Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-party quantum key agreement with Bell states

Yin Xun-Ru Ma Wen-Ping Shen Dong-Su Wang Li-Li

Three-party quantum key agreement with Bell states

Yin Xun-Ru, Ma Wen-Ping, Shen Dong-Su, Wang Li-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A three-party quantum key agreement protocol based on EPR pairs is proposed, in which the three participants have equal status in the protocol and each participant is capable of contributing to the shared secret key in the same degree. In addition, any one or two parties cannot predetermine the value of shared key alone. The security analysis shows that our protocol can resist the outside attack and the dishonest participants attack.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61072140), the 111 Project (Grant No. B08038), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100203110003), the Project of Shandong Province Higher Educational Science and Technology Program, China (Grant No. J13LN60).
    [1]

    Mitchell C J, Ward M, Wilson P 1998 Electron. Lett. 34 980

    [2]

    Ateniese G, Steiner M, Tsudik G 2000 IEEE J. Sel. Areas Commun. 18 628

    [3]

    Shor P W 1994 Proceedings of 35th Annual Symposium on Foundations of Computer Science, Los Alamitos p124

    [4]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India (New York: IEEE) p175

    [5]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557

    [6]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [7]

    Gao F, Guo F Z, Wen Q Y, Zhu F C 2006 Phys. Lett. A 355 172

    [8]

    Zhang Z J, Man Z X 2005 Chin. Phys. Lett. 22 1588

    [9]

    Zeng G H, Keitel C 2002 Phys. Rev. A 65 042312

    [10]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [11]

    Zeng G H, Lee M, Guo Y, He G Q 2007 Int. J. Quantum Inf. 5 553

    [12]

    Zhu C H, Pei C X, Quan D X, Gao J L, Chen N, Yi Y H 2010 Chin. Phys. Lett. 27 090301

    [13]

    Ding D, Yan F L 2013 Acta Phys. Sin. 62 10302 (in Chinese) [丁东, 闫凤利 2013 物理学报 62 10302]

    [14]

    Zhu J, He G Q, Zeng G H 2007 Chin. Phys. 16 1364

    [15]

    Yang Y G, Wen Q Y, Zhu F C 2006 Acta Phys. Sin. 55 3255 (in Chinese) [杨宇光, 温巧燕, 朱甫臣 2006 物理学报 55 3255]

    [16]

    Gao F, Guo F Z, Wen Q Y, Zhu F C 2008 Sci. China Ser. G 51 559

    [17]

    Yin X R, Ma W P, Liu W Y 2012 Int. J. Theor. Phys. 51 455

    [18]

    Nguyen B A 2004 Phys. Lett. A 328 6

    [19]

    Man Z X, Xia Y J, Zhang Z J 2006 Int. J. Quantum Inf. 4 739

    [20]

    Guo Y, Chen Z G, Zeng G H 2007 Chin. Phys. 16 2549

    [21]

    Li J, Jin H F, Jing Bo 2011 Sci. China Ser. G 54 1612.

    [22]

    Liu W, Wang Y B 2011 Acta Phys. Sin. 60 30305 (in Chinese) [刘文, 王永滨 2011 物理学报 60 30305]

    [23]

    Liu B, Gao F, Wen Q Y 2011 IEEE J. Quant. Electron. 47 1383

    [24]

    Zhou N, Zeng G, Xiong J 2004 Electron. Lett. 40 1149

    [25]

    Tsai C W, Hwang T 2009 Technical Report, C-S-I-E, NCKU, Taiwan, R.O.C.

    [26]

    Chong S K, Hwang T 2010 Opt. Commun. 283 1192

    [27]

    Chong S K, Tsai C W, Hwang T 2011 Int. J. Theor. Phys. 50 1793

    [28]

    Hsueh C C, Chen C Y 2004 Proceedings of the 14th Information Security Conference, National Taiwan University of Science and Technology, Taipei p236

    [29]

    Shi R H, Zhong H 2013 Quantum Inf. Process. 12 921

    [30]

    Liu B, Gao F, Huang W, Wen Q Y 2013 Quantum Inf. Process. 12 1797

    [31]

    Cai Q Y 2006 Phys. Lett. A 351 23

    [32]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302

    [33]

    Gao F, Qin S J, Wen Q Y, Zhu F C 2007 Quantum Inf. Comput. 7 329

    [34]

    Qin S J, Gao F, Wen Q Y, Zhu F C 2007 Phys. Rev. A 76 062324

    [35]

    Gao F, Wen Q Y, Zhu F C 2007 Phys. Lett. A 360 748

    [36]

    Gao F, Guo F Z, Wen Q Y, Zhu F C 2008 Phys. Rev. Lett. 101 208901

    [37]

    Song T T, Zhang J, Gao F, Wen Q Y, Zhu F C 2009 Chin. Phys. B 18 1333

    [38]

    Guo F Z, Qin S J, Gao F, Liu S, Wen Q Y, Zhu F C 2010 Eur. Phys. J. D 56 445

    [39]

    Gao F, Qin S J, Wen Q Y, Zhu F C 2010 Opt. Commun. 283 192

  • [1]

    Mitchell C J, Ward M, Wilson P 1998 Electron. Lett. 34 980

    [2]

    Ateniese G, Steiner M, Tsudik G 2000 IEEE J. Sel. Areas Commun. 18 628

    [3]

    Shor P W 1994 Proceedings of 35th Annual Symposium on Foundations of Computer Science, Los Alamitos p124

    [4]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India (New York: IEEE) p175

    [5]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557

    [6]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [7]

    Gao F, Guo F Z, Wen Q Y, Zhu F C 2006 Phys. Lett. A 355 172

    [8]

    Zhang Z J, Man Z X 2005 Chin. Phys. Lett. 22 1588

    [9]

    Zeng G H, Keitel C 2002 Phys. Rev. A 65 042312

    [10]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [11]

    Zeng G H, Lee M, Guo Y, He G Q 2007 Int. J. Quantum Inf. 5 553

    [12]

    Zhu C H, Pei C X, Quan D X, Gao J L, Chen N, Yi Y H 2010 Chin. Phys. Lett. 27 090301

    [13]

    Ding D, Yan F L 2013 Acta Phys. Sin. 62 10302 (in Chinese) [丁东, 闫凤利 2013 物理学报 62 10302]

    [14]

    Zhu J, He G Q, Zeng G H 2007 Chin. Phys. 16 1364

    [15]

    Yang Y G, Wen Q Y, Zhu F C 2006 Acta Phys. Sin. 55 3255 (in Chinese) [杨宇光, 温巧燕, 朱甫臣 2006 物理学报 55 3255]

    [16]

    Gao F, Guo F Z, Wen Q Y, Zhu F C 2008 Sci. China Ser. G 51 559

    [17]

    Yin X R, Ma W P, Liu W Y 2012 Int. J. Theor. Phys. 51 455

    [18]

    Nguyen B A 2004 Phys. Lett. A 328 6

    [19]

    Man Z X, Xia Y J, Zhang Z J 2006 Int. J. Quantum Inf. 4 739

    [20]

    Guo Y, Chen Z G, Zeng G H 2007 Chin. Phys. 16 2549

    [21]

    Li J, Jin H F, Jing Bo 2011 Sci. China Ser. G 54 1612.

    [22]

    Liu W, Wang Y B 2011 Acta Phys. Sin. 60 30305 (in Chinese) [刘文, 王永滨 2011 物理学报 60 30305]

    [23]

    Liu B, Gao F, Wen Q Y 2011 IEEE J. Quant. Electron. 47 1383

    [24]

    Zhou N, Zeng G, Xiong J 2004 Electron. Lett. 40 1149

    [25]

    Tsai C W, Hwang T 2009 Technical Report, C-S-I-E, NCKU, Taiwan, R.O.C.

    [26]

    Chong S K, Hwang T 2010 Opt. Commun. 283 1192

    [27]

    Chong S K, Tsai C W, Hwang T 2011 Int. J. Theor. Phys. 50 1793

    [28]

    Hsueh C C, Chen C Y 2004 Proceedings of the 14th Information Security Conference, National Taiwan University of Science and Technology, Taipei p236

    [29]

    Shi R H, Zhong H 2013 Quantum Inf. Process. 12 921

    [30]

    Liu B, Gao F, Huang W, Wen Q Y 2013 Quantum Inf. Process. 12 1797

    [31]

    Cai Q Y 2006 Phys. Lett. A 351 23

    [32]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302

    [33]

    Gao F, Qin S J, Wen Q Y, Zhu F C 2007 Quantum Inf. Comput. 7 329

    [34]

    Qin S J, Gao F, Wen Q Y, Zhu F C 2007 Phys. Rev. A 76 062324

    [35]

    Gao F, Wen Q Y, Zhu F C 2007 Phys. Lett. A 360 748

    [36]

    Gao F, Guo F Z, Wen Q Y, Zhu F C 2008 Phys. Rev. Lett. 101 208901

    [37]

    Song T T, Zhang J, Gao F, Wen Q Y, Zhu F C 2009 Chin. Phys. B 18 1333

    [38]

    Guo F Z, Qin S J, Gao F, Liu S, Wen Q Y, Zhu F C 2010 Eur. Phys. J. D 56 445

    [39]

    Gao F, Qin S J, Wen Q Y, Zhu F C 2010 Opt. Commun. 283 192

  • [1] Liu Zhi-Hao, Chen Han-Wu. Information leakage problem in quantum secure direct communication protocol based on the mixture of Bell state particles and single photons. Acta Physica Sinica, 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [2] Gu Wen-Yuan, Zhao Shang-Hong, Dong Chen, Wang Xing-Yu, Yang Ding. Reference-frame-independent measurement-device-independent quantum key distribution under reference frame fluctuation. Acta Physica Sinica, 2019, 68(24): 240301. doi: 10.7498/aps.68.20191364
    [3] Zheng Xiao-Hu, Cao Zhuo-Liang, Lin Ji-Cheng. Dipole squeezing in the system of the two-mode entangled coherent field interacting with atoms in Bell states in Kerr medium. Acta Physica Sinica, 2007, 56(2): 837-844. doi: 10.7498/aps.56.837
    [4] Cao Zheng-Wen, Zhao Guang, Zhang Shuang-Hao, Feng Xiao-Yi, Peng Jin-Ye. Quantum secure direct communication protocol based on the mixture of Bell state particles and single photons. Acta Physica Sinica, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [5] He Guang-Qiang, Yi Zhi, Zhu Jun, Zeng Gui-Hua. Quantum key distribution using two-mode squeezd states. Acta Physica Sinica, 2007, 56(11): 6427-6433. doi: 10.7498/aps.56.6427
    [6] Jiao Rong-Zhen, Zhang Chao, Ma Hai-Qiang. Decoy-state quantum key distribution with practical light source. Acta Physica Sinica, 2011, 60(11): 110303. doi: 10.7498/aps.60.110303
    [7] Zeng Gui-Hua, Zhu Hong-Wen. . Acta Physica Sinica, 2002, 51(4): 727-730. doi: 10.7498/aps.51.727
    [8] Zhou Yuan-Yuan, Zhou Xue-Jun. Nonorthogonal passive decoy-state quantum key distribution with a weak coherent state source. Acta Physica Sinica, 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [9] Zhou Yuan-Yuan, Zhang He-Qing, Zhou Xue-Jun, Tian Pei-Gen. Performance analysis of decoy-state quantum key distribution with a heralded pair coherent state photon source. Acta Physica Sinica, 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [10] Sun Wei, Yin Hua-Lei, Sun Xiang-Xiang, Chen Teng-Yun. Nonorthogonal decoy-state quantum key distribution based on coherent-state superpositions. Acta Physica Sinica, 2016, 65(8): 080301. doi: 10.7498/aps.65.080301
    [11] He Guang-Qiang, Guo Hong-Bin, Li Yu-Dan, Zhu Si-Wei, Zeng Gui-Hua. Quantum key distribution using binary-modulated coherent states. Acta Physica Sinica, 2008, 57(4): 2212-2217. doi: 10.7498/aps.57.2212
    [12] Quan Dong-Xiao, Pei Chang-Xing, Zhu Chang-Hua, Liu Dan. New method of decoy state quantum key distribution with a heralded single-photon source. Acta Physica Sinica, 2008, 57(9): 5600-5604. doi: 10.7498/aps.57.5600
    [13] Hu Hua-Peng, Wang Jin-Dong, Huang Yu-Xian, Liu Song-Hao, Lu Wei. Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source. Acta Physica Sinica, 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [14] Jiao Rong-Zhen, Zhang Wen-Han. Analysis of decoy state quantum-key-distribution system. Acta Physica Sinica, 2009, 58(4): 2189-2192. doi: 10.7498/aps.58.2189
    [15] Wang Han, Yan Lian-Shan, Pan Wei, Luo Bin, Guo Zhen, Xu Ming-Feng. Performance analysis of decoy state quantum key distribution using two kinds of photon sources. Acta Physica Sinica, 2011, 60(3): 030304. doi: 10.7498/aps.60.030304
    [16] Jiao Rong-Zhen, Tang Shao-Jie, Zhang Chao. Analysis of statistical fluctuation in decoy state quantum key distribution system. Acta Physica Sinica, 2012, 61(5): 050302. doi: 10.7498/aps.61.050302
    [17] Zhou Nan-Run, Song Han-Chong, Gong Li-Hua, Liu Ye. Tripartite quantum deterministic key distribution based on GHZ states. Acta Physica Sinica, 2012, 61(21): 214203. doi: 10.7498/aps.61.214203
    [18] Zhang Sheng, Wang Jian, Zhang Quan, Tang Chao-Jing. An analysis of the model of the error bits of quantum cryptography protocol. Acta Physica Sinica, 2009, 58(1): 73-77. doi: 10.7498/aps.58.73
    [19] Mi Jing-Long, Wang Fa-Qiang, Lin Qing-Qun, Liang Rui-Sheng, Liu Song-Hao. Decoy state quantum key distribution with dual detectors heralded single photon source. Acta Physica Sinica, 2008, 57(2): 678-684. doi: 10.7498/aps.57.678
    [20] Feng Fa-Yong, Zhang Qiang. Quantum key distribution based on hyperentanglement swapping. Acta Physica Sinica, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
  • Citation:
Metrics
  • Abstract views:  713
  • PDF Downloads:  398
  • Cited By: 0
Publishing process
  • Received Date:  01 April 2013
  • Accepted Date:  26 May 2013
  • Published Online:  05 September 2013

Three-party quantum key agreement with Bell states

  • 1. State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China;
  • 2. School of Mathematics and Statistics, Taishan University, Tai’an 271000, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61072140), the 111 Project (Grant No. B08038), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100203110003), the Project of Shandong Province Higher Educational Science and Technology Program, China (Grant No. J13LN60).

Abstract: A three-party quantum key agreement protocol based on EPR pairs is proposed, in which the three participants have equal status in the protocol and each participant is capable of contributing to the shared secret key in the same degree. In addition, any one or two parties cannot predetermine the value of shared key alone. The security analysis shows that our protocol can resist the outside attack and the dishonest participants attack.

Reference (39)

Catalog

    /

    返回文章
    返回