Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inherited structure of amorphous matter

Wu Zhen-Wei Li Mao-Zhi Xu Li-Mei Wang Wei-Hua

Citation:

Inherited structure of amorphous matter

Wu Zhen-Wei, Li Mao-Zhi, Xu Li-Mei, Wang Wei-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The inherent atomic packing mode of glassy solid is still one of the most interesting and fundamental problems in condensed-matter physics and material science. Although significant progress has been made and provided insights into the atomic-level structure and short-to-medium-range order in glass, the way of leading to the medium-range order is still unclear. Does a universal rule exist in nature to construct a glass structure as what has been discovered for crystals? Is there any connection between glassy and crystalline structures? If so, what does the connection look like and how is the connection related to the properties of the glassy solids? A glassy state is usually obtained through supercooling a liquid fast enough to avoid crystallization. The amorphous nature of glassy solid is experimentally ascertained by X-ray diffraction (XRD), transmission electron microscopy or selected area electron diffraction (SAED). Almost all kinds of glassy solids exhibit similar maze-like SAED patterns without any local lattice fringes and broad diffraction maximum characteristics in XRD data. However, the glassy solids are inherently different in atomic-level structure, demonstrated by their different response behaviors under certain conditions, for example, the diverse annealing-precipitated crystallinephases, the distinct mechanical strengths and ductilities, and the different thermal stabilities against crystallization. Unfortunately, such a difference in inherent structure among glassy solids cannot be easily differentiated from a trivial analysis of the experimental diffraction data. However, the diffraction data such as structure factors or pair correlation functions (PCFs) are not as trivial as they look like. On the contrary, some studies have demonstrated that plenty of structural information is hidden behind the data of structure factors or PCFs, for example, global packing containing both spherical-periodic order and local translational symmetry has been revealed by analyzing PCFs of many metallic glasses. A fractal nature of medium-range order in metallic glassis also found by examining the relationships between the first peak positions in structure factors and atomic molar volumes in many metallic glasses. In fact, the oscillation in the structure factor or PCF is an indication that a certain order does exist in amorphous solid. Therefore, a more careful scrutiny of the diffraction data is desired to gain a more in-depth insight into the glassy structure features and find a clue to unveil the natures of the inherent structures in different glasses. In this paper, we briefly review the recent molecular dynamics simulation results that the distinct hidden orders of atomic packing formula in medium range in these pure glassy solids are unveiled to be inherited from bcc order in glassy Fe and fcc order in glassy Ni, respectively, reflecting nontrivial structural homology between glassy and crystalline solids. By analyzing the partial PCFs of three two-component metallic glasses of CuZr, NiAl, and NiCu which are similar but have distinct glass-forming ability via MD simulations, very different hidden orders are observed in each individual system, indicating that the hidden orders are more complex in multicomponent metallic glasses. The different hidden orders in a multicomponent metallic glass may be entangled topologically. More different hidden orders lead to more complex topological entanglement. Further analysis indicates that the formation of the hidden orders during cooling and their topological entanglement produces the geometrical frustration against crystallization and is closely correlated with the glass-forming ability of metallic alloys. A “genetic map” of hidden orders in metallic glass is finally constructed, which provides new insights into the structural properties and structure-property relationships in metallic glass-forming liquids and glasses.
      Corresponding author: Wu Zhen-Wei, zwwu@pku.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB856801), the National Natural Science Foundation of China (Grant Nos. 11525520, 51631003), and the China Postdoctoral Science Foundation (Grant No. 2017M610687).
    [1]

    Anderson P W 1995 Science 267 1611

    [2]

    Yavari A R 2006 Nature 439 405

    [3]

    Bernal J D 1960 Nature 185 68

    [4]

    Gaskell P H 1978 Nature 276 484

    [5]

    Miracle D B 2004 Nat. Mater. 3 697

    [6]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [7]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30

    [8]

    Li M, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [9]

    Liu X J, Xu Y, Hui X, Lu Z P, Li F, Chen G L, Lu J, Liu C T 2010 Phys. Rev. Lett. 105 155501

    [10]

    Zeng Q, Sheng H, Ding Y, Wang L, Yang W, Jiang J Z, Mao W L, Mao H K 2011 Science 332 1404

    [11]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376

    [12]

    Pan S P, Qin J Y, Wang W M, Gu T K 2011 Phys. Rev. B 84 092201

    [13]

    Zallen R 1983 The Physics of Amorphous Solids (Wiley Online Library)

    [14]

    Luborsky F 1983 Amorphous Metallic Alloys (London, UK: Butterworth and Co (Publishers))

    [15]

    Frank F C 1952 Proc. R. Soc. London Ser. A 215 43

    [16]

    Nelson D R 1983 Phys. Rev. B 28 5515

    [17]

    Watson R E, Bennett L H 1983 Scripta Metall. 17 827

    [18]

    Steinhardt P J, Nelson D R, Ronchetti M 1981 Phys. Rev. Lett. 47 1297

    [19]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [20]

    Leocmach M, Tanaka H 2012 Nat. Commun. 3 974

    [21]

    Tanaka H, Kawasaki T, Shintani H, Watanabe K 2010 Nat. Mater. 9 324

    [22]

    Tanaka H 2005 J. Non-Cryst. Solids 351 3385

    [23]

    Greer A L, Cheng Y Q, Ma E 2013 Mater. Sci. Eng. R 74 71

    [24]

    Schneider S, Thiyagarajan P, Johnson W L 1996 Appl. Phys. Lett. 68 493

    [25]

    Mattern N, Khn U, Hermann H, Ehrenberg H, Neuefeind J, Eckert J 2002 Acta Mater. 50 305

    [26]

    Schroers J, Johnson W L 2004 Phys. Rev. Lett. 93 255506

    [27]

    Dimiduk D M, Woodward C, LeSar R, Uchic M D 2006 Science 312 1188

    [28]

    Chen M, Inoue A, Zhang W, Sakurai T 2006 Phys. Rev. Lett. 96 245502

    [29]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385

    [30]

    Wang W H 2012 Nat. Mater. 11 275

    [31]

    Greer A L 1995 Science 267 1947

    [32]

    Tang C, Harrowell P 2013 Nat. Mater. 12 507

    [33]

    Suryanarayana C, Seki I, Inoue A 2009 J. Non-Cryst. Solids 355 355

    [34]

    Lee S W, Huh M Y, Fleury E, Lee J C 2006 Acta Mater. 54 349

    [35]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 6 6035

    [36]

    Bennett C H 1972 J. Appl. Phys. 43 2727

    [37]

    Makarov A S, Khonik V A, Mitrofanov Y P, Granato A V, Joncich D M, Khonik S V 2013 Appl. Phys. Lett. 102 091908

    [38]

    Wang W H 2007 Prog. Mater. Sci. 52 540

    [39]

    Lu Z P, Liu C T 2004 J. Mater. Sci. 39 3965

    [40]

    Yu H B, Wang W H, Bai H Y 2010 Appl. Phys. Lett. 96 081902

    [41]

    Greer A L 1993 Nature 366 303

  • [1]

    Anderson P W 1995 Science 267 1611

    [2]

    Yavari A R 2006 Nature 439 405

    [3]

    Bernal J D 1960 Nature 185 68

    [4]

    Gaskell P H 1978 Nature 276 484

    [5]

    Miracle D B 2004 Nat. Mater. 3 697

    [6]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [7]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30

    [8]

    Li M, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [9]

    Liu X J, Xu Y, Hui X, Lu Z P, Li F, Chen G L, Lu J, Liu C T 2010 Phys. Rev. Lett. 105 155501

    [10]

    Zeng Q, Sheng H, Ding Y, Wang L, Yang W, Jiang J Z, Mao W L, Mao H K 2011 Science 332 1404

    [11]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376

    [12]

    Pan S P, Qin J Y, Wang W M, Gu T K 2011 Phys. Rev. B 84 092201

    [13]

    Zallen R 1983 The Physics of Amorphous Solids (Wiley Online Library)

    [14]

    Luborsky F 1983 Amorphous Metallic Alloys (London, UK: Butterworth and Co (Publishers))

    [15]

    Frank F C 1952 Proc. R. Soc. London Ser. A 215 43

    [16]

    Nelson D R 1983 Phys. Rev. B 28 5515

    [17]

    Watson R E, Bennett L H 1983 Scripta Metall. 17 827

    [18]

    Steinhardt P J, Nelson D R, Ronchetti M 1981 Phys. Rev. Lett. 47 1297

    [19]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [20]

    Leocmach M, Tanaka H 2012 Nat. Commun. 3 974

    [21]

    Tanaka H, Kawasaki T, Shintani H, Watanabe K 2010 Nat. Mater. 9 324

    [22]

    Tanaka H 2005 J. Non-Cryst. Solids 351 3385

    [23]

    Greer A L, Cheng Y Q, Ma E 2013 Mater. Sci. Eng. R 74 71

    [24]

    Schneider S, Thiyagarajan P, Johnson W L 1996 Appl. Phys. Lett. 68 493

    [25]

    Mattern N, Khn U, Hermann H, Ehrenberg H, Neuefeind J, Eckert J 2002 Acta Mater. 50 305

    [26]

    Schroers J, Johnson W L 2004 Phys. Rev. Lett. 93 255506

    [27]

    Dimiduk D M, Woodward C, LeSar R, Uchic M D 2006 Science 312 1188

    [28]

    Chen M, Inoue A, Zhang W, Sakurai T 2006 Phys. Rev. Lett. 96 245502

    [29]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385

    [30]

    Wang W H 2012 Nat. Mater. 11 275

    [31]

    Greer A L 1995 Science 267 1947

    [32]

    Tang C, Harrowell P 2013 Nat. Mater. 12 507

    [33]

    Suryanarayana C, Seki I, Inoue A 2009 J. Non-Cryst. Solids 355 355

    [34]

    Lee S W, Huh M Y, Fleury E, Lee J C 2006 Acta Mater. 54 349

    [35]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 6 6035

    [36]

    Bennett C H 1972 J. Appl. Phys. 43 2727

    [37]

    Makarov A S, Khonik V A, Mitrofanov Y P, Granato A V, Joncich D M, Khonik S V 2013 Appl. Phys. Lett. 102 091908

    [38]

    Wang W H 2007 Prog. Mater. Sci. 52 540

    [39]

    Lu Z P, Liu C T 2004 J. Mater. Sci. 39 3965

    [40]

    Yu H B, Wang W H, Bai H Y 2010 Appl. Phys. Lett. 96 081902

    [41]

    Greer A L 1993 Nature 366 303

  • [1] Jiang Shuang-Shuang, Zhu Li, Liu Si-Nan, Yang Zhan-Zhan, Lan Si, Wang Yin-Gang. Densification and heterogeneity enhancement of Fe-based metallic glass under local plastic flow. Acta Physica Sinica, 2022, 71(5): 058101. doi: 10.7498/aps.71.20211304
    [2] Densification and heterogeneity enhancement of a Fe-based metallic glass under local plastic flow. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211304
    [3] Shang Ji-Xiang, Zhao Yun-Bo, Hu Li-Na. Abnormal viscosity changes in high-temperature metallic melts. Acta Physica Sinica, 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [4] Liu Qi, Guan Peng-Fei. First principle study on atomic structure of La65X35(X=Ni, Al) metallic glasses. Acta Physica Sinica, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [5] Yu Hai-Bin, Yang Qun. Ultrastable glasses. Acta Physica Sinica, 2017, 66(17): 176108. doi: 10.7498/aps.66.176108
    [6] Wang Jun-Qiang, Ouyang Su. Extended elastic model for flow of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [7] Ma Jiang, Yang Can, Gong Feng, Wu Xiao-Yu, Liang Xiong. Thermoplastic forming of bulk metallic glasses. Acta Physica Sinica, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [8] Hu Li-Na, Zhao Xi, Zhang Chun-Zhi. Fragile-to-strong transition in metallic glass-forming liquids. Acta Physica Sinica, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [9] Yuan Chen-Chen. Bonding nature and the origin of ductility of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [10] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [11] Guo Gu-Qing, Wu Shi-Yang, Cai Guang-Bo, Yang Liang. Identifying icosahedron-like clusters in metallic glasses. Acta Physica Sinica, 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [12] Wu Fei-Fei, Yu Peng, Bian Xi-Lei, Tan Jun, Wang Jian-Guo, Wang Gang. Correlation between fracture mechanism and fracture toughness in metallic glasses. Acta Physica Sinica, 2014, 63(5): 058101. doi: 10.7498/aps.63.058101
    [13] Yu Yu-Ying, Xi Feng, Dai Cheng-Da, Cai Ling-Cang, Tan Hua, Li Xue-Mei, Hu Chang-Ming. Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading. Acta Physica Sinica, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [14] Chen Yan, Jiang Min-Qiang, Dai Lan-Hong. Temperature-dependent yield asymmetry between tension and compression in metallic glasses. Acta Physica Sinica, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [15] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang. Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [16] Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su. Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [17] Wang Yong-Tian, Zhao Zuo-Feng, Pang Zhi-Yong, Liu Ran, Pan Ming-Xiang, Zhao De-Qian, Wang Wan-Lu, Han Bao-Shan, Wang Wei-Hua. Pr-based bulk nanocrystalline alloy and its properties. Acta Physica Sinica, 2005, 54(6): 2838-2842. doi: 10.7498/aps.54.2838
    [18] Tong Cun-Zhu, Zheng Pjing, Bai Hai-Yang, Chen Zhao-Jia, Luo Jian-Lin, Zhang Jie, Lin De-Hua, Wang Wei-Hua. . Acta Physica Sinica, 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
    [19] CAO XIAO-WEN. STUDY ON SUPERCONDUCTIVITY OF AMORPHOUS NON-TRANSITION METALS. Acta Physica Sinica, 1984, 33(5): 639-644. doi: 10.7498/aps.33.639
    [20] LUO YUAN-SU, ZAO JI-LIANG, HUANG SHENG-TAO. AN INVESTIGATION ON THE STRUCTURE OF GLASSY METALS BY X-RAY DIFFRACTION METHOD. Acta Physica Sinica, 1982, 31(9): 1256-1262. doi: 10.7498/aps.31.1256
Metrics
  • Abstract views:  5686
  • PDF Downloads:  514
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2017
  • Accepted Date:  11 July 2017
  • Published Online:  05 September 2017

/

返回文章
返回