Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure

Zhang Zhong-Qiang Li Chong Liu Han-Lun Ge Dao-Han Cheng Guang-Gui Ding Jian-Ning

Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure

Zhang Zhong-Qiang, Li Chong, Liu Han-Lun, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning
PDF
Get Citation
  • In this paper, the classical molecular dynamics method is used to investigate the permeability of pressure-driven water fluid in the hybrid structure of graphene-carbon nanotube (CNT). The results indicate that the permeability of water molecules for the hybrid structure of graphene-CNT is obviously higher than that for the assembled structure of graphene-CNT. The combination between the graphene sheet and CNT in the hybrid structure is found to be a key point to improve the permeability of water molecules. Subsequently, the potential of mean force (PMF) is calculated in order to explain the influences of the combined structure on the permeabilities for the water fluid passing through both the hybrid and assembled graphene-CNT structures. The result shows that the PMF for the water molecules penetrating through the assembled structure is larger than that for the hybrid structure appreciably. It implies that the structure of the combined chemical bonds in the hybrid structure can efficiently improve the permeability of water molecules. As for the water penetrating through the hybrid structured graphene-CNT, the permeability of water increases with water pressure rising, and decreases with the electric field intensity increasing. The water molecules cannot pass through the proposed hybrid structure below a pressure threshold of 100 MPa. The permeability of water in the hybrid structure decreases with the increasing charge quantity on CNT below a threshold of 0.8e. The PMF for water penetrating through the hybrid structure decreases with charge quantity decreasing. The results suggest that the water permeability can be controlled by regulating the water pressure and the electric field intensity. Furthermore, the influences of the temperature and the axis spacing of two CNTs in the hybrid structure on the water permeability are considered. The permeability of water in the hybrid structure increases with the increasing temperature above a threshold of 200 K. The PMF for water penetrating through the hybrid structure increases with the decreasing temperature. Interestingly, the water permeability decreases with the increasing axis spacing. As the axial spacing increases, the water permeability decreases gradually and even approaches to two times of the permeability in the case of the hybrid structure with a single CNT channel. The findings can provide a theoretical basis for designing nanopumps or osmotic membranes based on the graphene-CNT hybrid structures.
      Corresponding author: Zhang Zhong-Qiang, zhangzq@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472117, 11372298, 11672063) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140556).
    [1]

    Yang Y L, Li X Y, Jiang J L, Du H L, Zhao L N, Zhao Y L 2010 ACS Nano 4 5755

    [2]

    de Groot B L, Grubmuller H 2001 Science 294 2353

    [3]

    Lijima S 1991 Nature 345 56

    [4]

    Wildoer J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C 1998 Nature 391 59

    [5]

    Hong Y C, Shin D H, Uhm H S 2007 Surf. Coat. Technol. 201 5025

    [6]

    Xia K L, Jian M Q, Zhang Y Y 2016 Acta Phys. Chim. Sin. 32 2427 (in Chinese) [夏凯伦, 蹇木强, 张莹莹 2016 物理化学学报 32 2427]

    [7]

    Pagona G, Tagmatarchis N 2006 Curr. Med. Chem. 13 1789

    [8]

    Sun L G, He X Q, Lu J 2016 NPJ Comput. Mater. 2 16004

    [9]

    Wang X, Sparkman J, Gou J H 2017 Compos. Commun. 3 1

    [10]

    Rinne K F, Gekle S, Bonthuis D J, Netz R R 2012 Nano Lett. 12 1780

    [11]

    Cao P, Luo C L, Chen G H, Han D R, Zhu X F, Dai Y F 2015 Acta Phys. Sin. 64 116101 (in Chinese) [曹平,罗成林,陈贵虎,韩典荣,朱兴凤,戴亚飞 2015 物理学报 64 116101]

    [12]

    Longhurst M J, Quirke N 2007 Nano Lett. 7 3324

    [13]

    Zhang Z Q, Dong X, Ye H F, Cheng G G, Ding J N, Ling Z Y 2014 J. Appl. Phys. 116 074307

    [14]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [15]

    Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H 2007 Proc. Natl. Acad. Sci. USA 104 3687

    [16]

    Zuo G C, Shen R, Ma S J, Guo W L 2009 ACS Nano 4 205

    [17]

    Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J, Fang H P 2007 Nat. Nanotechnol. 2 709

    [18]

    Cao G X, Qiao Y, Zhou Q L, Chen X 2008 Philos. Mag. Lett. 88 371

    [19]

    Qiu H, Shen R, Guo W L 2011 Nano Res. 4 284

    [20]

    Wang L Y, Wu H A, Wang F C 2017 Sci. Rep. 7 41717

    [21]

    Zhu Y, Li L, Zhang C G, Casillas G, Sun Z Z, Yan Z, Ruan G D, Peng Z W, Raji A R O, Kittrell C, Hauge R H, Tour J M 2012 Nat. Commun. 3 1225

    [22]

    Kim Y S, Kumar K, Fisher F T, Yang E H 2011 Nanotechnology 23 015301

    [23]

    Plimpton S J 1995 Comput. Phys. 117 1

    [24]

    Zhang Z Q, Ye H F, Liu Z, Ding J N, Cheng G G, Ling Z Y, Zheng Y G, Wang L, Wang J B 2012 J. Appl. Phys. 111 114304

    [25]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665

    [26]

    Wang Y H, He Z J, Cupta K M, Shi Q, Lui R F 2017 Carbon 116 120

    [27]

    Zhu F Q, Tajkhorshid E, Schulten K 2002 Biophys. J. 83 154

  • [1]

    Yang Y L, Li X Y, Jiang J L, Du H L, Zhao L N, Zhao Y L 2010 ACS Nano 4 5755

    [2]

    de Groot B L, Grubmuller H 2001 Science 294 2353

    [3]

    Lijima S 1991 Nature 345 56

    [4]

    Wildoer J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C 1998 Nature 391 59

    [5]

    Hong Y C, Shin D H, Uhm H S 2007 Surf. Coat. Technol. 201 5025

    [6]

    Xia K L, Jian M Q, Zhang Y Y 2016 Acta Phys. Chim. Sin. 32 2427 (in Chinese) [夏凯伦, 蹇木强, 张莹莹 2016 物理化学学报 32 2427]

    [7]

    Pagona G, Tagmatarchis N 2006 Curr. Med. Chem. 13 1789

    [8]

    Sun L G, He X Q, Lu J 2016 NPJ Comput. Mater. 2 16004

    [9]

    Wang X, Sparkman J, Gou J H 2017 Compos. Commun. 3 1

    [10]

    Rinne K F, Gekle S, Bonthuis D J, Netz R R 2012 Nano Lett. 12 1780

    [11]

    Cao P, Luo C L, Chen G H, Han D R, Zhu X F, Dai Y F 2015 Acta Phys. Sin. 64 116101 (in Chinese) [曹平,罗成林,陈贵虎,韩典荣,朱兴凤,戴亚飞 2015 物理学报 64 116101]

    [12]

    Longhurst M J, Quirke N 2007 Nano Lett. 7 3324

    [13]

    Zhang Z Q, Dong X, Ye H F, Cheng G G, Ding J N, Ling Z Y 2014 J. Appl. Phys. 116 074307

    [14]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [15]

    Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H 2007 Proc. Natl. Acad. Sci. USA 104 3687

    [16]

    Zuo G C, Shen R, Ma S J, Guo W L 2009 ACS Nano 4 205

    [17]

    Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J, Fang H P 2007 Nat. Nanotechnol. 2 709

    [18]

    Cao G X, Qiao Y, Zhou Q L, Chen X 2008 Philos. Mag. Lett. 88 371

    [19]

    Qiu H, Shen R, Guo W L 2011 Nano Res. 4 284

    [20]

    Wang L Y, Wu H A, Wang F C 2017 Sci. Rep. 7 41717

    [21]

    Zhu Y, Li L, Zhang C G, Casillas G, Sun Z Z, Yan Z, Ruan G D, Peng Z W, Raji A R O, Kittrell C, Hauge R H, Tour J M 2012 Nat. Commun. 3 1225

    [22]

    Kim Y S, Kumar K, Fisher F T, Yang E H 2011 Nanotechnology 23 015301

    [23]

    Plimpton S J 1995 Comput. Phys. 117 1

    [24]

    Zhang Z Q, Ye H F, Liu Z, Ding J N, Cheng G G, Ling Z Y, Zheng Y G, Wang L, Wang J B 2012 J. Appl. Phys. 111 114304

    [25]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665

    [26]

    Wang Y H, He Z J, Cupta K M, Shi Q, Lui R F 2017 Carbon 116 120

    [27]

    Zhu F Q, Tajkhorshid E, Schulten K 2002 Biophys. J. 83 154

  • [1] Xia Hui, Yang Wei-Guo. Permeability of nano SiO2 aggregates in concentrated suspension. Acta Physica Sinica, 2016, 65(14): 144203. doi: 10.7498/aps.65.144203
    [2] Zhang Chun-Mei, Bian Xin-Chao, Chen Qiang, Fu Ya-Bo, Zhang Yue-Fei. Effect and mechanism of water on carbon nanotubes growth. Acta Physica Sinica, 2008, 57(7): 4602-4606. doi: 10.7498/aps.57.4602
    [3] Zhang Yun-An, Tao Jun-Yong, Chen Xun, Liu Bin. Influence of water on the tensile properties of amorphous silica:a reactive molecular dynamics simulation. Acta Physica Sinica, 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [4] Wang Jun-Guo, Liu Fu-Sheng, Li Yong-Hong, Zhang Ming-Jian, Zhang Ning-Chao, Xue Xue-Dong. The structural transition of water at quartz/water interfaces under shock compression in phase region of liquid. Acta Physica Sinica, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [5] Wang Wen-Peng, Liu Fu-Sheng, Zhang Ning-Chao. Structural transformation of liquid water under shock compression condition. Acta Physica Sinica, 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [6] Shi Chao, Lin Chen-Sen, Chen Shuo, Zhu Jun. Molecular dynamics simulation of characteristic water molecular arrangement on graphene surface and wetting transparency of graphene. Acta Physica Sinica, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [7] Ouyang Yu, Fang Yan. The effects of H2O on the synthesis of SWCNTs by decomposing CH4 in Ar at 800℃. Acta Physica Sinica, 2005, 54(2): 578-581. doi: 10.7498/aps.54.578
    [8] Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei, Cheng Cheng-Ping, Luo Cheng-Lin. Water permeability in carbon nanotube arrays. Acta Physica Sinica, 2015, 64(23): 230201. doi: 10.7498/aps.64.230201
    [9] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [10] Liu Hua-Min, Fan Yong-Sheng, Tian Shi-Hai, Zhou Wei, Chen Xu. Molecular dynamics simulation for the effect of hydrogen on the water of pressurized water reactors. Acta Physica Sinica, 2012, 61(6): 062801. doi: 10.7498/aps.61.062801
    [11] Zhao Gang, Liu Zhi-Feng, Zhang You-Wei, Liu Zheng-Feng, Wang Xiao-Hong, Lai Yuan-Ting. The critical scaling property of random percolation porous media. Acta Physica Sinica, 2008, 57(4): 2011-2015. doi: 10.7498/aps.57.2011
    [12] Li Le, Li Ke-Fei. Permeability of cracked porous solids through percolation approach. Acta Physica Sinica, 2015, 64(13): 136402. doi: 10.7498/aps.64.136402
    [13] Yang Cheng-Bing, Xie Hui, Liu Chao. Molecular dynamics simulation of average velocity of lithium iron across the end of carbon nanotube. Acta Physica Sinica, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [14] Yin Ling-Kang, Xu Shun, Seongmin Jeong, Yongseok Jho, Wang Jian-Jun, Zhou Xin. Vapor-liquid coexisting morphology of all-atom water model through generalized isothermal isobaric ensemble molecular dynamics simulation. Acta Physica Sinica, 2017, 66(13): 136102. doi: 10.7498/aps.66.136102
    [15] Wang Wei, Zhang Kai-Wang, Meng Li-Jun, Li Zhong-Qiu, Zuo Xue-Yun, Zhong Jian-Xin. Molecular dynamics simulation of the evaporation of the surface wall of multi-wall carbon nanotubes at high temperature. Acta Physica Sinica, 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [16] Zhang Jia-Hong, Gu Fang, Gu Bin, Yang Li-Juan. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Physica Sinica, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [17] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [18] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
    [19] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [20] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene. Acta Physica Sinica, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
  • Citation:
Metrics
  • Abstract views:  200
  • PDF Downloads:  221
  • Cited By: 0
Publishing process
  • Received Date:  10 November 2017
  • Accepted Date:  22 December 2017
  • Published Online:  05 March 2018

Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure

    Corresponding author: Zhang Zhong-Qiang, zhangzq@ujs.edu.cn
  • 1. Micro/Nano Science & Technology Center, Jiangsu University, Zhenjiang 212013, China;
  • 2. Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China;
  • 3. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11472117, 11372298, 11672063) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140556).

Abstract: In this paper, the classical molecular dynamics method is used to investigate the permeability of pressure-driven water fluid in the hybrid structure of graphene-carbon nanotube (CNT). The results indicate that the permeability of water molecules for the hybrid structure of graphene-CNT is obviously higher than that for the assembled structure of graphene-CNT. The combination between the graphene sheet and CNT in the hybrid structure is found to be a key point to improve the permeability of water molecules. Subsequently, the potential of mean force (PMF) is calculated in order to explain the influences of the combined structure on the permeabilities for the water fluid passing through both the hybrid and assembled graphene-CNT structures. The result shows that the PMF for the water molecules penetrating through the assembled structure is larger than that for the hybrid structure appreciably. It implies that the structure of the combined chemical bonds in the hybrid structure can efficiently improve the permeability of water molecules. As for the water penetrating through the hybrid structured graphene-CNT, the permeability of water increases with water pressure rising, and decreases with the electric field intensity increasing. The water molecules cannot pass through the proposed hybrid structure below a pressure threshold of 100 MPa. The permeability of water in the hybrid structure decreases with the increasing charge quantity on CNT below a threshold of 0.8e. The PMF for water penetrating through the hybrid structure decreases with charge quantity decreasing. The results suggest that the water permeability can be controlled by regulating the water pressure and the electric field intensity. Furthermore, the influences of the temperature and the axis spacing of two CNTs in the hybrid structure on the water permeability are considered. The permeability of water in the hybrid structure increases with the increasing temperature above a threshold of 200 K. The PMF for water penetrating through the hybrid structure increases with the decreasing temperature. Interestingly, the water permeability decreases with the increasing axis spacing. As the axial spacing increases, the water permeability decreases gradually and even approaches to two times of the permeability in the case of the hybrid structure with a single CNT channel. The findings can provide a theoretical basis for designing nanopumps or osmotic membranes based on the graphene-CNT hybrid structures.

Reference (27)

Catalog

    /

    返回文章
    返回