Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of plasmonic structure illumination microscopy

Zhang Chong-Lei Xin Zi-Qiang Min Chang-Jun Yuan Xiao-Cong

Citation:

Research progress of plasmonic structure illumination microscopy

Zhang Chong-Lei, Xin Zi-Qiang, Min Chang-Jun, Yuan Xiao-Cong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Structure illumination microscopy (SIM) is a novel imaging technique with advantages of high spatial resolution, wide imaging field and fast imaging speed. By illuminating the sample with patterned light and analyzing the information about Moir fringes outside the normal range of observation, SIM can achieve about 2-fold higher in resolution than the diffraction limit, thus it has played an important role in the field of biomedical imaging. In recent years, to further improve the resolution of SIM, people have proposed a new technique called plasmonic SIM (PSIM), in which the dynamically tunable sub-wavelength surface plasmon fringes are used as the structured illuminating light and thus the resolution reaches to 3-4 times higher than the diffraction limit. The PSIM technique can also suppress the background noise and improve the signal-to-noise ratio, showing great potential applications in near-surface biomedical imaging. In this review paper, we introduce the principle and research progress of PSIM. In Section 1, we first review the development of optical microscope, including several important near-field and far-field microscopy techniques, and then introduce the history and recent development of SIM and PSIM techniques. In Section 2, we present the basic theory of PSIM, including the dispersion relation and excitation methods of surface plasmon, the principle and imaging process of SIM, and the principle of increasing resolution by PSIM. In Section 3, we review the recent research progress of two types of PSIMs in detail. The first type is the nanostructure-assisted PSIM, in which the periodic metallic nanostructures such as grating or antenna array are used to excite the surface plasmon fringes, and then the shift of fringes is modulated by changing the angle of incident light. The resolution of such a type of PSIM is mainly dependent on the period of nanostructure, thus can be improved to a few tens of nanometers with deep-subwavelength structure period. The other type is the all-optically controlled PSIM, in which the structured light with designed distribution of phase or polarization (e.g. optical vortex) is used as the incident light to excite the surface plasmon fringes on a flat metal film, and then the fringes are dynamically controlled by modulating the phase or polarization of incident light. Without the help of nanostructure, such a type of PSIM usually has a resolution of about 100 nm, but benefits from the structureless excitation of plasmonic fringes in an all-optical configuration, thereby showing more dynamic regulation and reducing the need to fabricate nanometer-sized complex structures. In the final Section, we summarize the features of PSIM and discuss the outlook for this technique. Further studies are needed to improve the performance of PSIM and to expand the scope of practical applications in biomedical imaging.
      Corresponding author: Min Chang-Jun, cjmin@szu.edu.cn;xcyuan@szu.edu.cn ; Yuan Xiao-Cong, cjmin@szu.edu.cn;xcyuan@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61427819, 61422506, 61605118), the National Basic Research Program of China (Grant No. 2015CB352004), and the National Key Research and Development Program of China (Grant No. 2016YFC0102401).
    [1]

    Born M, Wolf E 2009 Principles of Optics (Amsterdam: Elsevier)

    [2]

    White J G, Amos W B 1987 Nature 328 183

    [3]

    Sheppard C J R, Wilson T 1981 J. Microsc. 124 107

    [4]

    Bek A, Vogelgesang R, Kern K 2006 Rev. Sci. Instrum. 77 043703

    [5]

    Betzig E, Trautman J K 1991 Science 251 1468

    [6]

    Reddick R C, Warmack R J, Ferrell T L 1989 Phys. Rev. B 39 767

    [7]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [8]

    Durant S, Liu Z, Steele J M, Zhang X 2006 JOSA B 23 2383

    [9]

    Liu Z, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X 2007 Nano Lett. 7 403

    [10]

    Xiong Y, Liu Z, Sun C, Zhang X 2007 Nano Lett. 7 3360

    [11]

    Lee H, Liu Z, Xiong Y, Sun C, Zhang X 2007 Opt. Express 15 15886

    [12]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [13]

    Klar T A, Hell S W 1999 Opt. Lett. 24 954

    [14]

    Rust M J, Bates M, Zhuang X 2006 Nature Methods 3 793

    [15]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Hess H F 2006 Science 313 1642

    [16]

    Gustafsson M G L 2000 J. Microsc. 198 82

    [17]

    Gustafsson M G L 2005 PNAS 102 13081

    [18]

    Kner P, Chhun B B, Griffis E R, Winoto L, Gustafsson M G 2009 Nature Methods 6 339

    [19]

    Shao L, Kner P, Rego E H, Gustafsson M G 2011 Nature Methods 8 1044

    [20]

    Schermelleh L, Carlton P M, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso M C, Agand D A, Gustafsson M G, Leonhardt H, Sedat J W 2008 Science 320 1332

    [21]

    Chung E, Kim D, Cui Y, Kim Y H, So P T 2007 Biophys. J. 93 1747

    [22]

    Fiolka R, Beck M, Stemmer A 2008 Opt. Lett. 33 1629

    [23]

    Gliko O, Brownell W E, Saggau P 2009 Opt. Lett. 34 836

    [24]

    Planchon T A, Gao L, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nature Methods 8 417

    [25]

    Li D, Shao L, Chen B C, Zhang X, Zhang M, Moses B, Milkie D E, Beach J R, Hammer J A, Pasham M, Kirchhausen T, Baird M A, Davidson M W, Xu P, Betzig E Science 349 aab3500

    [26]

    Wei F, Liu Z 2010 Nano Lett. 10 2531

    [27]

    Wei F, Lu D, Shen H, Wan W, Ponsetto J L, Huang E, Liu Z 2014 Nano Lett. 14 4634

    [28]

    Fernndez-Domnguez A I, Liu Z, Pendry J B 2015 ACS Photon. 2 341

    [29]

    Ponsetto J L, Wei F, Liu Z 2014 Nanoscale 6 5807

    [30]

    Tan P S, Yuan X C, Yuan G H, Wang Q 2010 Appl. Phys. Lett. 97 241109

    [31]

    Wei S, Lei T, Du L, Zhang C, Chen H, Yang Y, Zhu S W, Yuan X C 2015 Opt. Express 23 30143

    [32]

    Zhang C, Min C, Du L, Yuan X C 2016 Appl. Phys. Lett. 108 201601

    [33]

    Ertsgaard C T, McKoskey R M, Rich I S, Lindquist N C 2014 ACS Nano 8 10941

    [34]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [35]

    Wood R W 1902 Proc. Phys. Soc. London 18 269

    [36]

    Fano U 1941 JOSA 31 213

    [37]

    Ritchie R H 1957 Phys. Rev. 106 874

    [38]

    Ferrell R A 1958 Phys. Rev. 111 1214

    [39]

    Powell C J, Swan J B 1960 Phys. Rev. 118 640

    [40]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 91 667

    [41]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [42]

    Liu Z W, Wei Q H, Zhang X 2005 Nano Lett. 5 957

    [43]

    Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M, Zhang X 2008 Science 321 930

    [44]

    Raether H 1988 Surface Plasmons (Berlin: Springer)

    [45]

    Otto A 1968 Zeitschriftfr Physik 216 398

    [46]

    Kretschmann E, Raether H 1968 Znaturforsch 23 2135

    [47]

    Sarid D 1981 Phys. Rev. Lett. 47 1927

    [48]

    Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl D W 1996 Phys. Rev. Lett. 77 1889

    [49]

    Hornauer D, Kapitza H, Raether H 1974 J. Physics D: Appl. Phys. 7 L100

    [50]

    Nash D J, Cotter N P K, Wood E L, Bradberry G W, Sambles J R 1995 J. Modern Opt. 42 243

    [51]

    Kano H, Mizuguchi S, Kawata S 1998 JOSA B 15 1381

    [52]

    https://wwwzeisscom/microscopy/int/products/imaging-systems/apotome-2-for-biology.html [2017-03-01]

    [53]

    Dan D, Lei M, Yao B, Wang W, Winterhalder M, Zumbusch A, Qi Y, Xia L, Yan S, Yang Y, Gao P, Zhao W 2013 Sci. Reports 3 1116

    [54]

    Chakrova N, Rieger B 2016 JOSA A 33 B12

    [55]

    Gjonaj B 2012 Digital Plasmonics: from Concept to Microscopy (Amsterdam: University of Amsterdam)

    [56]

    Wang Q, Bu J, Tan P S, Yuan G H, Teng J H, Wang H, Yuan X C 2012 Plasmonics 7 427

    [57]

    Yuan G, Wang Q, Yuan X 2012 Opt. Lett. 37 2715

    [58]

    Cao S, Wang T, Xu W, Liu H, Zhang H, Hu B, Yu W 2016 Sci. Reports 6 23460

    [59]

    Cao S, Wang T, Sun Q, Hu B, Yu W 2017 Opt. Express 25 3863

    [60]

    Zhang J, See C W, Somekh M G, Pitter M C, Liu S G 2004 Appl. Phys. Lett. 85 5451

    [61]

    Chen H, Du L, Wu X, Zhu S, Yang Y, Fang H, Yuan X 2016 Appl. Phys. Lett. 109 261904

  • [1]

    Born M, Wolf E 2009 Principles of Optics (Amsterdam: Elsevier)

    [2]

    White J G, Amos W B 1987 Nature 328 183

    [3]

    Sheppard C J R, Wilson T 1981 J. Microsc. 124 107

    [4]

    Bek A, Vogelgesang R, Kern K 2006 Rev. Sci. Instrum. 77 043703

    [5]

    Betzig E, Trautman J K 1991 Science 251 1468

    [6]

    Reddick R C, Warmack R J, Ferrell T L 1989 Phys. Rev. B 39 767

    [7]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [8]

    Durant S, Liu Z, Steele J M, Zhang X 2006 JOSA B 23 2383

    [9]

    Liu Z, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X 2007 Nano Lett. 7 403

    [10]

    Xiong Y, Liu Z, Sun C, Zhang X 2007 Nano Lett. 7 3360

    [11]

    Lee H, Liu Z, Xiong Y, Sun C, Zhang X 2007 Opt. Express 15 15886

    [12]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [13]

    Klar T A, Hell S W 1999 Opt. Lett. 24 954

    [14]

    Rust M J, Bates M, Zhuang X 2006 Nature Methods 3 793

    [15]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Hess H F 2006 Science 313 1642

    [16]

    Gustafsson M G L 2000 J. Microsc. 198 82

    [17]

    Gustafsson M G L 2005 PNAS 102 13081

    [18]

    Kner P, Chhun B B, Griffis E R, Winoto L, Gustafsson M G 2009 Nature Methods 6 339

    [19]

    Shao L, Kner P, Rego E H, Gustafsson M G 2011 Nature Methods 8 1044

    [20]

    Schermelleh L, Carlton P M, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso M C, Agand D A, Gustafsson M G, Leonhardt H, Sedat J W 2008 Science 320 1332

    [21]

    Chung E, Kim D, Cui Y, Kim Y H, So P T 2007 Biophys. J. 93 1747

    [22]

    Fiolka R, Beck M, Stemmer A 2008 Opt. Lett. 33 1629

    [23]

    Gliko O, Brownell W E, Saggau P 2009 Opt. Lett. 34 836

    [24]

    Planchon T A, Gao L, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nature Methods 8 417

    [25]

    Li D, Shao L, Chen B C, Zhang X, Zhang M, Moses B, Milkie D E, Beach J R, Hammer J A, Pasham M, Kirchhausen T, Baird M A, Davidson M W, Xu P, Betzig E Science 349 aab3500

    [26]

    Wei F, Liu Z 2010 Nano Lett. 10 2531

    [27]

    Wei F, Lu D, Shen H, Wan W, Ponsetto J L, Huang E, Liu Z 2014 Nano Lett. 14 4634

    [28]

    Fernndez-Domnguez A I, Liu Z, Pendry J B 2015 ACS Photon. 2 341

    [29]

    Ponsetto J L, Wei F, Liu Z 2014 Nanoscale 6 5807

    [30]

    Tan P S, Yuan X C, Yuan G H, Wang Q 2010 Appl. Phys. Lett. 97 241109

    [31]

    Wei S, Lei T, Du L, Zhang C, Chen H, Yang Y, Zhu S W, Yuan X C 2015 Opt. Express 23 30143

    [32]

    Zhang C, Min C, Du L, Yuan X C 2016 Appl. Phys. Lett. 108 201601

    [33]

    Ertsgaard C T, McKoskey R M, Rich I S, Lindquist N C 2014 ACS Nano 8 10941

    [34]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [35]

    Wood R W 1902 Proc. Phys. Soc. London 18 269

    [36]

    Fano U 1941 JOSA 31 213

    [37]

    Ritchie R H 1957 Phys. Rev. 106 874

    [38]

    Ferrell R A 1958 Phys. Rev. 111 1214

    [39]

    Powell C J, Swan J B 1960 Phys. Rev. 118 640

    [40]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 91 667

    [41]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [42]

    Liu Z W, Wei Q H, Zhang X 2005 Nano Lett. 5 957

    [43]

    Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M, Zhang X 2008 Science 321 930

    [44]

    Raether H 1988 Surface Plasmons (Berlin: Springer)

    [45]

    Otto A 1968 Zeitschriftfr Physik 216 398

    [46]

    Kretschmann E, Raether H 1968 Znaturforsch 23 2135

    [47]

    Sarid D 1981 Phys. Rev. Lett. 47 1927

    [48]

    Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl D W 1996 Phys. Rev. Lett. 77 1889

    [49]

    Hornauer D, Kapitza H, Raether H 1974 J. Physics D: Appl. Phys. 7 L100

    [50]

    Nash D J, Cotter N P K, Wood E L, Bradberry G W, Sambles J R 1995 J. Modern Opt. 42 243

    [51]

    Kano H, Mizuguchi S, Kawata S 1998 JOSA B 15 1381

    [52]

    https://wwwzeisscom/microscopy/int/products/imaging-systems/apotome-2-for-biology.html [2017-03-01]

    [53]

    Dan D, Lei M, Yao B, Wang W, Winterhalder M, Zumbusch A, Qi Y, Xia L, Yan S, Yang Y, Gao P, Zhao W 2013 Sci. Reports 3 1116

    [54]

    Chakrova N, Rieger B 2016 JOSA A 33 B12

    [55]

    Gjonaj B 2012 Digital Plasmonics: from Concept to Microscopy (Amsterdam: University of Amsterdam)

    [56]

    Wang Q, Bu J, Tan P S, Yuan G H, Teng J H, Wang H, Yuan X C 2012 Plasmonics 7 427

    [57]

    Yuan G, Wang Q, Yuan X 2012 Opt. Lett. 37 2715

    [58]

    Cao S, Wang T, Xu W, Liu H, Zhang H, Hu B, Yu W 2016 Sci. Reports 6 23460

    [59]

    Cao S, Wang T, Sun Q, Hu B, Yu W 2017 Opt. Express 25 3863

    [60]

    Zhang J, See C W, Somekh M G, Pitter M C, Liu S G 2004 Appl. Phys. Lett. 85 5451

    [61]

    Chen H, Du L, Wu X, Zhu S, Yang Y, Fang H, Yuan X 2016 Appl. Phys. Lett. 109 261904

  • [1] Yang Hao-Zhi, Nie Meng-Jiao, Ma Guang-Peng, Cao Hui-Qun, Lin Dan-Ying, Qu Jun-Le, Yu Bin. Digital micromirror device-based fast super-resolution lattice structured light illumination microscopy. Acta Physica Sinica, 2024, 73(9): 098702. doi: 10.7498/aps.73.20240216
    [2] Ling Jin-Zhong, Guo Jin-Kun, Wang Yu-Cheng, Liu Xin, Wang Xiao-Rui. Research on spatial frequency shift super-resolution imaging based on evanescent wave illumination. Acta Physica Sinica, 2023, 72(22): 224202. doi: 10.7498/aps.72.20230934
    [3] Luo Ze-Wei, Wu Ge, Chen Zhi, Deng Chi-Nan, Wan Rong, Yang Tao, Zhuang Zheng-Fei, Chen Tong-Sheng. Dual-channel structured illumination super-resolution quantitative fluorescence resonance energy transfer imaging. Acta Physica Sinica, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [4] Gao Zhao-Lin, Liu Rui-Hua, Wen Kai, Ma Ying, Li Jian-Lang, Gao Peng. Phase/fluorescence dual-mode microscopy imaging based on structured light illumination. Acta Physica Sinica, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [5] Yan Xiao-Hong, Niu Yi-Jie, Xu Hong-Xing, Wei Hong. Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters. Acta Physica Sinica, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [6] Ge Yang-Yang, He Zhuo-Fen, Huang Li-Lin, Lin Dan-Ying, Cao Hui-Qun, Qu Jun-Le, Yu Bin. Flat-field multiplexed multifocal structured illumination super-resolution microscopy. Acta Physica Sinica, 2022, 71(4): 048704. doi: 10.7498/aps.71.20211712
    [7] Flat-field multiplexed multifocal structured illumination super-resolution microscopy. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211712
    [8] Liu Liang, Han De-Zhuan, Shi Lei. Plasmonic band structures and its applications. Acta Physica Sinica, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [9] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [10] Zhang Jia, Samanta Soham, Wang Jia-Lin, Wang Lu-Wei, Yang Zhi-Gang, Yan Wei, Qu Jun-Le. Study on a novel probe for stimulated emission depletion Super-resolution Imaging of Mitochondria. Acta Physica Sinica, 2020, 69(16): 168702. doi: 10.7498/aps.69.20200171
    [11] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [12] Qian Jia, Dang Shi-Pei, Zhou Xing, Dan Dan, Wang Zhao-Jun, Zhao Tian-Yu, Liang Yan-Sheng, Yao Bao-Li, Lei Ming. Fast structured illumination three-dimensional color microscopic imaging method based on Hilbert-transform. Acta Physica Sinica, 2020, 69(12): 128701. doi: 10.7498/aps.69.20200352
    [13] Li Xin, Wu Li-Xiang, Yang Yuan-Jie. Enhanced near field focus steering of rectangular nanoslit metasurface structure. Acta Physica Sinica, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [14] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [15] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [16] Yan Bo, Chen Li, Chen Shuang, Li Meng, Yin Yi-Min, Zhou Jiang-Ning. Structured illumination for two-dimensional laser induced fluorescence imaging to eliminate stray light interference. Acta Physica Sinica, 2019, 68(21): 218701. doi: 10.7498/aps.68.20190977
    [17] Zhu Xue-Tao, Guo Jian-Dong. Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations. Acta Physica Sinica, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [18] Lin Dan-Ying, Qu Jun-Le. Recent progress on super-resolution imaging and correlative super-resolution microscopy. Acta Physica Sinica, 2017, 66(14): 148703. doi: 10.7498/aps.66.148703
    [19] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [20] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
Metrics
  • Abstract views:  6548
  • PDF Downloads:  541
  • Cited By: 0
Publishing process
  • Received Date:  29 March 2017
  • Accepted Date:  27 April 2017
  • Published Online:  05 July 2017

/

返回文章
返回