Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress of nanostructured metallic glasses

Feng Tao Horst Hahn Herbert Gleiter

Progress of nanostructured metallic glasses

Feng Tao, Horst Hahn, Herbert Gleiter
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Today's technologies are primarily based on crystalline materials (metals, semiconductors, etc.), for their properties can be controlled by changing their chemical and/or defect microstructures. This is not possible in today's glasses. The new features of nanostructured glasses consisting of nanometer-sized glassy regions connected by interfaces are that their properties may be controlled by changing their chemical and/or defect microstructures, and that their interfaces each have a new kind of non-crystalline structure. In this paper we mainly discuss the research progress of nanostructured metallic glasses, including their preparation methods, structure characteristics and new properties. By utilizing these new features, an era of new technologies based on non-crystalline materials (a “glass age”) can be opened up.
      Corresponding author: Feng Tao, tao.feng@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51571119, 51520105001), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK 2014021775), the Fundamental Research Funds for the Central Universities, China (Grant No. 30916011106), the “Distinguished Professor” Plan of Jiangsu Province, China, the “Qinglan” Project, and the Natural Science Foundation of Germany (DFG).
    [1]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [2]

    Kelly A, Nicholson R B 1963 Prog. Mater. Sci. 10 1

    [3]

    Gleiter H, Schimmel T, Hahn H 2014 Nano Today 9 17

    [4]

    Gleiter H 2016 Small 12 2225

    [5]

    Gleiter H 2008 Acta Mater. 56 5875

    [6]

    Jing J, Kramer A, Birringer R, Gleiter H, Gonser U 1989 J. Non-Cryst. Solids 113 167

    [7]

    Gleiter H 1991 J. Appl. Crystallogr. 24 79

    [8]

    Fang J X, Vainio U, Puff W, Wuerschum R, Wang X L, Wang D, Ghafari M, Jiang F, Sun J, Hahn H, Gleiter H 2012 Nano Lett. 12 458

    [9]

    Weissmueller J, Birringer R, Gleiter H 1993 Key Eng. Mater. 77 161

    [10]

    Chen N, Frank R, Asao N, Louzguine-Luzgin D V, Sharma P, Wang J Q, Xie G Q, Ishikawa Y, Hatakeyama N, Lin Y C, Esashi M, Yamamoto Y, Inoue A 2011 Acta Mater. 59 6433

    [11]

    Ivanisenko Y, Lojkowski W, Valiev R Z, Fecht H J 2003 Acta Mater. 51 5555

    [12]

    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon T G 1996 Scripta Mater. 35 143

    [13]

    Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong R G 1998 Scripta Mater. 39 1221

    [14]

    Huang J Y, Zhu Y T, Jiang H, Lowe T C 2001 Acta Mater. 49 1497

    [15]

    Valiev R Z, Korznikov A V, Mulyukov R R 1993 Mater. Sci. Engineer. A 168 141

    [16]

    Valiev R 2004 Nature Mater. 3 511

    [17]

    Estrin Y, Vinogradov A 2013 Acta Mater. 61 782

    [18]

    Horita Z, Furukawa M, Nemoto M, Barnes A J, Langdon T G 2000 Acta Mater. 48 3633

    [19]

    Liu J W, Cao Q P, Chen L Y, Wang X D, Jiang J Z 2010 Acta Mater. 58 4827

    [20]

    Xu Y, Shi B, Ma Z, Li J 2015 Mater. Sci. Eng. A 623 145

    [21]

    Ritter Y, Sopu D, Gleiter H, Albe K 2011 Acta Mater. 59 6588

    [22]

    Sopu D, Albe K, Ritter Y, Gleiter H 2009 Appl. Phys. Lett. 94 191911

    [23]

    Witte R, Feng T, Fang J X, Fischer A, Ghafari M, Brand R A, Wang D, Hahn H, Gleiter H 2013 Appl. Phys. Lett. 103 073106

    [24]

    Wu schum R, Badura-Gergen K, Ku merle E A, Grupp C, Schaefer H E 1996 Phys. Rev. B 54 849

    [25]

    Campillo Robles J M, Ogando E, Plazaola F 2007 J. Phys.: Condens. Matter 19 176222

    [26]

    Wu schum R, Greiner W, Valiev R Z, Rapp M, Sigle W, Schneeweiss O, Schaefer H E 1991 Scr. Metall. Mater. 25 2451

    [27]

    Nagel C, Ratzke K, Schmidtke E, Wolff J, Geyer U, Faupel F 1998 Phys. Rev. B 57 10224

    [28]

    Stoessner A, Ghafari M, Kilimanteov A, Gleiter H, Sakura Y, Itou M, Kohara S, Hahn H, Kamali S 2014 J. Appl. Phys. 116 134305

    [29]

    Turek I, Hafner J 1992 Phys. Rev. B 46 247

    [30]

    Becker C, Hafner J 1994 Phys. Rev. B 50 3913

    [31]

    Zukoeski E, Cooper M J, Timms D N, Armstrong R, Itoh F, Sakurai H, Tanaka Y, Ito M, Kawata H, Bateson R 1994 J. Phys. Soc. Jpn. 63 3838

    [32]

    Sakurai Y, Tanak Y, Ohata T, Watanabe Y, Nanao S, Ushigami Y, Iwazumi T, Kawata H, Shiotani N 1994 J. Phys.: Condens. Matter 6 9469

    [33]

    Sakai N 1992 Mater. Sci. Forum 105-110 431

    [34]

    Franke O, Leisen D, Gleiter H, Hahn H 2014 J. Mater. Res. 29 1210

    [35]

    Ghafari M, Kohara S, Hahn H, Gleiter H, Feng T, Witte R, Kamali S 2012 Appl. Phys. Lett. 100 133111

    [36]

    Wang J Q, Chen N, Liu P, Wang Z, Louzguine-Luzgin D V, Chen M W, Pererepezko J H 2014 Acta Mater. 79 30

    [37]

    Getzlaff M 2008 Fundamentals of Magnetism (Berlin: Springer)

    [38]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [39]

    Vaidyanathan R, Dao M, Ravichandran G, Suresh S 2001 Acta Mater. 49 3781

    [40]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501

    [41]

    Sha Z D, Branicio P S, Pei Q X, Liu Z S, Lee H P, Tay T E, Wang T J 2015 Nanoscale 7 17404

    [42]

    Adibi S, Sha Z D, Branicio P S, Joshi S P, Liu Z S, Zhang Y W 2013 Appl. Phys. Lett. 103 211905

    [43]

    Singha I, Narasimhana R, Zhang Y W 2014 Philosoph. Magazine Lett. 94 678

    [44]

    Yao L, Jin Z H 2015 Scripta Mater. 106 46

    [45]

    Adibi S, Branicio P S, Joshi S P 2015 Sci. Reports 5 15611

    [46]

    Wang X L, Jiang F, Hahn H, Li J, Gleiter H, Sun J, Fang J X 2015 Scripta Mater. 98 40

    [47]

    Yu H J, Wang J Q, Shi X T, Louzguine-Luzgin D V, Wu H K, Perepezko J H 2013 Adv. Funct. Mater. 23 4793

    [48]

    Qiu C L, Chen Q, Liu L, Chan K C, Zhou J X, Chen P P, Zhang S M 2006 Scripta Mater. 55 605

    [49]

    Liu L, Liu Z, Chan K C, Luo H H, Cai Q Z, Zhang S M 2008 Scripta Mater. 58 231

    [50]

    Calin M, Gebert A, Ghinea A C, Gostin P F, Abdi S, Mickel C, Eckert J 2013 Mater. Sci. Engineer. C: Mater. Biol. Appl. 33 875

    [51]

    Price R L, Waid M C, Haberstroh K M, Webster T J 2003 Biomaterials 24 1877

    [52]

    Shi X T, Chen C, Zhou J, Yu H, Li L, Wu H 2012 Adv. Funct. Mater. 22 3799

    [53]

    Huang J, Graeter S V, Corbellini F, Rinck S, Bock E, Kemkemer R, Kessler H, Ding J, Spatz J P 2009 Nano Lett. 9 1111

    [54]

    Chen N, Shi X, Witte R, Nakayama K S, Okamura A, Louzguine-Luzgin D V, Wu H, Takeuchi A, Hahn H, Esashi M, Gleiter H, Inoue A 2013 J. Mater. Chem. B 1 2568

    [55]

    Gleiter H 2013 Beilstein J. Nanotechnol. 4 517

    [56]

    Nagendran S 2004 Chem. Rev. 104 5847

    [57]

    Murugavel R, Walawalkar M G, Dan M, Roesky M W, Rao C N R 2004 Acc. Chem. Res. 37 763

    [58]

    Chen N, Wang D, Feng T, Kruk R, Yao K F, Louzguine-Luzgin D V, Hahn H, Gleiter H 2015 Nanoscale 7 6607

  • [1]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [2]

    Kelly A, Nicholson R B 1963 Prog. Mater. Sci. 10 1

    [3]

    Gleiter H, Schimmel T, Hahn H 2014 Nano Today 9 17

    [4]

    Gleiter H 2016 Small 12 2225

    [5]

    Gleiter H 2008 Acta Mater. 56 5875

    [6]

    Jing J, Kramer A, Birringer R, Gleiter H, Gonser U 1989 J. Non-Cryst. Solids 113 167

    [7]

    Gleiter H 1991 J. Appl. Crystallogr. 24 79

    [8]

    Fang J X, Vainio U, Puff W, Wuerschum R, Wang X L, Wang D, Ghafari M, Jiang F, Sun J, Hahn H, Gleiter H 2012 Nano Lett. 12 458

    [9]

    Weissmueller J, Birringer R, Gleiter H 1993 Key Eng. Mater. 77 161

    [10]

    Chen N, Frank R, Asao N, Louzguine-Luzgin D V, Sharma P, Wang J Q, Xie G Q, Ishikawa Y, Hatakeyama N, Lin Y C, Esashi M, Yamamoto Y, Inoue A 2011 Acta Mater. 59 6433

    [11]

    Ivanisenko Y, Lojkowski W, Valiev R Z, Fecht H J 2003 Acta Mater. 51 5555

    [12]

    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon T G 1996 Scripta Mater. 35 143

    [13]

    Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong R G 1998 Scripta Mater. 39 1221

    [14]

    Huang J Y, Zhu Y T, Jiang H, Lowe T C 2001 Acta Mater. 49 1497

    [15]

    Valiev R Z, Korznikov A V, Mulyukov R R 1993 Mater. Sci. Engineer. A 168 141

    [16]

    Valiev R 2004 Nature Mater. 3 511

    [17]

    Estrin Y, Vinogradov A 2013 Acta Mater. 61 782

    [18]

    Horita Z, Furukawa M, Nemoto M, Barnes A J, Langdon T G 2000 Acta Mater. 48 3633

    [19]

    Liu J W, Cao Q P, Chen L Y, Wang X D, Jiang J Z 2010 Acta Mater. 58 4827

    [20]

    Xu Y, Shi B, Ma Z, Li J 2015 Mater. Sci. Eng. A 623 145

    [21]

    Ritter Y, Sopu D, Gleiter H, Albe K 2011 Acta Mater. 59 6588

    [22]

    Sopu D, Albe K, Ritter Y, Gleiter H 2009 Appl. Phys. Lett. 94 191911

    [23]

    Witte R, Feng T, Fang J X, Fischer A, Ghafari M, Brand R A, Wang D, Hahn H, Gleiter H 2013 Appl. Phys. Lett. 103 073106

    [24]

    Wu schum R, Badura-Gergen K, Ku merle E A, Grupp C, Schaefer H E 1996 Phys. Rev. B 54 849

    [25]

    Campillo Robles J M, Ogando E, Plazaola F 2007 J. Phys.: Condens. Matter 19 176222

    [26]

    Wu schum R, Greiner W, Valiev R Z, Rapp M, Sigle W, Schneeweiss O, Schaefer H E 1991 Scr. Metall. Mater. 25 2451

    [27]

    Nagel C, Ratzke K, Schmidtke E, Wolff J, Geyer U, Faupel F 1998 Phys. Rev. B 57 10224

    [28]

    Stoessner A, Ghafari M, Kilimanteov A, Gleiter H, Sakura Y, Itou M, Kohara S, Hahn H, Kamali S 2014 J. Appl. Phys. 116 134305

    [29]

    Turek I, Hafner J 1992 Phys. Rev. B 46 247

    [30]

    Becker C, Hafner J 1994 Phys. Rev. B 50 3913

    [31]

    Zukoeski E, Cooper M J, Timms D N, Armstrong R, Itoh F, Sakurai H, Tanaka Y, Ito M, Kawata H, Bateson R 1994 J. Phys. Soc. Jpn. 63 3838

    [32]

    Sakurai Y, Tanak Y, Ohata T, Watanabe Y, Nanao S, Ushigami Y, Iwazumi T, Kawata H, Shiotani N 1994 J. Phys.: Condens. Matter 6 9469

    [33]

    Sakai N 1992 Mater. Sci. Forum 105-110 431

    [34]

    Franke O, Leisen D, Gleiter H, Hahn H 2014 J. Mater. Res. 29 1210

    [35]

    Ghafari M, Kohara S, Hahn H, Gleiter H, Feng T, Witte R, Kamali S 2012 Appl. Phys. Lett. 100 133111

    [36]

    Wang J Q, Chen N, Liu P, Wang Z, Louzguine-Luzgin D V, Chen M W, Pererepezko J H 2014 Acta Mater. 79 30

    [37]

    Getzlaff M 2008 Fundamentals of Magnetism (Berlin: Springer)

    [38]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [39]

    Vaidyanathan R, Dao M, Ravichandran G, Suresh S 2001 Acta Mater. 49 3781

    [40]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501

    [41]

    Sha Z D, Branicio P S, Pei Q X, Liu Z S, Lee H P, Tay T E, Wang T J 2015 Nanoscale 7 17404

    [42]

    Adibi S, Sha Z D, Branicio P S, Joshi S P, Liu Z S, Zhang Y W 2013 Appl. Phys. Lett. 103 211905

    [43]

    Singha I, Narasimhana R, Zhang Y W 2014 Philosoph. Magazine Lett. 94 678

    [44]

    Yao L, Jin Z H 2015 Scripta Mater. 106 46

    [45]

    Adibi S, Branicio P S, Joshi S P 2015 Sci. Reports 5 15611

    [46]

    Wang X L, Jiang F, Hahn H, Li J, Gleiter H, Sun J, Fang J X 2015 Scripta Mater. 98 40

    [47]

    Yu H J, Wang J Q, Shi X T, Louzguine-Luzgin D V, Wu H K, Perepezko J H 2013 Adv. Funct. Mater. 23 4793

    [48]

    Qiu C L, Chen Q, Liu L, Chan K C, Zhou J X, Chen P P, Zhang S M 2006 Scripta Mater. 55 605

    [49]

    Liu L, Liu Z, Chan K C, Luo H H, Cai Q Z, Zhang S M 2008 Scripta Mater. 58 231

    [50]

    Calin M, Gebert A, Ghinea A C, Gostin P F, Abdi S, Mickel C, Eckert J 2013 Mater. Sci. Engineer. C: Mater. Biol. Appl. 33 875

    [51]

    Price R L, Waid M C, Haberstroh K M, Webster T J 2003 Biomaterials 24 1877

    [52]

    Shi X T, Chen C, Zhou J, Yu H, Li L, Wu H 2012 Adv. Funct. Mater. 22 3799

    [53]

    Huang J, Graeter S V, Corbellini F, Rinck S, Bock E, Kemkemer R, Kessler H, Ding J, Spatz J P 2009 Nano Lett. 9 1111

    [54]

    Chen N, Shi X, Witte R, Nakayama K S, Okamura A, Louzguine-Luzgin D V, Wu H, Takeuchi A, Hahn H, Esashi M, Gleiter H, Inoue A 2013 J. Mater. Chem. B 1 2568

    [55]

    Gleiter H 2013 Beilstein J. Nanotechnol. 4 517

    [56]

    Nagendran S 2004 Chem. Rev. 104 5847

    [57]

    Murugavel R, Walawalkar M G, Dan M, Roesky M W, Rao C N R 2004 Acc. Chem. Res. 37 763

    [58]

    Chen N, Wang D, Feng T, Kruk R, Yao K F, Louzguine-Luzgin D V, Hahn H, Gleiter H 2015 Nanoscale 7 6607

  • [1] Liu Bo-Fei, Bai Li-Sha, Zhang De-Kun, Wei Chang-Chun, Sun Jian, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan. Effect of a-Si:H interface buffer layer on the performance of hydrogenated amorphous silicon germanium thin film solar cell. Acta Physica Sinica, 2013, 62(24): 248801. doi: 10.7498/aps.62.248801
    [2] Wang Fei, Liu Wang, Deng Ai-Hong, Zhu Jing-Jun, An Zhu, Wang Yuan. Interface effects on helium retention properties of ZrN/TaN nano-multilayers . Acta Physica Sinica, 2013, 62(18): 186801. doi: 10.7498/aps.62.186801
    [3] Sun Xing, Mo Guang, Zhao Lin-Zhi, Dai Lan-Hong, Wu Zhong-Hua, Jiang Min-Qiang. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering. Acta Physica Sinica, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [4] Shi Hui-Gang, Fu Jun-Li, Xue De-Sheng. Magnetic properties of amorphous Fe89.7P10.3 alloy nanowire arrays. Acta Physica Sinica, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
    [5] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [6] Yao Ke-Fu, Shi Ling-Xiang, Chen Shuang-Qin, Shao Yang, Chen Na, Jia Ji-Li. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys. Acta Physica Sinica, 2018, 67(1): 016101. doi: 10.7498/aps.67.20171473
    [7] Lu Cao-Wei, Lu Zhi-Chao, Sun Ke, Li De-Ren, Zhou Shao-Xiong. Magnetic properties of amorphous Fe74Al4Sn2P10C2B4Si4 powder prepared by water atomization and powder core made from it. Acta Physica Sinica, 2006, 55(5): 2553-2556. doi: 10.7498/aps.55.2553
    [8] Wang Jun-Guo, Liu Fu-Sheng, Li Yong-Hong, Zhang Ming-Jian, Zhang Ning-Chao, Xue Xue-Dong. The structural transition of water at quartz/water interfaces under shock compression in phase region of liquid. Acta Physica Sinica, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [9] Cai Wei, Wu Xiang, Qu Feng-Yu. Tailoring the morphology and wettability of ZnO one-dimensional nanostructures. Acta Physica Sinica, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [10] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [11] Liu Gui-Li, Yang Zhong-Hua, Fang Ge-Liang. Electronic theory study of interface characteristic of magnesium/carbon nanotube with nickel. Acta Physica Sinica, 2009, 58(5): 3364-3369. doi: 10.7498/aps.58.3364
    [12] Zhou Xiao-Feng, Tao Shu-Fen, Liu Zuo-Quan, Kan Jia-De, Li Hai-Yang. . Acta Physica Sinica, 2002, 51(2): 322-325. doi: 10.7498/aps.51.322
    [13] Zhang Hui-Zhen, Li Jin-Tao, Lü Wen-Gang, Yang Hai-Fang, Tang Cheng-Chun, Gu Chang-Zhi, Li Jun-Jie. Fabrication of graphene nanostructure and bandgap tuning. Acta Physica Sinica, 2017, 66(21): 217301. doi: 10.7498/aps.66.217301
    [14] Lao Yan-Feng, Wu Hui-Zhen. Study on infrared absorption of interfaces in direct wafer bonded InP-GaAs structures. Acta Physica Sinica, 2005, 54(9): 4334-4339. doi: 10.7498/aps.54.4334
    [15] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [16] Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [17] Wu Yan-Qing, Li Jin-Fu, Zhou Yao-He, Yan Zhi-Jie. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [18] Zhang Wu, Hua Shao-Chun, Wang Han-Gong, Wang Liu-Ying, Liu Gu. The adhesives strength of nanostructured AT13 ceramic coatings characterized by fractal dimension. Acta Physica Sinica, 2008, 57(2): 1241-1245. doi: 10.7498/aps.57.1241
    [19] Shan Bo-Wei, Lin Xin, Wei Lei, Huang Wei-Dong. A cellular automaton model for dendrite solidification of pure substance. Acta Physica Sinica, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [20] Zheng Zhi-Xiu, Zhang Lin. Atomic-scale simulation study of structural changes of Fe-Cu binary system containing Cu clusters embedded in the Fe matrix during heating. Acta Physica Sinica, 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
  • Citation:
Metrics
  • Abstract views:  1218
  • PDF Downloads:  548
  • Cited By: 0
Publishing process
  • Received Date:  01 June 2017
  • Accepted Date:  24 July 2017
  • Published Online:  05 September 2017

Progress of nanostructured metallic glasses

    Corresponding author: Feng Tao, tao.feng@njust.edu.cn
  • 1. Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
  • 2. Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 51571119, 51520105001), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK 2014021775), the Fundamental Research Funds for the Central Universities, China (Grant No. 30916011106), the “Distinguished Professor” Plan of Jiangsu Province, China, the “Qinglan” Project, and the Natural Science Foundation of Germany (DFG).

Abstract: Today's technologies are primarily based on crystalline materials (metals, semiconductors, etc.), for their properties can be controlled by changing their chemical and/or defect microstructures. This is not possible in today's glasses. The new features of nanostructured glasses consisting of nanometer-sized glassy regions connected by interfaces are that their properties may be controlled by changing their chemical and/or defect microstructures, and that their interfaces each have a new kind of non-crystalline structure. In this paper we mainly discuss the research progress of nanostructured metallic glasses, including their preparation methods, structure characteristics and new properties. By utilizing these new features, an era of new technologies based on non-crystalline materials (a “glass age”) can be opened up.

Reference (58)

Catalog

    /

    返回文章
    返回