Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of high pulsed magnetic field treatment of the plasticity of aluminum matrix composites

Wang Hong-Ming Li Pei-Si Zheng Rui Li Gui-Rong Yuan Xue-Ting

Citation:

Mechanism of high pulsed magnetic field treatment of the plasticity of aluminum matrix composites

Wang Hong-Ming, Li Pei-Si, Zheng Rui, Li Gui-Rong, Yuan Xue-Ting
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • For aluminum matrix composite, the introduced particles will strengthen the matrix, but as the obstacles, the heterogeneous particles will hinder the dislocation movement, generate uneven material structure, and may become a source of stress concentration. Therefore, they are detrimental severely to the elongation and plasticity of composite. It is known that dislocations exhibit a paramagnetic behavior because they contain paramagnetic centers including localized electrons, holes, triplet excitons, ion radicals, etc. The initial radical pair of the dislocation-obstacle S (spin angular momentum) = ± 1/2 is in a singlet state, and the total spin of the radical pair is 0 and in the antiparallel spin direction, offsetting a magnetism of the radical pair. The magnetic field can change the spin direction from singlet state to triplet state. In the triplet state the electron spin is 1 and in the same spin direction. A strong bond of the dislocation-obstacle is formed only in the singlet state when the spins of the two electrons are antiparallel. So an obstacle is able to pin a dislocation only if the radical pair is in the singlet state. Under the condition of high pulsed magnetic field treatment (HPMFT) the conversion of electronic spin will be a fundamental cause of dislocation motion along a glide plane. The movement of pinned dislocations will change the material microstructure and influence the performance of material. By comparing the microstructural evolutions and the residual stresses of samples subjected to HPMFT with different values of magnetic induced density (B), the positive influence of magnetoplastic effect on the plasticity of aluminum matrix composite is investigated in this paper. The results show that the dislocation density is significantly increased when B changes from 2 T to 4 T. When B=4 T the dislocation density is enhanced by 3.1 times compared with that of the sample without HPMFT. Moreover, the residual stress is reduced apparently from 41 MPa (B=0) to -1 MPa (B=3 T). In the view of atomic scale, the high magnetic field leads to a magnetoplastic effect which contributes to the dislocation movement and promotes the dislocation depinning, thereafter, the number of movable dislocations increases up. From the viewing of the internal structure of composite, the magnetic field accelerates the releasing rate of internal stress and lowers the residual stress in material, which is beneficial to improving the plasticity of aluminum matrix composite.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371091, 51001054, 51174099), the Scientific Research Innovation Projects by Graduate Students in Jiangsu University, China (Grant No. KYXX_0014), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011533), the Open Fund for State Key Laboratory of Metal Matrix Composites, China (Grant No. MMC-KF12-06), and the Practice Innovation Foundation of Jiangsu University Industrial Centre, China.
    [1]

    Molotskii M I 2000 Mat. Sci. Eng. A 287 248

    [2]

    Golovin Y 2004 Phys. Solid State 46 789

    [3]

    Li H Q, Chen Q Z, Wang Y B, Chu W Y 1997 Chin. Sci. Bull. 42 2282 (in Chinese) [李红旗, 陈奇志, 王燕斌, 褚武扬 1997 科学通报 42 2282]

    [4]

    Liu Z L, Hu H Y, Fan T Y 2007 Trans. Beijing Ins. Technol. 27 113 (in Chinese) [刘兆龙, 胡海云, 范天佑 2007 北京理工大学学报 27 113]

    [5]

    Hutchinson B, Ridley N 2006 Scripta Mater. 55 299

    [6]

    Li J H, Gao X X, Zhu J, Li J, Zhang Y F, Zhang M C 2009 J. Funct. Mater. 8 1251 (in Chinese) [李纪恒, 高学绪, 朱洁, 李洁, 张亚飞, 张茂才 2009 功能材料 8 1251]

    [7]

    Li L, Wang X, Shan B W 2012 Application of Atomism in Material Science (Harbin: Harbin Institute of Technology Press) p184 (in Chinese) [李莉, 王香, 山本悟 2012 原子论在材料科学中的应用 (哈尔滨市: 哈尔滨工业大学出版社) 第184页]

    [8]

    Wang H M, Li G R, Zhao Y T, Chen G 2010 Mat. Sci. Eng. A 527 2881

    [9]

    Li G R, Wang H M, Zhao Y T, Chen D B, Chen G, Cheng X N 2010 Trans. Nonferrous Met. Soc. China 20 577

    [10]

    Zhang Q Q 2010 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese) [张菁菁 2010 硕士论文 (北京: 北京交通大学)]

    [11]

    Li G R, Zhao Y T, Wang H M, Chen G, Dai Q X, Cheng X N 2009 J. Alloys Compd. 471 530

    [12]

    Li G R 2007 Ph. D. Dissertation (Jiangsu: Jiangsu University) (in Chinese) [李桂荣 2007 博士学位论文 (江苏: 江苏大学)]

    [13]

    Liu P, Chen Z J 2011 J. Hefei Univ. Technol. (Nat. Sci. Ed.) 34 341 (in Chinese) [刘萍, 陈忠家 2011 合肥工业大学学报(自然科学版) 34 341]

    [14]

    Jia R X, Zhang Y M, Zhang Y M, Guo H 2010 Spectrosc. Spect. Anal. 30 1995 (in Chinese) [贾仁需, 张玉明, 张义门, 郭辉 2010 光谱学与光谱分析 30 1995]

    [15]

    Li P M, Wen X Z, Zhi Q L, Xi B W, Li J X, Li J, Tian F Z 2014 Mat. Sci. Eng. A 609 16

    [16]

    Clayton J D, McDowell D L, Bammann D J 2006 Int. J. Plast. 22 210

    [17]

    Gao Y L, Zhan L, Zhao X C, Zhang Z H, Zhuang Z, You X C 2011 Acta Phys. Sin. 60 096103 (in Chinese) [高原柳, 占立, 赵雪川, 张朝晖, 庄茁, 由小川 2011 物理学报 60 096103]

    [18]

    Li G R, Zhao Y T, Dai Q X, Zhang H J, Wang H M 2007 J. Uni. Sci. Technol. Beijing 14 460

    [19]

    Li G R, Wang H M, Yuan X T, Cai Y 2013 Chin. J. Mater. Res. 27 397 (in Chinese) [李桂荣, 王宏明, 袁雪婷, 蔡云 2013 材料研究学报 27 397]

    [20]

    Buchachenko A L 2006 J. Exp. Theor. Phys. 102 795

    [21]

    Molotskii M I, Fleurov V 2000 J. Phys. Chem. B 104 3812

    [22]

    Xu X Y, Liang M, Lu Y F, Wang P F, Jiao G F, Li C S 2014 J. Low Temp. Phys. 36 140 (in Chinese) [徐晓燕, 梁明, 卢亚锋, 王鹏飞, 焦高峰, 李成山 2014 低温物理学报 36 140]

    [23]

    Li Z F 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [励志峰 2008 博士学位论文 (上海: 上海交通大学)]

    [24]

    Li B, Coles P, Reimer J A, Dawson P, Meriles C A 2010 Solid State Commun. 150 450

    [25]

    Lin J, Zhao H Y, Cai Z P, Lu A L 2005 J. Mater. Eng. 3 55 (in Chinese) [林健, 赵海燕, 蔡志鹏, 鹿安理 2005 材料工程 3 55]

    [26]

    Wu S, Zhao H Y, Lu A L, Fang H Z 2002 Trans. China Welding Ins. 23 9 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍 2002 焊接学报 23 9]

    [27]

    Wu S, Zhao H Y, Lu A L, Fang H Z, Tang F 2002 J. Tsinghua Univ. (Nat. Sci. Ed.) 42 147 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍, 唐非 2002 清华大学学报(自然科学版) 42 147]

  • [1]

    Molotskii M I 2000 Mat. Sci. Eng. A 287 248

    [2]

    Golovin Y 2004 Phys. Solid State 46 789

    [3]

    Li H Q, Chen Q Z, Wang Y B, Chu W Y 1997 Chin. Sci. Bull. 42 2282 (in Chinese) [李红旗, 陈奇志, 王燕斌, 褚武扬 1997 科学通报 42 2282]

    [4]

    Liu Z L, Hu H Y, Fan T Y 2007 Trans. Beijing Ins. Technol. 27 113 (in Chinese) [刘兆龙, 胡海云, 范天佑 2007 北京理工大学学报 27 113]

    [5]

    Hutchinson B, Ridley N 2006 Scripta Mater. 55 299

    [6]

    Li J H, Gao X X, Zhu J, Li J, Zhang Y F, Zhang M C 2009 J. Funct. Mater. 8 1251 (in Chinese) [李纪恒, 高学绪, 朱洁, 李洁, 张亚飞, 张茂才 2009 功能材料 8 1251]

    [7]

    Li L, Wang X, Shan B W 2012 Application of Atomism in Material Science (Harbin: Harbin Institute of Technology Press) p184 (in Chinese) [李莉, 王香, 山本悟 2012 原子论在材料科学中的应用 (哈尔滨市: 哈尔滨工业大学出版社) 第184页]

    [8]

    Wang H M, Li G R, Zhao Y T, Chen G 2010 Mat. Sci. Eng. A 527 2881

    [9]

    Li G R, Wang H M, Zhao Y T, Chen D B, Chen G, Cheng X N 2010 Trans. Nonferrous Met. Soc. China 20 577

    [10]

    Zhang Q Q 2010 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese) [张菁菁 2010 硕士论文 (北京: 北京交通大学)]

    [11]

    Li G R, Zhao Y T, Wang H M, Chen G, Dai Q X, Cheng X N 2009 J. Alloys Compd. 471 530

    [12]

    Li G R 2007 Ph. D. Dissertation (Jiangsu: Jiangsu University) (in Chinese) [李桂荣 2007 博士学位论文 (江苏: 江苏大学)]

    [13]

    Liu P, Chen Z J 2011 J. Hefei Univ. Technol. (Nat. Sci. Ed.) 34 341 (in Chinese) [刘萍, 陈忠家 2011 合肥工业大学学报(自然科学版) 34 341]

    [14]

    Jia R X, Zhang Y M, Zhang Y M, Guo H 2010 Spectrosc. Spect. Anal. 30 1995 (in Chinese) [贾仁需, 张玉明, 张义门, 郭辉 2010 光谱学与光谱分析 30 1995]

    [15]

    Li P M, Wen X Z, Zhi Q L, Xi B W, Li J X, Li J, Tian F Z 2014 Mat. Sci. Eng. A 609 16

    [16]

    Clayton J D, McDowell D L, Bammann D J 2006 Int. J. Plast. 22 210

    [17]

    Gao Y L, Zhan L, Zhao X C, Zhang Z H, Zhuang Z, You X C 2011 Acta Phys. Sin. 60 096103 (in Chinese) [高原柳, 占立, 赵雪川, 张朝晖, 庄茁, 由小川 2011 物理学报 60 096103]

    [18]

    Li G R, Zhao Y T, Dai Q X, Zhang H J, Wang H M 2007 J. Uni. Sci. Technol. Beijing 14 460

    [19]

    Li G R, Wang H M, Yuan X T, Cai Y 2013 Chin. J. Mater. Res. 27 397 (in Chinese) [李桂荣, 王宏明, 袁雪婷, 蔡云 2013 材料研究学报 27 397]

    [20]

    Buchachenko A L 2006 J. Exp. Theor. Phys. 102 795

    [21]

    Molotskii M I, Fleurov V 2000 J. Phys. Chem. B 104 3812

    [22]

    Xu X Y, Liang M, Lu Y F, Wang P F, Jiao G F, Li C S 2014 J. Low Temp. Phys. 36 140 (in Chinese) [徐晓燕, 梁明, 卢亚锋, 王鹏飞, 焦高峰, 李成山 2014 低温物理学报 36 140]

    [23]

    Li Z F 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [励志峰 2008 博士学位论文 (上海: 上海交通大学)]

    [24]

    Li B, Coles P, Reimer J A, Dawson P, Meriles C A 2010 Solid State Commun. 150 450

    [25]

    Lin J, Zhao H Y, Cai Z P, Lu A L 2005 J. Mater. Eng. 3 55 (in Chinese) [林健, 赵海燕, 蔡志鹏, 鹿安理 2005 材料工程 3 55]

    [26]

    Wu S, Zhao H Y, Lu A L, Fang H Z 2002 Trans. China Welding Ins. 23 9 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍 2002 焊接学报 23 9]

    [27]

    Wu S, Zhao H Y, Lu A L, Fang H Z, Tang F 2002 J. Tsinghua Univ. (Nat. Sci. Ed.) 42 147 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍, 唐非 2002 清华大学学报(自然科学版) 42 147]

Metrics
  • Abstract views:  5603
  • PDF Downloads:  713
  • Cited By: 0
Publishing process
  • Received Date:  17 September 2014
  • Accepted Date:  04 December 2014
  • Published Online:  05 April 2015

/

返回文章
返回