Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Negative refraction and bulk polariton properties of the graphene-based hyperbolic metamaterials

Gong Jian Zhang Li-Wei Chen Liang Qiao Wen-Tao Wang Jian

Citation:

Negative refraction and bulk polariton properties of the graphene-based hyperbolic metamaterials

Gong Jian, Zhang Li-Wei, Chen Liang, Qiao Wen-Tao, Wang Jian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We theoretically investigate the electromagnetic properties of the multilayer graphene-dielectric composite materials based on the effective medium theory. It is found that the structure exhibits hyperbolic isofrequency wavevector dispersions at THz and far-infrared frequencies, hence thereby realizing the effective graphene-based hyperbolic metamaterials (HMM). The frequncy band of the hyperbolic dispersion can be tuned by changing the Fermi energy of graphene sheet, the thickness of the dielectric layer and the layer number of graphene sheets. Because of the hyperbolic dispersion, graphene-based HMM possesses a negative energy refraction and positive phase refraction for oblique incidence at far below the critical frequency. The highly confined bulk polariton modes are also supported. Based on the attenuated total reflection configuration, the excitation of the bulk polariton mode is studied, in addition, such properties used in the tunable optical reflection modulation are also explored.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904032, 11204068, 11405045), the Foundations of Henan Educational Committee, China (Grant Nos. 14A140011, 2012GGJS-060), the Henan Polytechnic University Program for Distinguished Young Scholars, China (Grant No. J2013-09), the Henan Polytechnic University Program for Innovative Research Team, China (Grant No. T2015-3), and the Doctoral Foundation of Henan Polytechnic University, China (Grant Nos. B2009-92, B2009-61).
    [1]

    Smith D R, Schultz S 2003 Phys. Rev. Lett. 90 077405

    [2]

    Drachev V P, Podolskiy V A, Kildishev A V 2013 Opt. Express 21 15048

    [3]

    Argyropoulos C, Estakhri N M, Monticone F, Alú A 2013 Opt. Express 21 15037

    [4]

    Sreekanth K V, Luca A De, Strangi G 2013 Appl. Phys. Lett. 103 023107

    [5]

    Wood B, Pendry J B, Tsai D P 2006 Phys. Rev. B 74 115116

    [6]

    Kotynski R, Stefaniuk T 2010 Opt. Lett. 35 1133

    [7]

    Xiang Y J, Dai X Y, We S C, Fan D Y 2007 J. Appl. Phys. 102 093107

    [8]

    Zhukovsky S V, Kidwai O, Sipe J E 2013 Opt. Express 21 14982

    [9]

    Noginov M A, Barnakov A, Zhu G, Tumkur T, Li H Narimanov E E 2009 Appl. Phys. Lett. 94 151105

    [10]

    Vinogradov A P, Dorofeenko A V, Nechepurenko I A 2010 Metamaterials 4 181

    [11]

    Dong H M 2013 Acta Phys. Sin. 62 237804 (in Chinese) [董海明 2013 物理学报 62 237804]

    [12]

    Novoselov K S, Falko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [13]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nature Photon. 6 749

    [14]

    Guo B D, Fang L, Zhang B H, Gong J R 2011 Insciences J. 1 80

    [15]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [16]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 物理学报 63 057803]

    [17]

    Othman M A K, Guclu C, Capolino F 2013 J. Nanophoton. 7 073089

    [18]

    Wu H Q, Linghu C Y, L H M, Qian H 2013 Chin. Phys. B 22 098106

    [19]

    Zhang L, Fu X L, Lei M, Chen J J, Yang J Z, Peng Z J, Tang W H 2014 Chin. Phys. B 23 038101

    [20]

    Iorsh I V, Mukhin I S, Shadrivov I V, Belov P A, Kivshar Y S 2013 Phys. Rev. B 87 075416

    [21]

    Zhang T, Chen L, Li X 2013 Opt. Express 21 20888

    [22]

    Zhu B F, Ren G B, Zheng S W, Lin Z, Jian S S 2013 Opt. Express 21 17089

    [23]

    Xiang Y J, Guo J, Dai X Y, Wen S C, Tang D Y 2014 Opt. Express 22 3054

    [24]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)

    [25]

    Kidwai O, Zhukovsky S V, Sipe J E 2012 Phys. Rev. A 85 053842

    [26]

    Hu L B, Chui S T 2002 Phys. Rev. B 66 085108

    [27]

    Grzegorczyk T M, Nikku M, Chen X D, Wu B I, Kong J A 2005 IEEE Trans. Microw. Theory Tech. 53 1443

    [28]

    Avrutsky I, Salakhutdinov I, Elser J, Podolskiy V 2007 Phys. Rev. B 75 241402

    [29]

    Xu H J, Lu W B, Zhu W, Dong Z G, Cui T J 2012 Appl. Phys. Lett. 100 243110

    [30]

    Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F 2011 Nature 471 617

    [31]

    Shi X L, Zheng S L, Chi H, Jin X F, Zhang X M 2013 Opt. Laser Technol. 49 316

    [32]

    Li J S 2013 Opt. Commun. 296 137

  • [1]

    Smith D R, Schultz S 2003 Phys. Rev. Lett. 90 077405

    [2]

    Drachev V P, Podolskiy V A, Kildishev A V 2013 Opt. Express 21 15048

    [3]

    Argyropoulos C, Estakhri N M, Monticone F, Alú A 2013 Opt. Express 21 15037

    [4]

    Sreekanth K V, Luca A De, Strangi G 2013 Appl. Phys. Lett. 103 023107

    [5]

    Wood B, Pendry J B, Tsai D P 2006 Phys. Rev. B 74 115116

    [6]

    Kotynski R, Stefaniuk T 2010 Opt. Lett. 35 1133

    [7]

    Xiang Y J, Dai X Y, We S C, Fan D Y 2007 J. Appl. Phys. 102 093107

    [8]

    Zhukovsky S V, Kidwai O, Sipe J E 2013 Opt. Express 21 14982

    [9]

    Noginov M A, Barnakov A, Zhu G, Tumkur T, Li H Narimanov E E 2009 Appl. Phys. Lett. 94 151105

    [10]

    Vinogradov A P, Dorofeenko A V, Nechepurenko I A 2010 Metamaterials 4 181

    [11]

    Dong H M 2013 Acta Phys. Sin. 62 237804 (in Chinese) [董海明 2013 物理学报 62 237804]

    [12]

    Novoselov K S, Falko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [13]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nature Photon. 6 749

    [14]

    Guo B D, Fang L, Zhang B H, Gong J R 2011 Insciences J. 1 80

    [15]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [16]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 物理学报 63 057803]

    [17]

    Othman M A K, Guclu C, Capolino F 2013 J. Nanophoton. 7 073089

    [18]

    Wu H Q, Linghu C Y, L H M, Qian H 2013 Chin. Phys. B 22 098106

    [19]

    Zhang L, Fu X L, Lei M, Chen J J, Yang J Z, Peng Z J, Tang W H 2014 Chin. Phys. B 23 038101

    [20]

    Iorsh I V, Mukhin I S, Shadrivov I V, Belov P A, Kivshar Y S 2013 Phys. Rev. B 87 075416

    [21]

    Zhang T, Chen L, Li X 2013 Opt. Express 21 20888

    [22]

    Zhu B F, Ren G B, Zheng S W, Lin Z, Jian S S 2013 Opt. Express 21 17089

    [23]

    Xiang Y J, Guo J, Dai X Y, Wen S C, Tang D Y 2014 Opt. Express 22 3054

    [24]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)

    [25]

    Kidwai O, Zhukovsky S V, Sipe J E 2012 Phys. Rev. A 85 053842

    [26]

    Hu L B, Chui S T 2002 Phys. Rev. B 66 085108

    [27]

    Grzegorczyk T M, Nikku M, Chen X D, Wu B I, Kong J A 2005 IEEE Trans. Microw. Theory Tech. 53 1443

    [28]

    Avrutsky I, Salakhutdinov I, Elser J, Podolskiy V 2007 Phys. Rev. B 75 241402

    [29]

    Xu H J, Lu W B, Zhu W, Dong Z G, Cui T J 2012 Appl. Phys. Lett. 100 243110

    [30]

    Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F 2011 Nature 471 617

    [31]

    Shi X L, Zheng S L, Chi H, Jin X F, Zhang X M 2013 Opt. Laser Technol. 49 316

    [32]

    Li J S 2013 Opt. Commun. 296 137

  • [1] Liu Ying, Guo Si-Lin, Zhang Yong, Yang Peng, Lyu Ke-Hong, Qiu Jing, Liu Guan-Jun. Review on 1/f noise and its research progress in two-dimensional material graphene. Acta Physica Sinica, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [2] Wang Bo-Yun, Zhu Zi-Hao, Gao You-Kang, Zeng Qing-Dong, Liu Yang, Du Jun, Wang Tao, Yu Hua-Qing. Plasmon induced transparency effect based on graphene nanoribbon waveguide side-coupled with rectangle cavities system. Acta Physica Sinica, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [3] Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua. Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites. Acta Physica Sinica, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [4] Zhou Hai-Tao, Xiong Xi-Ya, Luo Fei, Luo Bing-Wei, Liu Da-Bo, Shen Cheng-Min. Graphene enforced copper matrix composites fabricated by in-situ deposition technique. Acta Physica Sinica, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [5] Plasmon induced transparency effect based on graphene nanoribbon waveguide side–coupled with rectangle cavities system. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211397
    [6] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [7] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [8] Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial. Acta Physica Sinica, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [9] Xu Xiao-Hu, Chen Yong-Qiang, Guo Zhi-Wei, Sun Yong, Miao Xiang-Yang. Normal-mode splitting induced by homogeneous electromagnetic fields in cavities filled with effective zero-index metamaterials. Acta Physica Sinica, 2018, 67(2): 024210. doi: 10.7498/aps.67.20171880
    [10] Wu Chun-Yan, Du Xiao-Wei, Zhou Lin, Cai Qi, Jin Yan, Tang Lin, Zhang Han-Ge, Hu Guo-Hui, Jin Qing-Hui. Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors. Acta Physica Sinica, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [11] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [12] Li Zhi-Quan, Zhang Ming, Peng Tao, Yue Zhong, Gu Er-Dan, Li Wen-Chao. Improvement of the local characteristics of graphene surface plasmon based on guided-mode resonance effect. Acta Physica Sinica, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [13] Li Dan, Liu Yong, Wang Huai-Xing, Xiao Long-Sheng, Ling Fu-Ri, Yao Jian-Quan. Gain characteristics of grapheme plasmain terahertz range. Acta Physica Sinica, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [14] Qiao Wen-Tao, Gong Jian, Zhang Li-Wei, Wang Qin, Wang Guo-Dong, Lian Shu-Peng, Chen Peng-Hui, Meng Wei-Wei. Propagation properties of the graphene surface plasmon in comb-like waveguide. Acta Physica Sinica, 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [15] Zhang Yu-Ping, Liu Ling-Yu, Chen Qi, Feng Zhi-Hong, Wang Jun-Long, Zhang Xiao, Zhang Hong-Yan, Zhang Hui-Yun. Effect of cooling of electron-hole plasma in electrically pumped graphene layer structures with split gates. Acta Physica Sinica, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [16] Wu Ji-Jiang, Gao Jin-Xia. Photonic bandgap properties of one-dimensional superconducting photonic crystals containing metamaterials. Acta Physica Sinica, 2013, 62(12): 124102. doi: 10.7498/aps.62.124102
    [17] Tong Yuan-Wei, Mao Yu, Zhuang Song-Lin. Numerical study on 2-D photonic crystal with negative refractive index at multiple frequency bands. Acta Physica Sinica, 2010, 59(8): 5553-5558. doi: 10.7498/aps.59.5553
    [18] Liu Ya-Hong, Luo Chun-Rong, Zhao Xiao-Peng. H-shaped structure of left-handed metamaterials with simultaneous negative permittivity and permeability. Acta Physica Sinica, 2007, 56(10): 5883-5889. doi: 10.7498/aps.56.5883
    [19] Wang Su-Ling, Zhang Ye-Wen, He Li, Li Hong-Qiang, Chen Hong. Microwave transmission properties of tunable one-dimensional metamaterials. Acta Physica Sinica, 2006, 55(1): 226-229. doi: 10.7498/aps.55.226
    [20] Zheng Qing, Zhao Xiao-Peng, Li Ming-Ming, Zhao Jing. Regulating ability of defects on the negative refraction of left-handed metamaterials. Acta Physica Sinica, 2006, 55(12): 6441-6446. doi: 10.7498/aps.55.6441
Metrics
  • Abstract views:  6040
  • PDF Downloads:  772
  • Cited By: 0
Publishing process
  • Received Date:  25 June 2014
  • Accepted Date:  16 October 2014
  • Published Online:  05 March 2015

/

返回文章
返回