Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Non-resonant direct laser acceleration in underdense plasma channels

Liu Ming-Wei Gong Shun-Feng Li Jin Jiang Chun-Lei Zhang Yu-Tao Zhou Bing-Ju

Citation:

Non-resonant direct laser acceleration in underdense plasma channels

Liu Ming-Wei, Gong Shun-Feng, Li Jin, Jiang Chun-Lei, Zhang Yu-Tao, Zhou Bing-Ju
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Mechanisms that electrons are directly accelerated by the laser-plasma interaction in non-resonant cases are studied. First, by use of a linearly polarized Gaussian laser beam, a three-dimensional model is presented to demonstrate that the frequency and the amplitude of electron oscillations can be significantly modulated by the transverse ponderomotive force, within the confinement of an underdense plasma channel. On the one hand, the transverse ponderomotive force can felicitously make electrons to experience the large amplitude oscillations and push them to the regions at a low dephasing rate. On the other hand, when the electrons oscillate across the channel with small amplitudes, the dephasing rate also can be effectively reduced by the nonlinear modulation arising from the transverse ponderomotive force. These kinds of modulations can lead electrons to stay in phase with the laser field for a longer time and thus enhance their energy gain, which also enables the mechanism of transverse ponderomotive modulation being in direct laser acceleration. This mechanism is determined by the plasma density and the laser intensity and radius. Detailed numerical results are also given which show that the electron acceleration induced by this ponderomotive modulation quite distinguishes from the parametric instability and the resonance from a driving force. Moreover, a theoretical model for the parametric amplification, which makes up the restriction of the quasi-two-dimensional model, is provided to verify that non-resonant direct laser acceleration can come from the parametric instability in the three-dimensional case.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11104068), and the Open Fund of the State Key Laboratory of High Field Laser Physics, China (Shanghai Institute of Optics and Fine Mechanics).
    [1]

    Bulanov S, Chvykov V, Kalinchenko G, Matsuoka T, Rousseau P, Reed S, Yanovsky V, Krushelnick K, Maksimchuk A 2008 Med. Phys. 35 1770

    [2]

    Blumenfeld I, Clayton C E, Decker F J, Hogan M J, Huang C, Ischebeck R, Iverson R, Joshi C, Katsouleas T, Kirby N, Lu W, Marsh K A, Mori W B, Muggli P, Oz E, Siemann R H, Walz D, Zhou M 2007 Nature 445 741

    [3]

    Nakajima K 2008 Nature Phys. 4 92

    [4]

    Tan F, Zhu B, Han D, Xin J T, Zhao Z Q, Cao L F, Gu Y Q, Zhang B H 2014 Chin. Phys. B 23 034104

    [5]

    Leemans W P, Nagler B, Gonsalves A J, Toth Cs, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nature Phys. 2 696

    [6]

    Lu H Y, Liu M W, Wang W T, Wang C, Liu J S, Deng A H, Xu J C, Xia C Q, Li W T, Zhang H, Lu X M, Wang C, Wang J Z, Liang X Y, Len Y X, Shen B F, Nakajima K, Li R X, Xu Z Z 2011 Appl. Phys. Lett. 99 091502

    [7]

    Zhang G B, Zou D B, Ma Y Y, Zhuo H B, Shao F Q, Yang X H, Ge Z Y, Yin Y, Yu T P, Tian C L, Gan L F, Ouyang J M, Zhao N 2013 Acta Phys. Sin. 62 205203 (in Chinese) [张国博, 邹德滨, 马燕云, 卓红斌, 邵福球, 杨晓虎, 葛哲屹, 银燕, 余同普, 田成林, 甘龙飞, 欧阳建明, 赵娜 2013 物理学报 62 205203]

    [8]

    Zhang G B, Ma Y Y, Zou D B, Zhuo H B, Shao F Q, Yang X H, Ge Z Y, Yu T P, Tian C L, Ouyang J M, Zhao N 2013 Acta Phys. Sin. 62 125205 (in Chinese) [张国博, 马燕云, 邹德滨, 卓红斌, 邵福球, 杨晓虎, 葛哲屹, 余同普, 田成林, 欧阳建明, 赵娜 2013 物理学报 62 125205]

    [9]

    Fuchs J, Cecchetti C A, Borghesi M, Grismayer T, d’Humières E, Antici P, Atzeni S, Mora P, Pipahl A, Romagnani L, Schiavi A, Sentoku Y, Toncian T, Audebert P, Willi O 2007 Phys. Rev. Lett. 99 015002

    [10]

    Liu M, Su L N, Zheng Y, Li Y T, Wang W M, Sheng Z M, Chen L M, Ma J L, Lu X, Wang Z H, Wei Z Y, Hu B T, Zhang J 2013 Acta Phys. Sin. 62 165201 (in Chinese) [刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰 2013 物理学报 62 165201]

    [11]

    Fuchs J, Antici P, d’Humières E, Lefebvre E, Borghesi M, Brambrink E, Cecchetti C A, Kaluza M, Malka V, Manclossi M, Meyroneinc S, Mora P, Schreiber J, Toncian T, Pépin H, Audebert P 2006 Nature Phys. 2 48

    [12]

    Ping Y, Kemp A J, Divol L, Key M H, Patel P K, AkliK U, Beg F N, Chawla S, Chen C D, Freeman R R, Hey D, Higginson D P, Jarrott L C, Kemp G E, Link A, McLean H S, Sawada H, Stephens R B, Turnbull D, Westover B, Wilks S C 2012 Phys. Rev. Lett. 109 145006

    [13]

    Pukhov A, Sheng Z M, Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847

    [14]

    Huang Y S, Bi J Y, Duan X J, Lan X J, Wang N Y, Tang X Z, He Y X 2008 Appl. Phys. Lett. 92 141504

    [15]

    Arefiev A V, Breizman B N, Schollmeier M, Khudik V N 2012 Phys. Rev. Lett. 108 145004

  • [1]

    Bulanov S, Chvykov V, Kalinchenko G, Matsuoka T, Rousseau P, Reed S, Yanovsky V, Krushelnick K, Maksimchuk A 2008 Med. Phys. 35 1770

    [2]

    Blumenfeld I, Clayton C E, Decker F J, Hogan M J, Huang C, Ischebeck R, Iverson R, Joshi C, Katsouleas T, Kirby N, Lu W, Marsh K A, Mori W B, Muggli P, Oz E, Siemann R H, Walz D, Zhou M 2007 Nature 445 741

    [3]

    Nakajima K 2008 Nature Phys. 4 92

    [4]

    Tan F, Zhu B, Han D, Xin J T, Zhao Z Q, Cao L F, Gu Y Q, Zhang B H 2014 Chin. Phys. B 23 034104

    [5]

    Leemans W P, Nagler B, Gonsalves A J, Toth Cs, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nature Phys. 2 696

    [6]

    Lu H Y, Liu M W, Wang W T, Wang C, Liu J S, Deng A H, Xu J C, Xia C Q, Li W T, Zhang H, Lu X M, Wang C, Wang J Z, Liang X Y, Len Y X, Shen B F, Nakajima K, Li R X, Xu Z Z 2011 Appl. Phys. Lett. 99 091502

    [7]

    Zhang G B, Zou D B, Ma Y Y, Zhuo H B, Shao F Q, Yang X H, Ge Z Y, Yin Y, Yu T P, Tian C L, Gan L F, Ouyang J M, Zhao N 2013 Acta Phys. Sin. 62 205203 (in Chinese) [张国博, 邹德滨, 马燕云, 卓红斌, 邵福球, 杨晓虎, 葛哲屹, 银燕, 余同普, 田成林, 甘龙飞, 欧阳建明, 赵娜 2013 物理学报 62 205203]

    [8]

    Zhang G B, Ma Y Y, Zou D B, Zhuo H B, Shao F Q, Yang X H, Ge Z Y, Yu T P, Tian C L, Ouyang J M, Zhao N 2013 Acta Phys. Sin. 62 125205 (in Chinese) [张国博, 马燕云, 邹德滨, 卓红斌, 邵福球, 杨晓虎, 葛哲屹, 余同普, 田成林, 欧阳建明, 赵娜 2013 物理学报 62 125205]

    [9]

    Fuchs J, Cecchetti C A, Borghesi M, Grismayer T, d’Humières E, Antici P, Atzeni S, Mora P, Pipahl A, Romagnani L, Schiavi A, Sentoku Y, Toncian T, Audebert P, Willi O 2007 Phys. Rev. Lett. 99 015002

    [10]

    Liu M, Su L N, Zheng Y, Li Y T, Wang W M, Sheng Z M, Chen L M, Ma J L, Lu X, Wang Z H, Wei Z Y, Hu B T, Zhang J 2013 Acta Phys. Sin. 62 165201 (in Chinese) [刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰 2013 物理学报 62 165201]

    [11]

    Fuchs J, Antici P, d’Humières E, Lefebvre E, Borghesi M, Brambrink E, Cecchetti C A, Kaluza M, Malka V, Manclossi M, Meyroneinc S, Mora P, Schreiber J, Toncian T, Pépin H, Audebert P 2006 Nature Phys. 2 48

    [12]

    Ping Y, Kemp A J, Divol L, Key M H, Patel P K, AkliK U, Beg F N, Chawla S, Chen C D, Freeman R R, Hey D, Higginson D P, Jarrott L C, Kemp G E, Link A, McLean H S, Sawada H, Stephens R B, Turnbull D, Westover B, Wilks S C 2012 Phys. Rev. Lett. 109 145006

    [13]

    Pukhov A, Sheng Z M, Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847

    [14]

    Huang Y S, Bi J Y, Duan X J, Lan X J, Wang N Y, Tang X Z, He Y X 2008 Appl. Phys. Lett. 92 141504

    [15]

    Arefiev A V, Breizman B N, Schollmeier M, Khudik V N 2012 Phys. Rev. Lett. 108 145004

Metrics
  • Abstract views:  4744
  • PDF Downloads:  134
  • Cited By: 0
Publishing process
  • Received Date:  11 October 2014
  • Accepted Date:  11 February 2015
  • Published Online:  05 July 2015

/

返回文章
返回