搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属玻璃温度依赖的拉压屈服不对称研究

陈艳 蒋敏强 戴兰宏

金属玻璃温度依赖的拉压屈服不对称研究

陈艳, 蒋敏强, 戴兰宏
PDF
导出引用
导出核心图
  • 通过引入静水应力对自由体积演化的影响, 研究了金属玻璃在不同温度下的拉压屈服行为. 结果表明, 在拉伸和压缩载荷下, 屈服强度均满足(T/Tg)1/2的温度依赖关系; 同时, 在不同温度下, 材料的压力敏感系数保持为常值0.1. 随着温度的升高, 压力对自由体积的影响逐渐降低, 从而导致材料的拉压屈服不对称性逐渐趋于不显著. 在高温下, 显著的结构弛豫减缓了自由体积增长速率从而抑制材料迅速屈服. 这些结果将有助于更深入的认识金属玻璃屈服及其拉压不对称性的内在机理.
    • 基金项目: 国家自然科学基金(批准号: 10725211, 11002144, 11021262)、国家自然科学基金委员会-中国工程物理研究院联合基金资助项目 (批准号: 10976100)和国家重点基础研究发展(批准号: 2009CB724401)资助的课题.
    [1]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [2]

    Yao K F, Ruan F, Yang Y Q, Chen N 2006 Appl. Phys. Lett. 88 122106

    [3]

    Li G, Liu J, Liu R P 2007 Chin. Phys. Lett. 24 2323

    [4]

    Dai L H, Bai Y L 2008 Int. J. Impact Eng. 35 704

    [5]

    Wang X Y, Chen Y, Zhang N Y, Zhao L P, Pang Y T, Wang W K 2007 Acta Phys. Sin. 56 4004 (in Chinese)[ 王秀英, 陈莹, 张宁玉, 赵丽萍, 庞岩涛, 王文魁 2007 物理学报 56 4004]

    [6]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese)[郭古青, 杨亮, 张国庆 2007 物理学报 60 016103]

    [7]

    Jiang M Q, Ling Z, Meng J X, Dai L H 2008 Philos. Mag. 88 407

    [8]

    Meng J X, Ling Z, Jiang M Q, Zhang H S, Dai L H 2008 Appl. Phys. Lett. 92 171909

    [9]

    Schuh C, Hufnagel T, Ramamurty U 2007 Acta Mater. 55 4067

    [10]

    Trexler M M, Thadhani N N 2010 Prog. Mater. Sci. 55 759

    [11]

    Chen M W 2008 Annu. Rev. Mater. Res. 38 445

    [12]

    Schuh C A, Lund A C 2003 Nat. Mater. 2 449

    [13]

    Flores K M, Dauskardt R H 2001 Acta Mater. 49 2527

    [14]

    Ott R T, Sansoz F, Jiao T, Warner D, Fan C, Molinari J F, Ramesh K T, Hufnagel T C 2006 Metall. Mater. Trans. A 37 3251

    [15]

    Hsueh C H, Bei H, Liu C T, Becher P F, George E P 2008 Scr. Mater. 59 111

    [16]

    Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164

    [17]

    Zong H T, Ma M Z, Zhang X Y, Qi L, Li G, Jing Q, Liu R P 2011 Chin. Phys. Lett. 28 036103

    [18]

    Anand L, Su C 2005 J. Mech. Phys. Solids 53 1362

    [19]

    Zhang Z F, Eckert J, Schultz L 2003 Acta Metall. 51 1167

    [20]

    Lu J, Ravichandran G, Johnson W L 2003 Acta Mater. 51 3429

    [21]

    Johnson W, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [22]

    Prasad E K, Raghavan R, Ramamurty U 2007 Scr. Mater. 57 121

    [23]

    Sun L, Jiang M Q, Dai L H 2010 Scr. Mater. 63 945

    [24]

    Spaepen F 1977 Acta Metall. 25 407

    [25]

    Huang R, Suo Z, Prevost J H, NixWD 2002 J. Mech. Phys. Solids 50 1011

    [26]

    Gao Y F 2006 Modelling Simul. Mater. Sci. Eng. 14 1329

    [27]

    Keryvin V 2008 J. Phys. 20 114119

    [28]

    Steif P S 1983 J. Mech. Phys. Solids 31 359

    [29]

    Launey M E, Kruzic J J, Li C, Busch R 2007 Appl. Phys. Lett. 91 051913

    [30]

    Li F, Liu X, Hou H, Chen G, Li M 2009 Intermetallics 17 98

    [31]

    Sietsma J, Thijsse B J 1995 Phys. Rev. B 52 3248

    [32]

    Wang J G, Zhao D Q, Pan M X, Wang W H, Song S X, Nieh T G 2010 Scr. Mater. 62 477

    [33]

    Yang Q, Mota A, Ortiz M 2005 Comput. Mech. 37 194

    [34]

    Jiang M Q, Dai L H 2009 J. Mech. Phys. Solids 57 1267

    [35]

    Lund A C, Schuh C A 2003 Acta Metall. 51 5399

    [36]

    Packard C E, Schuh C A 2007 Acta Mater. 55 5348

  • [1]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [2]

    Yao K F, Ruan F, Yang Y Q, Chen N 2006 Appl. Phys. Lett. 88 122106

    [3]

    Li G, Liu J, Liu R P 2007 Chin. Phys. Lett. 24 2323

    [4]

    Dai L H, Bai Y L 2008 Int. J. Impact Eng. 35 704

    [5]

    Wang X Y, Chen Y, Zhang N Y, Zhao L P, Pang Y T, Wang W K 2007 Acta Phys. Sin. 56 4004 (in Chinese)[ 王秀英, 陈莹, 张宁玉, 赵丽萍, 庞岩涛, 王文魁 2007 物理学报 56 4004]

    [6]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese)[郭古青, 杨亮, 张国庆 2007 物理学报 60 016103]

    [7]

    Jiang M Q, Ling Z, Meng J X, Dai L H 2008 Philos. Mag. 88 407

    [8]

    Meng J X, Ling Z, Jiang M Q, Zhang H S, Dai L H 2008 Appl. Phys. Lett. 92 171909

    [9]

    Schuh C, Hufnagel T, Ramamurty U 2007 Acta Mater. 55 4067

    [10]

    Trexler M M, Thadhani N N 2010 Prog. Mater. Sci. 55 759

    [11]

    Chen M W 2008 Annu. Rev. Mater. Res. 38 445

    [12]

    Schuh C A, Lund A C 2003 Nat. Mater. 2 449

    [13]

    Flores K M, Dauskardt R H 2001 Acta Mater. 49 2527

    [14]

    Ott R T, Sansoz F, Jiao T, Warner D, Fan C, Molinari J F, Ramesh K T, Hufnagel T C 2006 Metall. Mater. Trans. A 37 3251

    [15]

    Hsueh C H, Bei H, Liu C T, Becher P F, George E P 2008 Scr. Mater. 59 111

    [16]

    Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164

    [17]

    Zong H T, Ma M Z, Zhang X Y, Qi L, Li G, Jing Q, Liu R P 2011 Chin. Phys. Lett. 28 036103

    [18]

    Anand L, Su C 2005 J. Mech. Phys. Solids 53 1362

    [19]

    Zhang Z F, Eckert J, Schultz L 2003 Acta Metall. 51 1167

    [20]

    Lu J, Ravichandran G, Johnson W L 2003 Acta Mater. 51 3429

    [21]

    Johnson W, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [22]

    Prasad E K, Raghavan R, Ramamurty U 2007 Scr. Mater. 57 121

    [23]

    Sun L, Jiang M Q, Dai L H 2010 Scr. Mater. 63 945

    [24]

    Spaepen F 1977 Acta Metall. 25 407

    [25]

    Huang R, Suo Z, Prevost J H, NixWD 2002 J. Mech. Phys. Solids 50 1011

    [26]

    Gao Y F 2006 Modelling Simul. Mater. Sci. Eng. 14 1329

    [27]

    Keryvin V 2008 J. Phys. 20 114119

    [28]

    Steif P S 1983 J. Mech. Phys. Solids 31 359

    [29]

    Launey M E, Kruzic J J, Li C, Busch R 2007 Appl. Phys. Lett. 91 051913

    [30]

    Li F, Liu X, Hou H, Chen G, Li M 2009 Intermetallics 17 98

    [31]

    Sietsma J, Thijsse B J 1995 Phys. Rev. B 52 3248

    [32]

    Wang J G, Zhao D Q, Pan M X, Wang W H, Song S X, Nieh T G 2010 Scr. Mater. 62 477

    [33]

    Yang Q, Mota A, Ortiz M 2005 Comput. Mech. 37 194

    [34]

    Jiang M Q, Dai L H 2009 J. Mech. Phys. Solids 57 1267

    [35]

    Lund A C, Schuh C A 2003 Acta Metall. 51 5399

    [36]

    Packard C E, Schuh C A 2007 Acta Mater. 55 5348

  • [1] 徐振海, 袁林, 单德彬, 郭斌. 单晶铜纳米线屈服机理的原子模拟研究. 物理学报, 2009, 58(7): 4835-4839. doi: 10.7498/aps.58.4835
    [2] 王敬丰, 柳 林, 蒲 健, 肖建中. 大块金属玻璃Zr41Ti14Cu12.5Ni10Be22.5的流变行为研究. 物理学报, 2004, 53(6): 1916-1922. doi: 10.7498/aps.53.1916
    [3] 杜磊, 庄奕琪, 薛丽君. 金属薄膜电迁移1/f噪声与1/f2噪声统一模型. 物理学报, 2002, 51(12): 2836-2841. doi: 10.7498/aps.51.2836
    [4] 李 工, 孙懿楠, 高云鹏, 张新宇, 刘日平, 罗丛举. 高压Ni77P23非晶合金自由体积变化的同步辐射研究. 物理学报, 2006, 55(10): 5394-5397. doi: 10.7498/aps.55.5394
    [5] 胡勇, 闫红红, 林 涛, 李金富, 周尧和. 退火态Zr55Al10Ni5Cu30块体非晶合金在轧制过程中的自由体积演化. 物理学报, 2012, 61(8): 087102. doi: 10.7498/aps.61.087102
    [6] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象. 物理学报, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [7] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [8] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型. 物理学报, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [9] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [10] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为. 物理学报, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [11] 郑萍, 白海洋, 陈兆甲, 雒建林, 汪卫华, 林德华, 佟存柱, 张杰. 块体金属玻璃Zr_(48)Nb_8Cu_(12)Fe_8Be_(24)低温电阻的研究. 物理学报, 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
    [12] 王军强, 欧阳酥. 金属玻璃流变的扩展弹性模型. 物理学报, 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [13] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [14] 于海滨, 杨群. 超稳定玻璃. 物理学报, 2017, 66(17): 176108. doi: 10.7498/aps.66.176108
    [15] 吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚. 金属玻璃的断裂机理与其断裂韧度的关系. 物理学报, 2014, 63(5): 058101. doi: 10.7498/aps.63.058101
    [16] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索. 物理学报, 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [17] 郭古青, 吴诗阳, 蔡光博, 杨亮. 判定金属玻璃微观结构中的二十面体类团簇. 物理学报, 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [18] 王君君, 龚静, 宫振丽, 闫晓丽, 高舒, 王波. 聚合物纳米复合电解质(PEO)8-ZnO-LiClO4微结构及电导率研究. 物理学报, 2011, 60(12): 127803. doi: 10.7498/aps.60.127803
    [19] 李丽丽, 张晓虹, 王玉龙, 国家辉. 电场和温度对聚合物空间电荷陷阱性能的影响. 物理学报, 2017, 66(8): 087201. doi: 10.7498/aps.66.087201
    [20] 柳延辉. 非晶合金的高通量制备与表征. 物理学报, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1704
  • PDF下载量:  412
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-20
  • 修回日期:  2011-05-24
  • 刊出日期:  2012-03-15

金属玻璃温度依赖的拉压屈服不对称研究

  • 1. 中国科学院力学研究所, 非线性力学国家重点实验室, 北京 100190
    基金项目: 

    国家自然科学基金(批准号: 10725211, 11002144, 11021262)、国家自然科学基金委员会-中国工程物理研究院联合基金资助项目 (批准号: 10976100)和国家重点基础研究发展(批准号: 2009CB724401)资助的课题.

摘要: 通过引入静水应力对自由体积演化的影响, 研究了金属玻璃在不同温度下的拉压屈服行为. 结果表明, 在拉伸和压缩载荷下, 屈服强度均满足(T/Tg)1/2的温度依赖关系; 同时, 在不同温度下, 材料的压力敏感系数保持为常值0.1. 随着温度的升高, 压力对自由体积的影响逐渐降低, 从而导致材料的拉压屈服不对称性逐渐趋于不显著. 在高温下, 显著的结构弛豫减缓了自由体积增长速率从而抑制材料迅速屈服. 这些结果将有助于更深入的认识金属玻璃屈服及其拉压不对称性的内在机理.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回