Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress of room temperature magnetic refrigeration technology

Li Zhen-Xing Li Ke Shen Jun Dai Wei Gao Xin-Qiang Guo Xiao-Hui Gong Mao-Qiong

Progress of room temperature magnetic refrigeration technology

Li Zhen-Xing, Li Ke, Shen Jun, Dai Wei, Gao Xin-Qiang, Guo Xiao-Hui, Gong Mao-Qiong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • refrigeration technology. It has been considered as one of promising alternatives to traditional vapor compression refrigeration technology. Magnetic refrigeration, in which solid magnetic materials instead of gaseous refrigerants are used, is based on the magnetocaloric effect. When magnetocaloric material moves in or out of magnetic field, it releases heat due to magnetization or absorbs heat due to demagnetization, respectively. In this paper, magnetocaloric effects (MCEs) and basic thermodynamic cycles are briefly described at first. Some typical magnetic refrigeration cycles are introduced from the viewpoint of thermodynamics, which include hybrid cycle, cycle based on the active magnetic regenerator and cycle based on the active magnetic regenerator coupled with gas regenerative refrigeration. Specifically, magnetic refrigeration cycle based on the active magnetic regenerator (AMR) coupled with gas regenerative refrigeration is a novel idea that combines the magnetocaloric effect with the regenerative gas expansion refrigeration. And it has been under the way to try to achieve greater refrigeration performance of the coupled refrigerator in the research institutions. Thereafter, the paper reviews the existing different numerical models of AMR refrigerator. Analyzing and optimizing an AMR magnetic refrigerator are typical complicated multi-physics problems, which include heat transfer, fluid dynamics and magnetics. The majority of models published are based on one-dimensional simplification, which requires shorter computation time and lower computation resources. Because a one-dimensional model idealizes many factors important for the system performance, two- or three- dimensional numerical models have been setup. Besides, some key items for the model are described in detail, such as magnetocaloric effect, thermal conduction, thermal losses, demagnetizing effect and magnetic hysteresis. Considering the accuracy, convergence and computation time, it is quite vital for numerical models to choose some influential factors reasonably. Then, the recent typical room magnetic refrigeration systems are listed and grouped into four types, i.e., reciprocating-magnet type, reciprocating-regenerator type, rotary-magnet type, and rotaryregenerators type. Different characteristics of these four types are compared. Reciprocating magnetic refrigerators have the advantages of simple construction and max magnetic field intensity difference. Rotary magnetic refrigerator due to compact construction, higher operational frequency and better performance is deemed as a more promising type, in the progress of magnetic refrigeration technology. Meanwhile there are still some key challenges in the practical implementation of magnetic refrigeration technology, such as the development and preparation technologies of high-performance MCE materials, powerful magnetic circuit system and flowing condition. Finally, possible applications are discussed and the tendency of future development is given.
      Corresponding author: Shen Jun, jshen@mail.ipc.ac.cn;cryodw@mail.ipc.ac.cn ; Dai Wei, jshen@mail.ipc.ac.cn;cryodw@mail.ipc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51322605, 51676198).
    [1]

    Brown J S, Domanski P A 2014 Appl. Therm. Eng. 64 252

    [2]

    Sari O, Balli M 2013 Int. J. Refrig. 37 8

    [3]

    Qian S, Alabdulkarem A, Ling J, Muehlbauer J, Hwang Y, Radermacher R, Takeuchib I 2015 Int. J. Refrig. 57 62

    [4]

    Kitanovski A, Tušek J, Tomc U, Plaznik U, Ožbolt M, Poredoš A 2015 Magnetocaloric Energy Conversion (vol. preface) (Switzerland: Springer International Publishing Switzerland) pviii

    [5]

    Aprea C, Greco A, Maiorino A, Masselli C 2015 J. Phys.: Conf. Ser. 655 012026

    [6]

    Yu B, Liu M, Egolf P W, Kitanovski A 2010 Int. J. Refrig. 33 1029

    [7]

    Warburg E 1881 Ann. Phys. 13 141

    [8]

    Giauque W F 1927 J. Am. Cher. Soc. 49 1864

    [9]

    Brown G V 1976 J. Appl. Phys. 47 3673

    [10]

    Steyert W A 1978 J. Appl. Phys. 49 1216

    [11]

    Barclay J A, Steyert W A U.S. Patent 4 332 135 [1982-06-01]

    [12]

    You Y, Guo Y, Xiao S, Yu S, Ji H, Luo X 2016 J. Magn. Magn. Mater. 405 231

    [13]

    Trevizoli P V, Lozano J A, Peixer G F, Barbosa J R 2015 J. Magn. Magn. Mater. 395 109

    [14]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [15]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675

    [16]

    Brck E, Tegus O, Li X W, de Boer F R, Buschow K H J 2003 Physica B 327 431

    [17]

    Lei T, Nielsen K K, Engelbrecht K, Bahl C R H, Bez H N, Veje C T 2015 J. Appl. Phys. 118 014903

    [18]

    Monfared B, Palm B 2015 Int. J. Refrig. 57 103

    [19]

    Scarpa F, Tagliafico G, Tagliafico L A 2012 Int. J. Refrig. 35 453

    [20]

    Scarpa F, Tagliafico G, Tagliafico L A 2015 Renew. Sust. Energ. Rev. 50 497

    [21]

    Bisio G, Rubatto G, Schiapparelli P 1999 Energ. Convers. Manage. 40 1267

    [22]

    Pecharsky V K, Gschneeidner Jr K A 1999 J. Magn. Magn. Mater. 200 44

    [23]

    Lin G, Tegus O, Zhang L, Brck E 2004 Physica B 344 147

    [24]

    Sasso C P, Basso V, Lobue M, Bertotti G 2006 Physica B 372 9

    [25]

    Xu Z, Guo J, Lin G, Chen J 2016 J. Magn. Magn. Mater. 409 71

    [26]

    Plaznik U, Tušek J, Kitanovski A, Poredoš A 2013 Appl. Therm. Eng. 59 52

    [27]

    Kitanovski A, Plaznik U, Tušek J, Poredoš A 2014 Int. J. Refrig. 37 28

    [28]

    Kirol L D, Dacus M W 1988 Rotary Recuperative Magnetic Heat Pump (Vol. 33) (New York: Springer US) p757

    [29]

    Kitanovski A, Egolf P W 2006 Int. J. Refrig. 29 3

    [30]

    Gómez J R, Garcia R F, Catoira A D M, Gómez M R 2013 Renew. Sust. Energ. Rev. 17 74

    [31]

    Wu J F, Shen J, Dai W, Gong M Q, Shen B G 2013 China Patent ZL 201010622884.6 [2010-12-29]

    [32]

    Zhang H, Shen J, Gong M Q, Wu J F 2010 J. Appl. Phys. 107 09A937

    [33]

    He X N, Gong M Q, Zhang H, Dai W, Shen J, Wu J F 2013 Int. J. Refrig. 36 1465

    [34]

    He X N, Gong M Q, Zhang H, Dai W, Shen J, Wu J F 2013 The 5th International Conference on Cyogenics and Refrigeration Hangzhou, China, April 6-9, 2013

    [35]

    Nielsen K K, Tusek J, Engelbrecht K, Schopfer S, Kitanovski A, Bahl C R H, Smith A, Pryds N, Poredos A 2011 Int. J. Refrig. 34 603

    [36]

    Trevizoli P V, Nakashima A T, Barbosa J R 2016 Int. J. Refrig. 72 206

    [37]

    Nielsen K K, Engelbrecht K 2012 J. Phys. D: Appl. Phys. 45 145001

    [38]

    Roudaut J, Kedous-Lebouc A, Yonnet J P, Muller C 2011 Int. J. Refrig. 34 1797

    [39]

    Engelbrecht K, Tušek J, Nielsen K K, Kitanovski A, Bahl C R H, Poredoš A 2013 J. Phys. D: Appl. Phys. 46 255002

    [40]

    Vuarnoz D, Kawanmi T 2012 Fifth ⅡF-ⅡR International Conference on Magnetic Refrigeration at Room Temperature, Thermag V Grenoble, France, September 17-20, 2012 p493

    [41]

    Tagliafico G, Scarpa F, Tagliafico L A 2012 Stroj. Vestnj. Mech. E 58 9

    [42]

    Dikeos J, Rowe A 2013 Int. J. Refrig. 36 921

    [43]

    Lei T, Nielsen K K, Engelbrecht K 2014 12th Biennial Conference on Engineering Systems Design and Analysis AMES, US, June 25-27, 2014 pV003T12A007

    [44]

    Yu B F, Gao Q, Zhang B, Meng X Z, Chen Z 2003 Int. J. Refrig. 26 622

    [45]

    Gschneidner Jr K A, Pecharsky V K 2008 Int. J. Refrig. 31 945

    [46]

    Gómez J R, Garcia R F, Carril J C, Gómez M 2013 Renew. Sust. Energ. Rev. 2 1

    [47]

    Yayama H, Hatta Y, Makimoto Y, Tomokiyo A 2000 Jpn. J. Appl. Phys. 39 4220

    [48]

    Nellis G F 1997 Ph. D. Dissipation (Massachusetts: Massachusetts Institute of Technology)

    [49]

    Kim Y, Park I, Jeong S 2013 Cryogenics 57 113

    [50]

    Zhang H, Gong M Q, Sun Z H, Wu J F 2009 Cryog. 2 1 (in Chinese) [张弘, 公茂琼, 孙兆虎, 吴剑峰 2009 低温工程 2 1]

    [51]

    He X N, Gong M Q, Zhang H, Shen J, Dai W, Wu J F 2013 J. Eng. Therm. 34 1997 (in Chinese) [和晓楠, 公茂琼, 张弘, 沈俊, 戴巍, 吴剑锋 2013 工程热物理学报 34 1997]

    [52]

    He X N, Gong M Q, Zhang H, Shen J, Dai W, Wu J F 2013 Cryog. Supercond. 41 13 (in Chinese) [和晓楠, 公茂琼, 张弘, 沈俊, 吴剑锋 2013 低温与超导 41 13]

    [53]

    Nielsen K K, Smith A, Bahl C R H, Olsen U L 2012 J. Appl. Phys. 112 094905

    [54]

    Jaka T, Kitanovski A, Alojz P 2013 Int. J. Refrig. 36 1456

    [55]

    Jaka T, Andrej K, Ivan P, Alojz P 2011 Int. J. Refrig. 34 1507

    [56]

    Vuarnoz D, Kawanami T 2012 Appl. Therm. Eng. 37 388

    [57]

    Kim Y, Jeong S 2011 Int. J. Refrig. 34 204

    [58]

    Oliveira P A, Trevizoli P V, Barbosa J R, Prata A T 2012 Int. J. Refrig. 35 98

    [59]

    Plaznik U, Tušek J, Kitanoski A, Poredoš A 2013 Appl. Therm. Eng. 59 52

    [60]

    Lozano J A, Engelbrecht K, Bahl C R H, Nielsen K K, Eriksen D, Olsen U L, Barbosa Jr J R, Smith A, Prata T, Pryds N 2013 . Appl. Energ. 111 669

    [61]

    Aprea C, Greco A, Maiorino A, Aprea C 2013 Energ. Convers. Manage. 70 40

    [62]

    Tagliafico G, Scarpa F, Tagliafico L A 2013 Int. J. Refrig 36 941

    [63]

    Burdyny T, Ruebsaat-Trott A, Rowe A. 2014 Int. J. Refrig. 37 51

    [64]

    Vuarnoz D, Kawanami T 2014 13th International Conference on Sustainable Energy Technologies Geneva, August 25-28, 2014 40075

    [65]

    Nikkola P, Mahmed C, Balli M, Sari O 2014 Int. J. Refrig. 37 43

    [66]

    Brey W, Nellis G, Klein S 2014 Int. J. Refrig. 47 85

    [67]

    Lionte S, Vasile C, Siroux M 2015 Appl. Therm. Eng. 75 871

    [68]

    Gao X Q, Shen J, He X N, Tang C C, Dai W, Li K, Gong M Q, Wu J F 2015 Acta Phys. Sin. 64 210201 (in Chinese) [高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑锋 2015 物理学报 64 210201]

    [69]

    Aprea C, Cardillo G, Greco A, Maiorino A, Masselli C 2015 Appl. Therm. Eng. 90 376

    [70]

    Torregrosa-Jaime B, Corberán J M, Payá J, Engelbrecht K 2015 Int. J. Refrig. 58 121

    [71]

    You Y, Yu S, Tian Y, Luo X, Huang S 2016 Int. J. Refrig. 65 238

    [72]

    Niknia I, Campbell O, Christiaanse T V, Govindappa P, Teyber R, Trevizoli P V, Rowe A 2016 Appl. Therm. Eng. 106 601

    [73]

    Kamran M S, Sun J, Tang Y B, Chen Y G, Wu J H, Wang H S 2016 Appl. Therm. Eng. 102 1126

    [74]

    Sarlah A, Poredos A 2005 First International Conference on Magnetic Refrigeration at Room Temperature Montreux, Switzerland, September 28-30, 2005 p283

    [75]

    Petersen T F, Engelbrecht K, Bahl C R H, Elmegaard B, Pryds N, Smith A. 2008 J. Phys. D: Appl. Phys. 41 105002

    [76]

    Bouchard J, Nesreddine H, Galanis N 2009 Int. J. Heat Mass Tran. 52 1223

    [77]

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese) [郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 2016 物理学报 65 217502]

    [78]

    Shir F, Torre E D, Bennett L H, Mavriplis C 2004 IEEE T. Magn. 40 2098

    [79]

    Tušek J, Zupan S, Šarlah A, Prebil I, Poredoš A 2010 Int. J. Refrig. 33 294

    [80]

    Peksoy O, Rowe A 2004 J. Magn. Magn. Mater. 288 424

    [81]

    Brown T D, Bruno N M, Chen J H, Karaman I, Ross J H, Shamberger P J 2015 JOM 67 2123

    [82]

    Basso V, Sasso C P, Bertotti G, Lobue M 2006 Int. J. Refrig. 29 1358

    [83]

    Moos L V, Nielsen K K, Engelbrecht K, Bahl C R H 2014 Int. J. Refrig. 37 303

    [84]

    Moos L V, Bahl C R H, Nielsen K K, Engelbrecht K, Kpferling M, Basso V 2014 Physica B 435 144

    [85]

    Chen Y F, Chen Y G, Teng B H, Tang Y B, Fu H, Tang D X, Tu M J 2001 Cryogenics 2 57 (in Chinese) [陈远富, 陈云贵, 滕保华, 唐永柏, 付浩, 唐定骧, 涂铭旌 2001 低温工程 2 57]

    [86]

    Bjørk R, Nielsen K K, Bahl C R H, Smith A, Wulff A C 2016 Aip. Adv. 6 056205

    [87]

    Yao G H, Gong M Q, Wu J F 2006 Int. J. Refrig. 29 1267

    [88]

    Okamura T, Yamada K, Hirano N, Nagaya S 2006 Int. J. Refrig. 29 1327

    [89]

    Huang J H, Liu J R, Jin P Y, Yan H W, Qiu J F, Xu L Z, Zhang J X 2006 Rare Metals 25 641

    [90]

    Zimm C, Boeder A, Chell J, Sternberg A, Fujita A, Fujieda S, Fukamichi K 2006 Int. J. Refrig. 29 1302

    [91]

    Gao Q, Yu B F, Wang C F, Zhang B, Yang D X, Zhang Y 2006 Int. J. Refrig. 29 1274

    [92]

    Kim Y, Jeong S 2010 AIP Conference Proceedings 1218 87

    [93]

    Trevizoli P V, Barbosa J R, Ferreira R T S 2011 Int. J. Refrig. 34 1518

    [94]

    Tura A, Rowe A 2011 Int. J. Refrig. 34 628

    [95]

    Balli M, Sari O, Mahmed C, Bonhote P, Duc D, Forchelet J 2012 Appl. Ener. 98 556

    [96]

    Zhang H, He X N, Shen J, Gong M Q, Wu J F 2013 J. Eng. Therm. 1 58 (in Chinese) [张弘, 和晓楠, 沈俊, 公茂琼, 吴剑峰 2013 工程热物理学报 1 58]

    [97]

    Park I, Kim Y, Jeong S 2013 Int. J. Refrig. 36 1741

    [98]

    Gómez J R, Garcia R F, Carril J C, Gómez M R 2013 Int. J. Refrig. 36 1388

    [99]

    Tagliafico L A, Scarpa F, Valsuani F, Tagliafico G 2013 Appl. Therm. Eng. 52 492

    [100]

    Gatti J M, Muller C, Vasile C, Brμmpter G, Haegel P, Lorkin T 2014 Int. J. Refrig. 37 165

    [101]

    Bahl C R H, Engelbrecht K, Eriksen D, Lozano J A, Bjørk R, Geyti J, Nielsen K K, Smitha A, Prydsa N 2014 Int. J. Refrig. 37 78

    [102]

    Tušek J, Kitanovski A, Zupan S, Prebil I, Poredoš A 2013 Appl. Therm. Eng. 53 57

    [103]

    Jacobs S, Auringer J, Boeder A, Komorowski L, Leonard J 2014 Int. J. Refrig. 37 84

    [104]

    Arnold D S, Tura A, Ruebsaat-Trott A, Rowe A 2014 Int. J. Refrig. 37 99

    [105]

    Legait U, Guillou F, Kedous-Lebouc A, Hardy V, Almanza M 2014 Int. J. Refrig. 37 147

    [106]

    Czernuszewicz A, Kaleta J, Królewicz M, Lewandowski D, Mech R, Wiewiórski P 2014 Int. J. Refrig. 37 72

    [107]

    Aprea C, Greco A, Maiorino A, Mastrullo R, Tura A 2014 Int. J. Refrig. 43 111

    [108]

    Eriksen D, Engelbrecht K, Bahl C R H, Bjørk R, Nielsen K K, Insinga A R 2015 Int. J. Refrig. 58 14

    [109]

    Lee J S 2015 J. Mech. Sci. Technol. 29 2237

    [110]

    Jawad M A M, Mohammad W S, Mortada T K 2015 Int. J. Appl. Innov. Eng. Manag. 4 6

    [111]

    Gao X Q, Shen J, He X N, Tang C C, Li K, Dai W, Li Z X, Jia J C, Gong M Q, Wu J F 2016 Int. J. Refrig. 67 330

    [112]

    Velázquez D, Estepa C, Palacios E, Burriel R 2015 Int. J. Refrig. 63 14

    [113]

    Lozano J A, Capovilla M S, Trevizoli P V, Engelbrecht K, Bahl C R H, Barbosa J R 2016 Int. J. Refrig. 68 187

    [114]

    Ghahremani M, Aslani A, Siddique A, Bennett L H, Torre E D 2016 Aip. Adv. 6 075221

    [115]

    Aprea C, Greco A, Maiorino A, Masselli C 2015 Int. J. Refrig. 6 1

    [116]

    Saito A T, Kobayashi T, Kaji S, Li J, Nakagome H 2016 Int. J. Environ. Sci. De 7 316

    [117]

    Chen Y G, Tang Y B, Wang B M, Xue Q X, Tu M J 2007 Second International Conference on Magnetic Refrigeration at Room Temperature Portorz, Solovenia, April 11-13, 2007 p309

    [118]

    Moore J, Klemm D, Lindackers D, Grasemann S, Träger R, Eckert J, Löber L, Scudino S, Katter M, Barcza A 2013 J. Appl. Phys. 114 043907

    [119]

    Zhou B 2014 M. S. Thesis (Beijing: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) (in Chinese) [周贝 2014 硕士学位论文(北京: 中国科学院理化技术研究所)]

    [120]

    Zhang H, Sun Y J, Niu E, Hu F X, Sun J R, Shen B G 2014 Appl. Phys. Lett. 104 062407

    [121]

    Jia J C 2016 M. S. Thesis (Beijing: University of Science & Technology Beijing) (in Chinese) [贾际琛 2016 硕士学位论文(北京: 北京科技大学)]

  • [1]

    Brown J S, Domanski P A 2014 Appl. Therm. Eng. 64 252

    [2]

    Sari O, Balli M 2013 Int. J. Refrig. 37 8

    [3]

    Qian S, Alabdulkarem A, Ling J, Muehlbauer J, Hwang Y, Radermacher R, Takeuchib I 2015 Int. J. Refrig. 57 62

    [4]

    Kitanovski A, Tušek J, Tomc U, Plaznik U, Ožbolt M, Poredoš A 2015 Magnetocaloric Energy Conversion (vol. preface) (Switzerland: Springer International Publishing Switzerland) pviii

    [5]

    Aprea C, Greco A, Maiorino A, Masselli C 2015 J. Phys.: Conf. Ser. 655 012026

    [6]

    Yu B, Liu M, Egolf P W, Kitanovski A 2010 Int. J. Refrig. 33 1029

    [7]

    Warburg E 1881 Ann. Phys. 13 141

    [8]

    Giauque W F 1927 J. Am. Cher. Soc. 49 1864

    [9]

    Brown G V 1976 J. Appl. Phys. 47 3673

    [10]

    Steyert W A 1978 J. Appl. Phys. 49 1216

    [11]

    Barclay J A, Steyert W A U.S. Patent 4 332 135 [1982-06-01]

    [12]

    You Y, Guo Y, Xiao S, Yu S, Ji H, Luo X 2016 J. Magn. Magn. Mater. 405 231

    [13]

    Trevizoli P V, Lozano J A, Peixer G F, Barbosa J R 2015 J. Magn. Magn. Mater. 395 109

    [14]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [15]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675

    [16]

    Brck E, Tegus O, Li X W, de Boer F R, Buschow K H J 2003 Physica B 327 431

    [17]

    Lei T, Nielsen K K, Engelbrecht K, Bahl C R H, Bez H N, Veje C T 2015 J. Appl. Phys. 118 014903

    [18]

    Monfared B, Palm B 2015 Int. J. Refrig. 57 103

    [19]

    Scarpa F, Tagliafico G, Tagliafico L A 2012 Int. J. Refrig. 35 453

    [20]

    Scarpa F, Tagliafico G, Tagliafico L A 2015 Renew. Sust. Energ. Rev. 50 497

    [21]

    Bisio G, Rubatto G, Schiapparelli P 1999 Energ. Convers. Manage. 40 1267

    [22]

    Pecharsky V K, Gschneeidner Jr K A 1999 J. Magn. Magn. Mater. 200 44

    [23]

    Lin G, Tegus O, Zhang L, Brck E 2004 Physica B 344 147

    [24]

    Sasso C P, Basso V, Lobue M, Bertotti G 2006 Physica B 372 9

    [25]

    Xu Z, Guo J, Lin G, Chen J 2016 J. Magn. Magn. Mater. 409 71

    [26]

    Plaznik U, Tušek J, Kitanovski A, Poredoš A 2013 Appl. Therm. Eng. 59 52

    [27]

    Kitanovski A, Plaznik U, Tušek J, Poredoš A 2014 Int. J. Refrig. 37 28

    [28]

    Kirol L D, Dacus M W 1988 Rotary Recuperative Magnetic Heat Pump (Vol. 33) (New York: Springer US) p757

    [29]

    Kitanovski A, Egolf P W 2006 Int. J. Refrig. 29 3

    [30]

    Gómez J R, Garcia R F, Catoira A D M, Gómez M R 2013 Renew. Sust. Energ. Rev. 17 74

    [31]

    Wu J F, Shen J, Dai W, Gong M Q, Shen B G 2013 China Patent ZL 201010622884.6 [2010-12-29]

    [32]

    Zhang H, Shen J, Gong M Q, Wu J F 2010 J. Appl. Phys. 107 09A937

    [33]

    He X N, Gong M Q, Zhang H, Dai W, Shen J, Wu J F 2013 Int. J. Refrig. 36 1465

    [34]

    He X N, Gong M Q, Zhang H, Dai W, Shen J, Wu J F 2013 The 5th International Conference on Cyogenics and Refrigeration Hangzhou, China, April 6-9, 2013

    [35]

    Nielsen K K, Tusek J, Engelbrecht K, Schopfer S, Kitanovski A, Bahl C R H, Smith A, Pryds N, Poredos A 2011 Int. J. Refrig. 34 603

    [36]

    Trevizoli P V, Nakashima A T, Barbosa J R 2016 Int. J. Refrig. 72 206

    [37]

    Nielsen K K, Engelbrecht K 2012 J. Phys. D: Appl. Phys. 45 145001

    [38]

    Roudaut J, Kedous-Lebouc A, Yonnet J P, Muller C 2011 Int. J. Refrig. 34 1797

    [39]

    Engelbrecht K, Tušek J, Nielsen K K, Kitanovski A, Bahl C R H, Poredoš A 2013 J. Phys. D: Appl. Phys. 46 255002

    [40]

    Vuarnoz D, Kawanmi T 2012 Fifth ⅡF-ⅡR International Conference on Magnetic Refrigeration at Room Temperature, Thermag V Grenoble, France, September 17-20, 2012 p493

    [41]

    Tagliafico G, Scarpa F, Tagliafico L A 2012 Stroj. Vestnj. Mech. E 58 9

    [42]

    Dikeos J, Rowe A 2013 Int. J. Refrig. 36 921

    [43]

    Lei T, Nielsen K K, Engelbrecht K 2014 12th Biennial Conference on Engineering Systems Design and Analysis AMES, US, June 25-27, 2014 pV003T12A007

    [44]

    Yu B F, Gao Q, Zhang B, Meng X Z, Chen Z 2003 Int. J. Refrig. 26 622

    [45]

    Gschneidner Jr K A, Pecharsky V K 2008 Int. J. Refrig. 31 945

    [46]

    Gómez J R, Garcia R F, Carril J C, Gómez M 2013 Renew. Sust. Energ. Rev. 2 1

    [47]

    Yayama H, Hatta Y, Makimoto Y, Tomokiyo A 2000 Jpn. J. Appl. Phys. 39 4220

    [48]

    Nellis G F 1997 Ph. D. Dissipation (Massachusetts: Massachusetts Institute of Technology)

    [49]

    Kim Y, Park I, Jeong S 2013 Cryogenics 57 113

    [50]

    Zhang H, Gong M Q, Sun Z H, Wu J F 2009 Cryog. 2 1 (in Chinese) [张弘, 公茂琼, 孙兆虎, 吴剑峰 2009 低温工程 2 1]

    [51]

    He X N, Gong M Q, Zhang H, Shen J, Dai W, Wu J F 2013 J. Eng. Therm. 34 1997 (in Chinese) [和晓楠, 公茂琼, 张弘, 沈俊, 戴巍, 吴剑锋 2013 工程热物理学报 34 1997]

    [52]

    He X N, Gong M Q, Zhang H, Shen J, Dai W, Wu J F 2013 Cryog. Supercond. 41 13 (in Chinese) [和晓楠, 公茂琼, 张弘, 沈俊, 吴剑锋 2013 低温与超导 41 13]

    [53]

    Nielsen K K, Smith A, Bahl C R H, Olsen U L 2012 J. Appl. Phys. 112 094905

    [54]

    Jaka T, Kitanovski A, Alojz P 2013 Int. J. Refrig. 36 1456

    [55]

    Jaka T, Andrej K, Ivan P, Alojz P 2011 Int. J. Refrig. 34 1507

    [56]

    Vuarnoz D, Kawanami T 2012 Appl. Therm. Eng. 37 388

    [57]

    Kim Y, Jeong S 2011 Int. J. Refrig. 34 204

    [58]

    Oliveira P A, Trevizoli P V, Barbosa J R, Prata A T 2012 Int. J. Refrig. 35 98

    [59]

    Plaznik U, Tušek J, Kitanoski A, Poredoš A 2013 Appl. Therm. Eng. 59 52

    [60]

    Lozano J A, Engelbrecht K, Bahl C R H, Nielsen K K, Eriksen D, Olsen U L, Barbosa Jr J R, Smith A, Prata T, Pryds N 2013 . Appl. Energ. 111 669

    [61]

    Aprea C, Greco A, Maiorino A, Aprea C 2013 Energ. Convers. Manage. 70 40

    [62]

    Tagliafico G, Scarpa F, Tagliafico L A 2013 Int. J. Refrig 36 941

    [63]

    Burdyny T, Ruebsaat-Trott A, Rowe A. 2014 Int. J. Refrig. 37 51

    [64]

    Vuarnoz D, Kawanami T 2014 13th International Conference on Sustainable Energy Technologies Geneva, August 25-28, 2014 40075

    [65]

    Nikkola P, Mahmed C, Balli M, Sari O 2014 Int. J. Refrig. 37 43

    [66]

    Brey W, Nellis G, Klein S 2014 Int. J. Refrig. 47 85

    [67]

    Lionte S, Vasile C, Siroux M 2015 Appl. Therm. Eng. 75 871

    [68]

    Gao X Q, Shen J, He X N, Tang C C, Dai W, Li K, Gong M Q, Wu J F 2015 Acta Phys. Sin. 64 210201 (in Chinese) [高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑锋 2015 物理学报 64 210201]

    [69]

    Aprea C, Cardillo G, Greco A, Maiorino A, Masselli C 2015 Appl. Therm. Eng. 90 376

    [70]

    Torregrosa-Jaime B, Corberán J M, Payá J, Engelbrecht K 2015 Int. J. Refrig. 58 121

    [71]

    You Y, Yu S, Tian Y, Luo X, Huang S 2016 Int. J. Refrig. 65 238

    [72]

    Niknia I, Campbell O, Christiaanse T V, Govindappa P, Teyber R, Trevizoli P V, Rowe A 2016 Appl. Therm. Eng. 106 601

    [73]

    Kamran M S, Sun J, Tang Y B, Chen Y G, Wu J H, Wang H S 2016 Appl. Therm. Eng. 102 1126

    [74]

    Sarlah A, Poredos A 2005 First International Conference on Magnetic Refrigeration at Room Temperature Montreux, Switzerland, September 28-30, 2005 p283

    [75]

    Petersen T F, Engelbrecht K, Bahl C R H, Elmegaard B, Pryds N, Smith A. 2008 J. Phys. D: Appl. Phys. 41 105002

    [76]

    Bouchard J, Nesreddine H, Galanis N 2009 Int. J. Heat Mass Tran. 52 1223

    [77]

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese) [郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 2016 物理学报 65 217502]

    [78]

    Shir F, Torre E D, Bennett L H, Mavriplis C 2004 IEEE T. Magn. 40 2098

    [79]

    Tušek J, Zupan S, Šarlah A, Prebil I, Poredoš A 2010 Int. J. Refrig. 33 294

    [80]

    Peksoy O, Rowe A 2004 J. Magn. Magn. Mater. 288 424

    [81]

    Brown T D, Bruno N M, Chen J H, Karaman I, Ross J H, Shamberger P J 2015 JOM 67 2123

    [82]

    Basso V, Sasso C P, Bertotti G, Lobue M 2006 Int. J. Refrig. 29 1358

    [83]

    Moos L V, Nielsen K K, Engelbrecht K, Bahl C R H 2014 Int. J. Refrig. 37 303

    [84]

    Moos L V, Bahl C R H, Nielsen K K, Engelbrecht K, Kpferling M, Basso V 2014 Physica B 435 144

    [85]

    Chen Y F, Chen Y G, Teng B H, Tang Y B, Fu H, Tang D X, Tu M J 2001 Cryogenics 2 57 (in Chinese) [陈远富, 陈云贵, 滕保华, 唐永柏, 付浩, 唐定骧, 涂铭旌 2001 低温工程 2 57]

    [86]

    Bjørk R, Nielsen K K, Bahl C R H, Smith A, Wulff A C 2016 Aip. Adv. 6 056205

    [87]

    Yao G H, Gong M Q, Wu J F 2006 Int. J. Refrig. 29 1267

    [88]

    Okamura T, Yamada K, Hirano N, Nagaya S 2006 Int. J. Refrig. 29 1327

    [89]

    Huang J H, Liu J R, Jin P Y, Yan H W, Qiu J F, Xu L Z, Zhang J X 2006 Rare Metals 25 641

    [90]

    Zimm C, Boeder A, Chell J, Sternberg A, Fujita A, Fujieda S, Fukamichi K 2006 Int. J. Refrig. 29 1302

    [91]

    Gao Q, Yu B F, Wang C F, Zhang B, Yang D X, Zhang Y 2006 Int. J. Refrig. 29 1274

    [92]

    Kim Y, Jeong S 2010 AIP Conference Proceedings 1218 87

    [93]

    Trevizoli P V, Barbosa J R, Ferreira R T S 2011 Int. J. Refrig. 34 1518

    [94]

    Tura A, Rowe A 2011 Int. J. Refrig. 34 628

    [95]

    Balli M, Sari O, Mahmed C, Bonhote P, Duc D, Forchelet J 2012 Appl. Ener. 98 556

    [96]

    Zhang H, He X N, Shen J, Gong M Q, Wu J F 2013 J. Eng. Therm. 1 58 (in Chinese) [张弘, 和晓楠, 沈俊, 公茂琼, 吴剑峰 2013 工程热物理学报 1 58]

    [97]

    Park I, Kim Y, Jeong S 2013 Int. J. Refrig. 36 1741

    [98]

    Gómez J R, Garcia R F, Carril J C, Gómez M R 2013 Int. J. Refrig. 36 1388

    [99]

    Tagliafico L A, Scarpa F, Valsuani F, Tagliafico G 2013 Appl. Therm. Eng. 52 492

    [100]

    Gatti J M, Muller C, Vasile C, Brμmpter G, Haegel P, Lorkin T 2014 Int. J. Refrig. 37 165

    [101]

    Bahl C R H, Engelbrecht K, Eriksen D, Lozano J A, Bjørk R, Geyti J, Nielsen K K, Smitha A, Prydsa N 2014 Int. J. Refrig. 37 78

    [102]

    Tušek J, Kitanovski A, Zupan S, Prebil I, Poredoš A 2013 Appl. Therm. Eng. 53 57

    [103]

    Jacobs S, Auringer J, Boeder A, Komorowski L, Leonard J 2014 Int. J. Refrig. 37 84

    [104]

    Arnold D S, Tura A, Ruebsaat-Trott A, Rowe A 2014 Int. J. Refrig. 37 99

    [105]

    Legait U, Guillou F, Kedous-Lebouc A, Hardy V, Almanza M 2014 Int. J. Refrig. 37 147

    [106]

    Czernuszewicz A, Kaleta J, Królewicz M, Lewandowski D, Mech R, Wiewiórski P 2014 Int. J. Refrig. 37 72

    [107]

    Aprea C, Greco A, Maiorino A, Mastrullo R, Tura A 2014 Int. J. Refrig. 43 111

    [108]

    Eriksen D, Engelbrecht K, Bahl C R H, Bjørk R, Nielsen K K, Insinga A R 2015 Int. J. Refrig. 58 14

    [109]

    Lee J S 2015 J. Mech. Sci. Technol. 29 2237

    [110]

    Jawad M A M, Mohammad W S, Mortada T K 2015 Int. J. Appl. Innov. Eng. Manag. 4 6

    [111]

    Gao X Q, Shen J, He X N, Tang C C, Li K, Dai W, Li Z X, Jia J C, Gong M Q, Wu J F 2016 Int. J. Refrig. 67 330

    [112]

    Velázquez D, Estepa C, Palacios E, Burriel R 2015 Int. J. Refrig. 63 14

    [113]

    Lozano J A, Capovilla M S, Trevizoli P V, Engelbrecht K, Bahl C R H, Barbosa J R 2016 Int. J. Refrig. 68 187

    [114]

    Ghahremani M, Aslani A, Siddique A, Bennett L H, Torre E D 2016 Aip. Adv. 6 075221

    [115]

    Aprea C, Greco A, Maiorino A, Masselli C 2015 Int. J. Refrig. 6 1

    [116]

    Saito A T, Kobayashi T, Kaji S, Li J, Nakagome H 2016 Int. J. Environ. Sci. De 7 316

    [117]

    Chen Y G, Tang Y B, Wang B M, Xue Q X, Tu M J 2007 Second International Conference on Magnetic Refrigeration at Room Temperature Portorz, Solovenia, April 11-13, 2007 p309

    [118]

    Moore J, Klemm D, Lindackers D, Grasemann S, Träger R, Eckert J, Löber L, Scudino S, Katter M, Barcza A 2013 J. Appl. Phys. 114 043907

    [119]

    Zhou B 2014 M. S. Thesis (Beijing: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) (in Chinese) [周贝 2014 硕士学位论文(北京: 中国科学院理化技术研究所)]

    [120]

    Zhang H, Sun Y J, Niu E, Hu F X, Sun J R, Shen B G 2014 Appl. Phys. Lett. 104 062407

    [121]

    Jia J C 2016 M. S. Thesis (Beijing: University of Science & Technology Beijing) (in Chinese) [贾际琛 2016 硕士学位论文(北京: 北京科技大学)]

  • Citation:
Metrics
  • Abstract views:  2798
  • PDF Downloads:  681
  • Cited By: 0
Publishing process
  • Received Date:  20 January 2017
  • Accepted Date:  05 April 2017
  • Published Online:  05 June 2017

Progress of room temperature magnetic refrigeration technology

Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 51322605, 51676198).

Abstract: refrigeration technology. It has been considered as one of promising alternatives to traditional vapor compression refrigeration technology. Magnetic refrigeration, in which solid magnetic materials instead of gaseous refrigerants are used, is based on the magnetocaloric effect. When magnetocaloric material moves in or out of magnetic field, it releases heat due to magnetization or absorbs heat due to demagnetization, respectively. In this paper, magnetocaloric effects (MCEs) and basic thermodynamic cycles are briefly described at first. Some typical magnetic refrigeration cycles are introduced from the viewpoint of thermodynamics, which include hybrid cycle, cycle based on the active magnetic regenerator and cycle based on the active magnetic regenerator coupled with gas regenerative refrigeration. Specifically, magnetic refrigeration cycle based on the active magnetic regenerator (AMR) coupled with gas regenerative refrigeration is a novel idea that combines the magnetocaloric effect with the regenerative gas expansion refrigeration. And it has been under the way to try to achieve greater refrigeration performance of the coupled refrigerator in the research institutions. Thereafter, the paper reviews the existing different numerical models of AMR refrigerator. Analyzing and optimizing an AMR magnetic refrigerator are typical complicated multi-physics problems, which include heat transfer, fluid dynamics and magnetics. The majority of models published are based on one-dimensional simplification, which requires shorter computation time and lower computation resources. Because a one-dimensional model idealizes many factors important for the system performance, two- or three- dimensional numerical models have been setup. Besides, some key items for the model are described in detail, such as magnetocaloric effect, thermal conduction, thermal losses, demagnetizing effect and magnetic hysteresis. Considering the accuracy, convergence and computation time, it is quite vital for numerical models to choose some influential factors reasonably. Then, the recent typical room magnetic refrigeration systems are listed and grouped into four types, i.e., reciprocating-magnet type, reciprocating-regenerator type, rotary-magnet type, and rotaryregenerators type. Different characteristics of these four types are compared. Reciprocating magnetic refrigerators have the advantages of simple construction and max magnetic field intensity difference. Rotary magnetic refrigerator due to compact construction, higher operational frequency and better performance is deemed as a more promising type, in the progress of magnetic refrigeration technology. Meanwhile there are still some key challenges in the practical implementation of magnetic refrigeration technology, such as the development and preparation technologies of high-performance MCE materials, powerful magnetic circuit system and flowing condition. Finally, possible applications are discussed and the tendency of future development is given.

Reference (121)

Catalog

    /

    返回文章
    返回