Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structures and ferroelectric properties of Ba-doped ZnO

Xu Jia-Nan Chen Huan-Ming Pan Feng-Chun Lin Xue-Ling Ma Zhi Chen Zhi-Peng

Electronic structures and ferroelectric properties of Ba-doped ZnO

Xu Jia-Nan, Chen Huan-Ming, Pan Feng-Chun, Lin Xue-Ling, Ma Zhi, Chen Zhi-Peng
PDF
Get Citation
  • Wurtzite ZnO has long been considered to be a promising candidate material for photovoltaic application due to its high power conversion efficiency. More interestingly and very recently, some research results suggested that the ferroelectric property of the photovoltaic material introduced by chemical elements doping can promote its power conversion efficiency significantly. Therefore, in order to understand the effect of Ba doping on the electronic structure and the ferroelectric properties of ZnO and to reveal the potentially optoelectronic properties of Zn1-xBaxO, the energy band structure, the density of states, and the polarizability and the relative dielectric constant of the bulk Ba-doped ZnO supercell system, in which the Zn atoms are partly and uniformly substituted by the Ba atoms, are investigated by using the first-principles method based on the density functional theory and other physical theory. The norm-conserving pseudopotentials and the plane-wave basis set with a cut-off energy of 600 eV are used in the calculation. The generalized gradient approximation refined by Perdew and Zunger (GGA-PBE), the local density approximation (LDA) and the local density approximation added Hubbard energy (LDA+U) are employed for determining the exchange-correlation energy respectively. Brillouin zone is set to be within 4×4×5K point mesh generated by the Monkhorst-Pack scheme. The self-consistent convergence of total energy is at 2.0×10-6 eV/atom. Additionally, in order to obtain a stable and accurate calculation result, the cell structure is optimized prior to calculation. The calculated results suggest that the bulk Ba-doped ZnO semiconductor system is still a semiconductor with a direct wide band gap. The band gap of Zn1-xBaxO increases gradually with Ba atom doping percentage increasing from 12.5% to 87.5%. Consequently, the ferroelectric polarization properties and the dielectric properties of the bulk Ba-doped wurtzite ZnO materials are tailored by doping Ba atoms. It indicates that the polarizability of Zn1-xBaxO system increases with Ba doping atomic percentage increasing, especially, the polarizability reaches to a maximum when the atomic percentage of doping is 75%. Meanwhile, the relative dielectric constant inversely decreases with Ba atomic percentage increasing. This is attributed to the effective contribution of Ba atoms to the density of state at the bottom of the valence band. The diagonalized components of polarizability imply that there are possible micro-domains in the supercell while applying externally electric field to it. And the supercell presents a nearly isotropic polarizability macroscopically due to the strong interaction among the electric dipole moments existing in the different domains.
      Corresponding author: Chen Huan-Ming, bschm@163.com
    • Funds: Project supported by the Major Innovation Projects for Building First-class Universities in China'
    [1]

    Kim K J, Park Y R 2001 Appl. Phys. Lett. 78 475

    [2]

    Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, Shen M Y, Goto T 1997 Appl. Phys. Lett. 70 2230

    [3]

    Aoki T, Hatanaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257

    [4]

    Shen W F, Zhao Y, Zhang C B 2005 Thin Solid Films 483 382

    [5]

    Yamamoto N, Makino H, Osone S, Ujihara A, Ito T, Hokari T, Maruyama T, Yamamoto T 2012 Thin Solid Films 520 4131

    [6]

    Hu Q C, Ding K 2017 Chin. Phys. B 26 068104

    [7]

    Que M L, Wang X D, Peng Y Y, Pan C F 2017 Chin. Phys. B 26 067301

    [8]

    Lu Y J, Shi Z F, Shan C X, Shen D Z 2017 Chin. Phys. B 26 047703

    [9]

    Gao H X, Hu R, Yang Y T 2012 Chin. Phy. Lett. 29 017305

    [10]

    Chen R Q, Zou C W, Bian J M, Adarsh S, Gao W 2011 Nanotechnology 22 105706

    [11]

    Lin Y H, Ying M, Li M, Wang X, Nan C W 2007 Appl. Phys. Lett. 22 197203

    [12]

    Ueda K, Tabata H, Kawai T 2001 Appl. Phys. Lett. 79 988

    [13]

    Joseph M, Tabata H, Kawai T 1999 Appl. Phys. Lett. 74 1617

    [14]

    Onodera A, Tamaki A, Kawamura Y, Sawada T, Yamashita1 H 1996 J. Appl. Phys. 35 5160

    [15]

    Dhananjay, Nagaraju J, Krupanidhi S B 2006 J. Appl. Phys. 99 034105

    [16]

    Yang Y C, Song C, Wang X H, Zeng F, Pan F, Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2008 Appl. Phys. Lett. 92 10715

    [17]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽, 王崇愚, 于涛 2007 物理学报 56 2838]

    [18]

    Chen Z P, Ma Y N, Lin X L, Pan F C, Xi L Y, Ma Z, Zheng F, Wang Y Q, Chen H M 2017 Acta Phys. Sin. 66 196101 (in Chinese)[陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭 2017 物理学报 66 196101]

    [19]

    Chang Y T, Sun Q L, Long Y, Wang M W 2014 Chin. Phys. Lett. 31 127501

    [20]

    Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2016 Chin. Phys. B 25 116103

    [21]

    Wang Y P, Wang Y P, Shi L B 2015 Chin. Phys. Lett. 32 016102

    [22]

    Guan L, Tan F X, Jia G Q, Shen G M, Liu B T, Li X 2016 Chin. Phys. Lett. 33 087501

    [23]

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文明, 李旭升 2016 物理学报 65 077101]

    [24]

    Gopal P, Spaldin N A 2006 J. Electron. Mater. 35 538

    [25]

    Wang X H, Zhang J, Zhu Z, Zhu J Z 2006 Colloids Surf. A 276 59

    [26]

    Zhao J, Yang X Q, Yang Y, Huang Y H, Zhang Y 2010 Mater. Lett. 64 569

    [27]

    He X H, Yang H, Chen Z W, Liao S S Y 2012 Physica B 407 2895

    [28]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J 1992 Phys. Rev. B 46 6671

    [29]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2013 Eur. Phys. J. B 86 504

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 86 75

    [32]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [33]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218

    [34]

    Delley B 2000 J. Chem. Phys. 113 7756

    [35]

    Delley B 1990 J. Chem. Phys. 92 508

    [36]

    Desgreniers S 1998 Phys. Rev. B 58 14102

    [37]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refeson K 2005 Z. Kristallogr. B 220 567

    [38]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [39]

    Wimmer E, Krakauer H, Weinert M, Freeman A 2006 Phys. Rev. B 24 864

    [40]

    Wu Y X, Zhang H, Han L 1996 J. Atom. Mole. Phys. 28 749

    [41]

    Osunch K, Lombardi E B, Gebiki W 2006 Phys. Rev. 73 075202

    [42]

    Srinet G, Kumar R, Sajal V 2014 Mater Lett 126 274

    [43]

    Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584

    [44]

    Fan Z, Xiao J X, Sun K, Chen L, Hu Y T, Ouyang J Y, Ong K P, Zeng K Y, Wang J 2015 J. Phys. Chem. Lett. 6 1155

    [45]

    Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

  • [1]

    Kim K J, Park Y R 2001 Appl. Phys. Lett. 78 475

    [2]

    Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, Shen M Y, Goto T 1997 Appl. Phys. Lett. 70 2230

    [3]

    Aoki T, Hatanaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257

    [4]

    Shen W F, Zhao Y, Zhang C B 2005 Thin Solid Films 483 382

    [5]

    Yamamoto N, Makino H, Osone S, Ujihara A, Ito T, Hokari T, Maruyama T, Yamamoto T 2012 Thin Solid Films 520 4131

    [6]

    Hu Q C, Ding K 2017 Chin. Phys. B 26 068104

    [7]

    Que M L, Wang X D, Peng Y Y, Pan C F 2017 Chin. Phys. B 26 067301

    [8]

    Lu Y J, Shi Z F, Shan C X, Shen D Z 2017 Chin. Phys. B 26 047703

    [9]

    Gao H X, Hu R, Yang Y T 2012 Chin. Phy. Lett. 29 017305

    [10]

    Chen R Q, Zou C W, Bian J M, Adarsh S, Gao W 2011 Nanotechnology 22 105706

    [11]

    Lin Y H, Ying M, Li M, Wang X, Nan C W 2007 Appl. Phys. Lett. 22 197203

    [12]

    Ueda K, Tabata H, Kawai T 2001 Appl. Phys. Lett. 79 988

    [13]

    Joseph M, Tabata H, Kawai T 1999 Appl. Phys. Lett. 74 1617

    [14]

    Onodera A, Tamaki A, Kawamura Y, Sawada T, Yamashita1 H 1996 J. Appl. Phys. 35 5160

    [15]

    Dhananjay, Nagaraju J, Krupanidhi S B 2006 J. Appl. Phys. 99 034105

    [16]

    Yang Y C, Song C, Wang X H, Zeng F, Pan F, Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2008 Appl. Phys. Lett. 92 10715

    [17]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽, 王崇愚, 于涛 2007 物理学报 56 2838]

    [18]

    Chen Z P, Ma Y N, Lin X L, Pan F C, Xi L Y, Ma Z, Zheng F, Wang Y Q, Chen H M 2017 Acta Phys. Sin. 66 196101 (in Chinese)[陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭 2017 物理学报 66 196101]

    [19]

    Chang Y T, Sun Q L, Long Y, Wang M W 2014 Chin. Phys. Lett. 31 127501

    [20]

    Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2016 Chin. Phys. B 25 116103

    [21]

    Wang Y P, Wang Y P, Shi L B 2015 Chin. Phys. Lett. 32 016102

    [22]

    Guan L, Tan F X, Jia G Q, Shen G M, Liu B T, Li X 2016 Chin. Phys. Lett. 33 087501

    [23]

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文明, 李旭升 2016 物理学报 65 077101]

    [24]

    Gopal P, Spaldin N A 2006 J. Electron. Mater. 35 538

    [25]

    Wang X H, Zhang J, Zhu Z, Zhu J Z 2006 Colloids Surf. A 276 59

    [26]

    Zhao J, Yang X Q, Yang Y, Huang Y H, Zhang Y 2010 Mater. Lett. 64 569

    [27]

    He X H, Yang H, Chen Z W, Liao S S Y 2012 Physica B 407 2895

    [28]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J 1992 Phys. Rev. B 46 6671

    [29]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2013 Eur. Phys. J. B 86 504

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 86 75

    [32]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [33]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218

    [34]

    Delley B 2000 J. Chem. Phys. 113 7756

    [35]

    Delley B 1990 J. Chem. Phys. 92 508

    [36]

    Desgreniers S 1998 Phys. Rev. B 58 14102

    [37]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refeson K 2005 Z. Kristallogr. B 220 567

    [38]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [39]

    Wimmer E, Krakauer H, Weinert M, Freeman A 2006 Phys. Rev. B 24 864

    [40]

    Wu Y X, Zhang H, Han L 1996 J. Atom. Mole. Phys. 28 749

    [41]

    Osunch K, Lombardi E B, Gebiki W 2006 Phys. Rev. 73 075202

    [42]

    Srinet G, Kumar R, Sajal V 2014 Mater Lett 126 274

    [43]

    Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584

    [44]

    Fan Z, Xiao J X, Sun K, Chen L, Hu Y T, Ouyang J Y, Ong K P, Zeng K Y, Wang J 2015 J. Phys. Chem. Lett. 6 1155

    [45]

    Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

  • [1] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [2] Fang Wen-Yu, Zhang Peng-Cheng, Zhao Jun, Kang Wen-Bin. Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe. Acta Physica Sinica, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [3] Liu Ying-Guang, Bian Yong-Qing, Han Zhong-He. Heat transport behavior of bicrystal ZnO containing tilt grain boundary. Acta Physica Sinica, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [4] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [5] Zhao Jian-Ning, Liu Dong-Huan, Wei Dong, Shang Xin-Chun. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance. Acta Physica Sinica, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [6] Zuo Fu-Chang, Mei Zhi-Wu, Deng Lou-Lou, Shi Yong-Qiang, He Ying-Bo, Li Lian-Sheng, Zhou Hao, Xie Jun, Zhang Hai-Li, Sun Yan. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics. Acta Physica Sinica, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [7] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [8] The physics-based model of AlGaN/GaN high electron mobility transistor outer fringing capacitances. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191931
    [9] Luo Duan, Hui Dan-Dan, Wen Wen-Long, Li Li-Li, Xin Li-Wei, Zhong Zi-Yuan, Ji Chao, Chen Ping, He Kai, Wang Xing, Tian Jin-Shou. Design of femtosecond electron diffractometer with adjustable gap. Acta Physica Sinica, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [10] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [11] Liao Tian-Jun, Lü Yi-Xiang. Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices. Acta Physica Sinica, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [12] Tribocorrosion performance of Nitrogen-doped diamond like carbon coating by high power impulse magnetron sputtering technique. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200021
    [13] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [14] Molecular dynamics study on structural characteristics of Lennard-Jones supercritical fluids. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191591
    [15] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [16] Bai Jia-Hao, Guo Jian-Gang. Theoretical studies on bidirectional interfacial shear stress transfer of graphene/flexible substrate composite structure. Acta Physica Sinica, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [17] Yin Yu-Ming, Zhao Ling-Ling. Effects of salt concentrations and pore surface structure on the water flow through rock nanopores. Acta Physica Sinica, 2020, 69(5): 054701. doi: 10.7498/aps.69.20191742
    [18] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [19] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [20] Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong. Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
  • Citation:
Metrics
  • Abstract views:  238
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  19 October 2017
  • Accepted Date:  27 March 2018
  • Published Online:  20 May 2018

Electronic structures and ferroelectric properties of Ba-doped ZnO

    Corresponding author: Chen Huan-Ming, bschm@163.com
  • 1. School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China
Fund Project:  Project supported by the Major Innovation Projects for Building First-class Universities in China'

Abstract: Wurtzite ZnO has long been considered to be a promising candidate material for photovoltaic application due to its high power conversion efficiency. More interestingly and very recently, some research results suggested that the ferroelectric property of the photovoltaic material introduced by chemical elements doping can promote its power conversion efficiency significantly. Therefore, in order to understand the effect of Ba doping on the electronic structure and the ferroelectric properties of ZnO and to reveal the potentially optoelectronic properties of Zn1-xBaxO, the energy band structure, the density of states, and the polarizability and the relative dielectric constant of the bulk Ba-doped ZnO supercell system, in which the Zn atoms are partly and uniformly substituted by the Ba atoms, are investigated by using the first-principles method based on the density functional theory and other physical theory. The norm-conserving pseudopotentials and the plane-wave basis set with a cut-off energy of 600 eV are used in the calculation. The generalized gradient approximation refined by Perdew and Zunger (GGA-PBE), the local density approximation (LDA) and the local density approximation added Hubbard energy (LDA+U) are employed for determining the exchange-correlation energy respectively. Brillouin zone is set to be within 4×4×5K point mesh generated by the Monkhorst-Pack scheme. The self-consistent convergence of total energy is at 2.0×10-6 eV/atom. Additionally, in order to obtain a stable and accurate calculation result, the cell structure is optimized prior to calculation. The calculated results suggest that the bulk Ba-doped ZnO semiconductor system is still a semiconductor with a direct wide band gap. The band gap of Zn1-xBaxO increases gradually with Ba atom doping percentage increasing from 12.5% to 87.5%. Consequently, the ferroelectric polarization properties and the dielectric properties of the bulk Ba-doped wurtzite ZnO materials are tailored by doping Ba atoms. It indicates that the polarizability of Zn1-xBaxO system increases with Ba doping atomic percentage increasing, especially, the polarizability reaches to a maximum when the atomic percentage of doping is 75%. Meanwhile, the relative dielectric constant inversely decreases with Ba atomic percentage increasing. This is attributed to the effective contribution of Ba atoms to the density of state at the bottom of the valence band. The diagonalized components of polarizability imply that there are possible micro-domains in the supercell while applying externally electric field to it. And the supercell presents a nearly isotropic polarizability macroscopically due to the strong interaction among the electric dipole moments existing in the different domains.

Reference (45)

Catalog

    /

    返回文章
    返回