-
基于第一性原理赝势平面波方法对伽马晶体CuCl, CuBr, CuI的体模量、体模量对压强的一阶偏导 数、电子结构、折射率等光学性质进行了计算.计算结果表明,广义梯度近似(GGA)下CuX(X = Cl, Br, I) 晶体的晶格常数与体模量的计算值与实验相差较小.与局域密度近似(LDA)相比, GGA更适合于 CuX(X = Cl, Br, I)晶体 的计算.这三者的价带都来源于Cu的3d态,导带部分主要来自Cu和卤素的s电子贡献,很少部分来自卤素的p电子 贡献.计算得到CuCl, CuBr, CuI的折射率分别为1.887, 2.015, 2.199,与应用Gladstone-Dale半经验关系得到 的结果符合得很好.
-
关键词:
- 电子结构 /
- 光学性质 /
- 第一性原理计算 /
- CuX (X = Cl,Br,I)
[1] Ves S, Glotzel D, Cardona M, Overhof H 1981 Phys. Rev. B 24 3073
[2] Gross J G, Lewonczuk S, Khan M A, Rengeissen J 1980 Solid State Commun. 36 907
[3] Lewonczuk S, Ringeissen J 1994 Phys. Rev. B 49 2344
[4] Cardona M 1963 Phys. Rev. 129 69
[5] Derenzo S E, Moses W W 1992 Proceedings of the Crystal 2000 International Workgroup on Heavy Scintillators for Scientific and Industrial Applications Chamonix, France, Sept 22-26, 1992 p125
[6] Amrani B, Benmessabih T, Tahiri M, Chiboub I, Hiadsi S, Hamdache F 2006 Physica B 381 179
[7] Gonze X, Beuken J, Caracas R, Detraux F, Fuchs M, Rignanese G, Sindic L, Verstraete M, Zerah G, Jollet F 2002 Comput. Mater. Sci. 25 478
[8] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[9] Kohn W, Sham L J 1965 Phys. Rev. 140 1133
[10] Zhang Y K, Yang W T 1998 Phys. Rev. Lett. 80 890
[11] Hammer B, Hansen L B, Norskov J K 1999 Phys. Rev. B 59 7413
[12] Fuchs M, Scheffler M 1999 Comput. Phys. Commun. 119 67
[13] Press W H, Flannery B P, Teukolsky S A, Vetterling W T 1986 Numerical Recipes, the Art of Scientific Computing (Cambridge: Cambridge University Press)p308
[14] Hull S, Keen D A 1994 Phys. Rev. B 50 5868
[15] Hanson R C, Hallberg J R, Schwab C 1972 Appl. Phys. Lett. 21 490
[16] Hoffman M, Hull S, Keen D A 1995 Phys. Rev. B 51 12022
[17] Weber M J 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 527 9
[18] Zhang J H, Ding J W, Lu Z H 2009 Acta Phys. Sin. 58 1901 (in Chinese)[张计划, 丁建文, 卢章辉 2009 物理学报 58 1901]
[19] Karazhanov S Z, Ravindran P, Kjekshus A, Fjellvag H, Svensson B G 2007 Phys. Rev. B 75 155104
[20] Mandarino J A 1976 Can. Mineral. 14 498
[21] Mandarino J A 1979 Can. Mineral. 17 71
-
[1] Ves S, Glotzel D, Cardona M, Overhof H 1981 Phys. Rev. B 24 3073
[2] Gross J G, Lewonczuk S, Khan M A, Rengeissen J 1980 Solid State Commun. 36 907
[3] Lewonczuk S, Ringeissen J 1994 Phys. Rev. B 49 2344
[4] Cardona M 1963 Phys. Rev. 129 69
[5] Derenzo S E, Moses W W 1992 Proceedings of the Crystal 2000 International Workgroup on Heavy Scintillators for Scientific and Industrial Applications Chamonix, France, Sept 22-26, 1992 p125
[6] Amrani B, Benmessabih T, Tahiri M, Chiboub I, Hiadsi S, Hamdache F 2006 Physica B 381 179
[7] Gonze X, Beuken J, Caracas R, Detraux F, Fuchs M, Rignanese G, Sindic L, Verstraete M, Zerah G, Jollet F 2002 Comput. Mater. Sci. 25 478
[8] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[9] Kohn W, Sham L J 1965 Phys. Rev. 140 1133
[10] Zhang Y K, Yang W T 1998 Phys. Rev. Lett. 80 890
[11] Hammer B, Hansen L B, Norskov J K 1999 Phys. Rev. B 59 7413
[12] Fuchs M, Scheffler M 1999 Comput. Phys. Commun. 119 67
[13] Press W H, Flannery B P, Teukolsky S A, Vetterling W T 1986 Numerical Recipes, the Art of Scientific Computing (Cambridge: Cambridge University Press)p308
[14] Hull S, Keen D A 1994 Phys. Rev. B 50 5868
[15] Hanson R C, Hallberg J R, Schwab C 1972 Appl. Phys. Lett. 21 490
[16] Hoffman M, Hull S, Keen D A 1995 Phys. Rev. B 51 12022
[17] Weber M J 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 527 9
[18] Zhang J H, Ding J W, Lu Z H 2009 Acta Phys. Sin. 58 1901 (in Chinese)[张计划, 丁建文, 卢章辉 2009 物理学报 58 1901]
[19] Karazhanov S Z, Ravindran P, Kjekshus A, Fjellvag H, Svensson B G 2007 Phys. Rev. B 75 155104
[20] Mandarino J A 1976 Can. Mineral. 14 498
[21] Mandarino J A 1979 Can. Mineral. 17 71
引用本文: |
Citation: |
计量
- 文章访问数: 2942
- PDF下载量: 490
- 被引次数: 0