatial light modulator. Acta Physica Sinica, 2015, 64(12): 124213. doi: 10.7498/aps.64.124213
    [20] CAI LI-ZHONG, ZHANG YOU-WEN, ZHU WAI-GUANG. SPACE FREQUENCY BANDWIDTH OF RAINBOW HOLOGRAM AND ORDINARY HOLOGRAM. Acta Physica Sinica, 1982, 31(4): 427-436. doi: 10.7498/aps.31.427
  • Citation:
Metrics
  • Abstract views:  753
  • PDF Downloads:  140
  • Cited By: 0
Publishing process
  • Received Date:  09 January 2017
  • Accepted Date:  06 April 2017
  • Published Online:  05 July 2017

Free-space optical communication based on hybrid optical mode array encoding

    Corresponding author: Huang Su-Juan, sjhuang@shu.edu.cn
  • 1. Key Laboratory of Special Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61475098) and the Shanghai Science and Technology Commission Research Plan, China (Grant No. 14440500100).

Abstract: The generation, propagation and application of optical vortex have been hot research topics in recent years. Optical vortex carries orbital angular momentum (OAM) that potentially increases the capacity and the spectral efficiency of optical communication system as a new degree of freedom. The optical vortex can be used not only as information carrier for space-division multiplexing, but also for encoding/decoding. We present a novel free-space optical communication system based on hybrid optical mode array encoding/decoding. The array includes four modes that can easily be identified by image processing. The four modes are Gaussian beam, single optical vortex, and two different composite optical vortices. In this paper, the computer generated hologram (CGH) of the hybrid optical mode array is generated based on the object-oriented conjugate-symmetric extension Fourier holography. When the CGH is loaded onto the electronic addressing reflection-type spatial light modulator (SLM), a single light beam illuminates the SLM, and the desired hybrid optical mode array is generated. In the experiment, a m 32 pixel32 pixel Lena gray image is transferred. At the transmitter, the Lena gray image is scanned line by line. The gray value (0-255) of each pixel with 8-bit information is extracted from the image and converted into a 22 hybrid optical mode array, which is encoded into the CGH. Hence, the m 32 pixel32 pixel Lena gray image is corresponding to a sequence with 1024 CGHs. By switching the CGHs loaded onto the SLM, the Lena gray image is transmitted in the form of the hybrid optical mode array. At the receiver, each hybrid optical mode array is decoded to a pixel value. To distinguish different modes conveniently, two cross lines are set at the center of each mode. By counting the peaks of two intensity distribution lines, the modes can easily be identified. We demonstrate the image reproduction of Lena with zero bit error rate (BER). The experimental result shows the favorable performance of the free-space optical communication link based on hybrid optical mode array encoding/decoding. Compared to that of the traditional single-vortex encoding communication system, the information capacity of our system with 22 hybrid optical mode array increases by four times. In addition, the presented experimental system is feasible and has strong expansibility. The information capacity can increase by 16 times with a 44 hybrid optical mode array based on the same experimental setup. Therefore, the presented free-space optical communication system using hybrid optical mode array encoding/decoding has great significance for improving the capacity of free-space optical communication system.

Reference (25)

Catalog

    /

    返回文章
    返回