Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermoplastic forming of bulk metallic glasses

Ma Jiang Yang Can Gong Feng Wu Xiao-Yu Liang Xiong

Citation:

Thermoplastic forming of bulk metallic glasses

Ma Jiang, Yang Can, Gong Feng, Wu Xiao-Yu, Liang Xiong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The viscosities of metallic glasses gradually drop with temperature rising in their supercooled liquid region (SLR) which enables them to be thermoplastically formed and totally overturns the processing method of traditional metallic materials: their forming can be realized under temperature and stress far below those of traditional metallic materials. Based on this property, metallic glasses are considered as the ideal miniature fabrication materials due to their unique amorphous structures and no crystalline defects such as dislocation and grain boundary.The thermoplastic micro forming of metallic glasses in their SLR is studied in the present paper. A universal equation which describes the filling kinetics of viscous metallic glasses in the non-circular channel is proposed with the help of fluidic mechanics, and the results may be theoretically useful for the micro application of metallic glasses.In addition, some applications in the micro thermoplastic forming of metallic glasses are introduced. A metallic glass mold insert for hot embossing of polymers is fabricated by the micro thermoplastic forming of metallic glass, and it is found to have many advantages in mechanical property, fabrication efficiency, surface quality, etc. compared with the traditional material and method. A similar approach is used to fabricate gratings, which may provide a new material and technology to produce gratings. The superhydrophobic metallic glass surface with excellent abrasion and corrosion resistance is also fabricated by constructing micro-nano hierarchical structures on metallic glass surface. The bulk metallic glass micro fuel cell is also finished and found to have good performance.
      Corresponding author: Ma Jiang, majiang@szu.edu.cn;xliang@szu.edu.cn ; Liang Xiong, majiang@szu.edu.cn;xliang@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51501116, 51605304, 51575360), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2016A030310036, 2016A030310043), the China Postdoctoral Science Foundation (Grant No. 2016M601423), and the Natural Science Foundation of Shenzhen University, Chian (Grant No. 2017034).
    [1]

    Klement W, Willens R H, Duwez P 1960 Nature 187 869

    [2]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nat. Mater. 2 661

    [3]

    Wang W H 2011 Physics 40 701 (in Chinese) [汪卫华 2011 物理 40 701]

    [4]

    Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620

    [5]

    Sekol R C, Kumar G, Carmo M, Gittleson F, Dyck N H, Mukherjee S, Schroers J, Taylor A D 2013 Small 9 2081

    [6]

    Kumar G, Schroers J 2008 Appl. Phys. Lett. 92 031901

    [7]

    Saotome Y, Imai K, Shioda S, Shimizu S, Zhang T, Inoue A 2002 Intermetallics 10 1241

    [8]

    Ma J, Zhang X, Wang W H 2012 J. Appl. Phys. 112 024506

    [9]

    Ma J, Yi J, Zhao D Q, Pan M X, Wang W H 2012 J. Appl. Phys. 112 064505

    [10]

    Telford M 2004 Mater. Today 7 36

    [11]

    Chu J, Wijaya H, Wu C, Tsai T, Wei C, Nieh T, Wadsworth J 2007 Appl. Phys. Lett. 90 034101

    [12]

    Schroers J 2005 Jom-Us 57 35

    [13]

    Zhang B 2006 Ph. D. Dissertation (Beijing: Institute of Physics Chinese Academy of Sciences) (in Chinese) [张博2006 博士学位论文(北京: 中国科学院物理研究所)]

    [14]

    Diego J, Clavaguera-Mora M, Clavaguera N 1994 Mater. Sci. Eng. A 179 526

    [15]

    Kim Y, Busch R, Johnson W, Rulison A, Rhim W 1996 Appl. Phys. Lett. 68 1057

    [16]

    Schroers J, Johnson W L, Busch R 2000 Appl. Phys. Lett. 77 1158

    [17]

    Hays C, Schroers J, Johnson W, Rathz T, Hyers R, Rogers J, Robinson M 2001 Appl. Phys. Lett. 79 1605

    [18]

    Schroers J, Wu Y, Busch R, Johnson W 2001 Acta Mater. 49 2773

    [19]

    Schroers J, Johnson W L 2000 J. Appl. Phys. 88 44

    [20]

    Schroers J, Johnson W L 2000 Mater. Trans. JIM 41 1530

    [21]

    Mukherjee S, Zhou Z, Schroers J, Johnson W, Rhim W 2004 Appl. Phys. Lett. 84 5010

    [22]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [23]

    Schroers J 2010 Adv. Mater. 22 1566

    [24]

    Busch R, Bakke E, Johnson W 1998 Acta Mater. 46 4725

    [25]

    Fan G, Fecht H J, Lavernia E 2004 Appl. Phys. Lett. 84 487

    [26]

    Waniuk T, Schroers J, Johnson W L 2003 Phys. Rev. B 67 184203

    [27]

    Legg B A, Schroers J, Busch R 2007 Acta Mater. 55 1109

    [28]

    Wiest A, Duan G, Demetriou M D, Wiest L A, Peck A, Kaltenboeck G, Wiest B, Johnson W L 2008 Acta Mater. 56 2625

    [29]

    Lu Z P, Liu C T, Thompson J R, Porter W D 2004 Phys. Rev. Lett. 92 245503

    [30]

    Waniuk T A, Schroers J, Johnson W L 2001 Appl. Phys. Lett. 78 1213

    [31]

    Lu I R, Wilde G, Görler G P, Willnecker R 1999 J. Non-Cryst. Solids 250 577

    [32]

    Schroers J, Johnson W L 2004 Appl. Phys. Lett. 84 3666

    [33]

    Schroers J, Lohwongwatana B, Johnson W L, Peker A 2005 Appl. Phys. Lett. 87 061912

    [34]

    Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200

    [35]

    Ma J, Chan K C, Xia L, Chen S H, Wu F F, Li W H, Wang W H 2013 Mater. Sci. Eng. A 587 240

    [36]

    Wiest A, Harmon J S, Demetriou M D, Conner R D, Johnson W L 2009 Scripta Mater. 60 160

    [37]

    Duan G, Wiest A, Lind M L, Li J, Rhim W K, Johnson W L 2007 Adv. Mater. 19 4272

    [38]

    Takagi M, Kawamura Y, Imura T, Nishigaki J, Saka H 1992 J. Mater. Sci. 27 817

    [39]

    Kato A, Suganuma T, Horikiri H, Kawamura Y, Inoue A, Masumoto T 1994 Mater. Sci. Eng. A 179 112

    [40]

    Kawamura Y, Kato H, Inoue A, Masumoto T 1995 Appl. Phys. Lett. 67 2008

    [41]

    Kawamura Y, Kato H, Inoue A, Masumoto T 1996 Mater. Sci. Eng. A 219 39

    [42]

    Kawamura Y, Shibata T, Inoue A, Masumoto T 1998 Acta Mater. 46 253

    [43]

    Sordelet D, Rozhkova E, Huang P, Wheelock P, Besser M, Kramer M, Calvo-Dahlborg M, Dahlborg U 2002 J. Mater. Res. 17 186

    [44]

    Lee S Y, Kim T S, Lee J K, Kim H J, Kim D, Bae J 2006 Intermetallics 14 1000

    [45]

    Martinez R, Kumar G, Schroers J 2008 Scripta Mater. 59 187

    [46]

    Lee M H, Park J S, Kim J H, Kim W T, Kim D H 2005 Mater. Lett. 59 1042

    [47]

    Kim H J, Lee J K, Kim T S, Bae J C, Park E S, Huh M Y, Kim D H 2007 Mater. Sci. Eng. A 449 929

    [48]

    Johnson W L 2011 Science 332 828

    [49]

    Kaltenboeck G, Demetriou M D, Scott, Johnson W L 2016 Nat. Commun. 7 10576

    [50]

    Fairbanks H V 1974 Ultrasonics 12 22

    [51]

    Ma J 2015 Sci. Rep.-UK 5

    [52]

    Saotome Y, Itoh K, Zhang T, Inoue A 2001 Scripta Mater. 44 1541

    [53]

    Saotome Y, Miwa S, Zhang T, Inoue A 2001 J. Mater. Process. Technol. 113 64

    [54]

    Saotome Y, Noguchi Y, Zhang T, Inoue A 2004 Mater. Sci. Engineer. A 375 389

    [55]

    Saotome Y, Fukuda Y, Yamaguchi I, Inoue A 2007 J. Alloy. Compd. 434 97

    [56]

    Saotome Y, Iwazaki H 2000 Microsyst. Technol. 6 126

    [57]

    Schroers J, Nguyen T, O'Keeffe S, Desai A 2007 Mater. Sci. Eng. A 449 898

    [58]

    Bardt J A, Bourne G R, Schmitz T L, Ziegert J C, Sawyer W G 2007 J. Mater. Res. 22 339

    [59]

    Huang J, Chu J, Jang J 2009 Intermetallics 17 973

    [60]

    Pan C, Wu T, Chang Y, Huang J 2008 J. Micromech. Microeng. 18 025010

    [61]

    Schroers J, Kumar G, Hodges T M, Chan S, Kyriakides T R 2009 Jom-Us 61 21

    [62]

    Kumar G, Tang H X, Schroers J 2009 Nature 457 868

    [63]

    Kumar G, Desai A, Schroers J 2011 Adv. Mater. 23 461

    [64]

    Schroers J, Pham Q, Desai A 2007 J. Microelectromech. S. 16 240

    [65]

    Kundu K P, Cohen M I 2008 Fluid Mechanics (4th Ed.) (Waltham: Academic Press)

    [66]

    Li N, Xia T, Heng L, Liu L 2013 Appl. Phys. Lett. 102 251603

    [67]

    Zheng Z Z, Cheng J, Wang X Y, Li J J 2009 China Mech. Eng. 20 2510 (in Chinese) [郑志镇, 成蛟, 王新云, 李建军 2009 中国机械工程 20 2510]

    [68]

    Wang D 2010 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [王栋 2010 博士学位论文 (武汉: 华中科技大学)]

    [69]

    Liu X, Shao Y, Han Z, Yao K 2014 Sci. Bull. 60 629

    [70]

    Zhang Z, Xie J 2006 Mater. Sci. Eng. A 433 323

    [71]

    Ma Z, Dong X, Su H, Wang R 2012 Rare Metal Mat. Eng. 41 1706

    [72]

    Guo X L 2008 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [郭晓琳 2008 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [73]

    Cheng M, Zhang S H 2007 Mater. Rev. 21 4 (in Chinese) [程明, 张士宏2007 材料导报 21 4]

    [74]

    Wang G 2005 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [王刚 2005 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [75]

    Rötting O, Röpke W, Becker H, Gärtner C 2002 Microsyst. Technol. 8 32

    [76]

    Worgull M, Heckele M, Schomburg W 2005 Microsys. Technol. 12 110

    [77]

    Torre F D, Spätig P, Schäublin R, Victoria M 2005 Acta Mater. 53 2337

    [78]

    Worgull M 2009 Hot Embossing: Theory and Technology of Microreplication (Vol. 1) (Oxford: William Andrew) p62

    [79]

    Fu G, Tor S B, Loh N H, Hardt D E 2010 J. Micromech. Microeng. 20 085019

    [80]

    Zhang N, Chu J S, Byrne C J, Browne D J, Gilchrist M D 2012 J. Micromech. Microeng. 22 065019

    [81]

    Aizenberg J, Fratzl P 2009 Adv. Mater. 21 387

    [82]

    Yao X, Song Y, Jiang L 2011 Adv. Mater. 23 719

    [83]

    Roach P, Shirtcliffe N J, Newton M I 2008 Soft Matter 4 224

    [84]

    Zhang X, Shi F, Niu J, Jiang Y, Wang Z 2008 J. Mater. Chem. 18 621

    [85]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988

    [86]

    Cassie A, Baxter S 1944 Trans. Faraday Soc. 40 546

    [87]

    Liu K, Jiang L 2011 Nanoscale 3 825

    [88]

    Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras R H 2011 Adv. Mater. 23 673

    [89]

    Liu K, Li Z, Wang W, Jiang L 2011 Appl. Phys. Lett. 99 261905

    [90]

    Larmour I A, Saunders G C, Bell S E 2010 ACS Appl. Mater. Inter. 2 2703

    [91]

    Ma J, Zhang X Y, Wang D P 2014 Appl. Phys. Lett. 104 173701

  • [1]

    Klement W, Willens R H, Duwez P 1960 Nature 187 869

    [2]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nat. Mater. 2 661

    [3]

    Wang W H 2011 Physics 40 701 (in Chinese) [汪卫华 2011 物理 40 701]

    [4]

    Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620

    [5]

    Sekol R C, Kumar G, Carmo M, Gittleson F, Dyck N H, Mukherjee S, Schroers J, Taylor A D 2013 Small 9 2081

    [6]

    Kumar G, Schroers J 2008 Appl. Phys. Lett. 92 031901

    [7]

    Saotome Y, Imai K, Shioda S, Shimizu S, Zhang T, Inoue A 2002 Intermetallics 10 1241

    [8]

    Ma J, Zhang X, Wang W H 2012 J. Appl. Phys. 112 024506

    [9]

    Ma J, Yi J, Zhao D Q, Pan M X, Wang W H 2012 J. Appl. Phys. 112 064505

    [10]

    Telford M 2004 Mater. Today 7 36

    [11]

    Chu J, Wijaya H, Wu C, Tsai T, Wei C, Nieh T, Wadsworth J 2007 Appl. Phys. Lett. 90 034101

    [12]

    Schroers J 2005 Jom-Us 57 35

    [13]

    Zhang B 2006 Ph. D. Dissertation (Beijing: Institute of Physics Chinese Academy of Sciences) (in Chinese) [张博2006 博士学位论文(北京: 中国科学院物理研究所)]

    [14]

    Diego J, Clavaguera-Mora M, Clavaguera N 1994 Mater. Sci. Eng. A 179 526

    [15]

    Kim Y, Busch R, Johnson W, Rulison A, Rhim W 1996 Appl. Phys. Lett. 68 1057

    [16]

    Schroers J, Johnson W L, Busch R 2000 Appl. Phys. Lett. 77 1158

    [17]

    Hays C, Schroers J, Johnson W, Rathz T, Hyers R, Rogers J, Robinson M 2001 Appl. Phys. Lett. 79 1605

    [18]

    Schroers J, Wu Y, Busch R, Johnson W 2001 Acta Mater. 49 2773

    [19]

    Schroers J, Johnson W L 2000 J. Appl. Phys. 88 44

    [20]

    Schroers J, Johnson W L 2000 Mater. Trans. JIM 41 1530

    [21]

    Mukherjee S, Zhou Z, Schroers J, Johnson W, Rhim W 2004 Appl. Phys. Lett. 84 5010

    [22]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [23]

    Schroers J 2010 Adv. Mater. 22 1566

    [24]

    Busch R, Bakke E, Johnson W 1998 Acta Mater. 46 4725

    [25]

    Fan G, Fecht H J, Lavernia E 2004 Appl. Phys. Lett. 84 487

    [26]

    Waniuk T, Schroers J, Johnson W L 2003 Phys. Rev. B 67 184203

    [27]

    Legg B A, Schroers J, Busch R 2007 Acta Mater. 55 1109

    [28]

    Wiest A, Duan G, Demetriou M D, Wiest L A, Peck A, Kaltenboeck G, Wiest B, Johnson W L 2008 Acta Mater. 56 2625

    [29]

    Lu Z P, Liu C T, Thompson J R, Porter W D 2004 Phys. Rev. Lett. 92 245503

    [30]

    Waniuk T A, Schroers J, Johnson W L 2001 Appl. Phys. Lett. 78 1213

    [31]

    Lu I R, Wilde G, Görler G P, Willnecker R 1999 J. Non-Cryst. Solids 250 577

    [32]

    Schroers J, Johnson W L 2004 Appl. Phys. Lett. 84 3666

    [33]

    Schroers J, Lohwongwatana B, Johnson W L, Peker A 2005 Appl. Phys. Lett. 87 061912

    [34]

    Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200

    [35]

    Ma J, Chan K C, Xia L, Chen S H, Wu F F, Li W H, Wang W H 2013 Mater. Sci. Eng. A 587 240

    [36]

    Wiest A, Harmon J S, Demetriou M D, Conner R D, Johnson W L 2009 Scripta Mater. 60 160

    [37]

    Duan G, Wiest A, Lind M L, Li J, Rhim W K, Johnson W L 2007 Adv. Mater. 19 4272

    [38]

    Takagi M, Kawamura Y, Imura T, Nishigaki J, Saka H 1992 J. Mater. Sci. 27 817

    [39]

    Kato A, Suganuma T, Horikiri H, Kawamura Y, Inoue A, Masumoto T 1994 Mater. Sci. Eng. A 179 112

    [40]

    Kawamura Y, Kato H, Inoue A, Masumoto T 1995 Appl. Phys. Lett. 67 2008

    [41]

    Kawamura Y, Kato H, Inoue A, Masumoto T 1996 Mater. Sci. Eng. A 219 39

    [42]

    Kawamura Y, Shibata T, Inoue A, Masumoto T 1998 Acta Mater. 46 253

    [43]

    Sordelet D, Rozhkova E, Huang P, Wheelock P, Besser M, Kramer M, Calvo-Dahlborg M, Dahlborg U 2002 J. Mater. Res. 17 186

    [44]

    Lee S Y, Kim T S, Lee J K, Kim H J, Kim D, Bae J 2006 Intermetallics 14 1000

    [45]

    Martinez R, Kumar G, Schroers J 2008 Scripta Mater. 59 187

    [46]

    Lee M H, Park J S, Kim J H, Kim W T, Kim D H 2005 Mater. Lett. 59 1042

    [47]

    Kim H J, Lee J K, Kim T S, Bae J C, Park E S, Huh M Y, Kim D H 2007 Mater. Sci. Eng. A 449 929

    [48]

    Johnson W L 2011 Science 332 828

    [49]

    Kaltenboeck G, Demetriou M D, Scott, Johnson W L 2016 Nat. Commun. 7 10576

    [50]

    Fairbanks H V 1974 Ultrasonics 12 22

    [51]

    Ma J 2015 Sci. Rep.-UK 5

    [52]

    Saotome Y, Itoh K, Zhang T, Inoue A 2001 Scripta Mater. 44 1541

    [53]

    Saotome Y, Miwa S, Zhang T, Inoue A 2001 J. Mater. Process. Technol. 113 64

    [54]

    Saotome Y, Noguchi Y, Zhang T, Inoue A 2004 Mater. Sci. Engineer. A 375 389

    [55]

    Saotome Y, Fukuda Y, Yamaguchi I, Inoue A 2007 J. Alloy. Compd. 434 97

    [56]

    Saotome Y, Iwazaki H 2000 Microsyst. Technol. 6 126

    [57]

    Schroers J, Nguyen T, O'Keeffe S, Desai A 2007 Mater. Sci. Eng. A 449 898

    [58]

    Bardt J A, Bourne G R, Schmitz T L, Ziegert J C, Sawyer W G 2007 J. Mater. Res. 22 339

    [59]

    Huang J, Chu J, Jang J 2009 Intermetallics 17 973

    [60]

    Pan C, Wu T, Chang Y, Huang J 2008 J. Micromech. Microeng. 18 025010

    [61]

    Schroers J, Kumar G, Hodges T M, Chan S, Kyriakides T R 2009 Jom-Us 61 21

    [62]

    Kumar G, Tang H X, Schroers J 2009 Nature 457 868

    [63]

    Kumar G, Desai A, Schroers J 2011 Adv. Mater. 23 461

    [64]

    Schroers J, Pham Q, Desai A 2007 J. Microelectromech. S. 16 240

    [65]

    Kundu K P, Cohen M I 2008 Fluid Mechanics (4th Ed.) (Waltham: Academic Press)

    [66]

    Li N, Xia T, Heng L, Liu L 2013 Appl. Phys. Lett. 102 251603

    [67]

    Zheng Z Z, Cheng J, Wang X Y, Li J J 2009 China Mech. Eng. 20 2510 (in Chinese) [郑志镇, 成蛟, 王新云, 李建军 2009 中国机械工程 20 2510]

    [68]

    Wang D 2010 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [王栋 2010 博士学位论文 (武汉: 华中科技大学)]

    [69]

    Liu X, Shao Y, Han Z, Yao K 2014 Sci. Bull. 60 629

    [70]

    Zhang Z, Xie J 2006 Mater. Sci. Eng. A 433 323

    [71]

    Ma Z, Dong X, Su H, Wang R 2012 Rare Metal Mat. Eng. 41 1706

    [72]

    Guo X L 2008 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [郭晓琳 2008 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [73]

    Cheng M, Zhang S H 2007 Mater. Rev. 21 4 (in Chinese) [程明, 张士宏2007 材料导报 21 4]

    [74]

    Wang G 2005 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [王刚 2005 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [75]

    Rötting O, Röpke W, Becker H, Gärtner C 2002 Microsyst. Technol. 8 32

    [76]

    Worgull M, Heckele M, Schomburg W 2005 Microsys. Technol. 12 110

    [77]

    Torre F D, Spätig P, Schäublin R, Victoria M 2005 Acta Mater. 53 2337

    [78]

    Worgull M 2009 Hot Embossing: Theory and Technology of Microreplication (Vol. 1) (Oxford: William Andrew) p62

    [79]

    Fu G, Tor S B, Loh N H, Hardt D E 2010 J. Micromech. Microeng. 20 085019

    [80]

    Zhang N, Chu J S, Byrne C J, Browne D J, Gilchrist M D 2012 J. Micromech. Microeng. 22 065019

    [81]

    Aizenberg J, Fratzl P 2009 Adv. Mater. 21 387

    [82]

    Yao X, Song Y, Jiang L 2011 Adv. Mater. 23 719

    [83]

    Roach P, Shirtcliffe N J, Newton M I 2008 Soft Matter 4 224

    [84]

    Zhang X, Shi F, Niu J, Jiang Y, Wang Z 2008 J. Mater. Chem. 18 621

    [85]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988

    [86]

    Cassie A, Baxter S 1944 Trans. Faraday Soc. 40 546

    [87]

    Liu K, Jiang L 2011 Nanoscale 3 825

    [88]

    Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras R H 2011 Adv. Mater. 23 673

    [89]

    Liu K, Li Z, Wang W, Jiang L 2011 Appl. Phys. Lett. 99 261905

    [90]

    Larmour I A, Saunders G C, Bell S E 2010 ACS Appl. Mater. Inter. 2 2703

    [91]

    Ma J, Zhang X Y, Wang D P 2014 Appl. Phys. Lett. 104 173701

  • [1] Jiang Shuang-Shuang, Zhu Li, Liu Si-Nan, Yang Zhan-Zhan, Lan Si, Wang Yin-Gang. Densification and heterogeneity enhancement of Fe-based metallic glass under local plastic flow. Acta Physica Sinica, 2022, 71(5): 058101. doi: 10.7498/aps.71.20211304
    [2] Densification and heterogeneity enhancement of a Fe-based metallic glass under local plastic flow. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211304
    [3] Liu Qi, Guan Peng-Fei. First principle study on atomic structure of La65X35(X=Ni, Al) metallic glasses. Acta Physica Sinica, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [4] Shang Ji-Xiang, Zhao Yun-Bo, Hu Li-Na. Abnormal viscosity changes in high-temperature metallic melts. Acta Physica Sinica, 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [5] Wu Zhen-Wei, Li Mao-Zhi, Xu Li-Mei, Wang Wei-Hua. Inherited structure of amorphous matter. Acta Physica Sinica, 2017, 66(17): 176405. doi: 10.7498/aps.66.176405
    [6] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [7] Yi Jun. Fabrications and mechanical behaviors of amorphous fibers. Acta Physica Sinica, 2017, 66(17): 178102. doi: 10.7498/aps.66.178102
    [8] Yu Hai-Bin, Yang Qun. Ultrastable glasses. Acta Physica Sinica, 2017, 66(17): 176108. doi: 10.7498/aps.66.176108
    [9] Wang Jun-Qiang, Ouyang Su. Extended elastic model for flow of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [10] Hu Li-Na, Zhao Xi, Zhang Chun-Zhi. Fragile-to-strong transition in metallic glass-forming liquids. Acta Physica Sinica, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [11] Yuan Chen-Chen. Bonding nature and the origin of ductility of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [12] Guo Gu-Qing, Wu Shi-Yang, Cai Guang-Bo, Yang Liang. Identifying icosahedron-like clusters in metallic glasses. Acta Physica Sinica, 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [13] Wu Fei-Fei, Yu Peng, Bian Xi-Lei, Tan Jun, Wang Jian-Guo, Wang Gang. Correlation between fracture mechanism and fracture toughness in metallic glasses. Acta Physica Sinica, 2014, 63(5): 058101. doi: 10.7498/aps.63.058101
    [14] Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su. Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [15] Chen Yan, Jiang Min-Qiang, Dai Lan-Hong. Temperature-dependent yield asymmetry between tension and compression in metallic glasses. Acta Physica Sinica, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [16] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang. Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [17] Yu Yu-Ying, Xi Feng, Dai Cheng-Da, Cai Ling-Cang, Tan Hua, Li Xue-Mei, Hu Chang-Ming. Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading. Acta Physica Sinica, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [18] Wang Yong-Tian, Zhao Zuo-Feng, Pang Zhi-Yong, Liu Ran, Pan Ming-Xiang, Zhao De-Qian, Wang Wan-Lu, Han Bao-Shan, Wang Wei-Hua. Pr-based bulk nanocrystalline alloy and its properties. Acta Physica Sinica, 2005, 54(6): 2838-2842. doi: 10.7498/aps.54.2838
    [19] Tong Cun-Zhu, Zheng Pjing, Bai Hai-Yang, Chen Zhao-Jia, Luo Jian-Lin, Zhang Jie, Lin De-Hua, Wang Wei-Hua. . Acta Physica Sinica, 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
    [20] RONG CHUAN-BING, ZHAO YU-HUA, XU MIN, ZHAO HENG-HE, CHEHG LI-ZHI, HE KAI-YUAN. STRUCTURE AND MAGNETIC PROPERTIES OF Fe62Co8-x(Cr,Mo)xNb4Zr6B20 AMORPHOUSALLOY WITH A WIDE SUPERCOOLED LIQUID REGION. Acta Physica Sinica, 2001, 50(11): 2235-2240. doi: 10.7498/aps.50.2235
Metrics
  • Abstract views:  6128
  • PDF Downloads:  412
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2017
  • Accepted Date:  15 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回