Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Orientation determination and manipulation of single ice crystal via unidirectional solidification

Zhang Tong-Xin Wang Zhi-Jun Wang Li-Lin Li Jun-Jie Lin Xin Wang Jin-Cheng

Orientation determination and manipulation of single ice crystal via unidirectional solidification

Zhang Tong-Xin, Wang Zhi-Jun, Wang Li-Lin, Li Jun-Jie, Lin Xin, Wang Jin-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The growth of ice crystal has been widely investigated by researchers from various fields, but efficient method that can meet the experimental requirements for identifying and reproducing the ice crystal with specific orientation is still lacking. In this paper, an ice crystal can be characterized with unique orientation information, where tilt angle of optical axis α, extinction angle β and the angle γ relative to preferred orientation 〈1120〉 in the basal plane (0001) and the direction of temperature gradient G are determined based on the properties of optic polarization of hexagonal ice in the directional solidification. An integrated criterion for determining the orientation of hexagonal ice is proposed by combining the crystal optics and solidification interface morphology. Precise manipulation of the orientation of single ice crystal is achieved by using a step-by-step method via a unidirectional platform combined with a polarized optical microscope. Three coordinate systems are established to achieve the manipulation of ice. They are the microscope coordinate system termed as “A-P-L”, where A, P and L refer to the directions of analyzer, polarizer and incident beam of the optical microscope, respectively, the specimen box coordinate system named “xyz”, and the crystallographic coordinate system described by the optical axis and 〈1120〉 in the basal plane (0001). Ice crystals are all confined in a series of glass specimen boxes filled with KCl solution (0.2 mol/L) and the growth sequence of the single ice crystal from one specimen box to another is specially designed to ensure the specific orientation relations among specimen boxes, and the orientation relations among the specimen boxes are adjusted according to the integrated criterion. Single ice crystals with three typical orientations (α3=90°, β3 a=0°; α3=90°, β3b=90°; α4=90°, β4 dose not exist, γ ≈ 33°) relative to the microscope coordinate A-P-L are obtained, and their morphological characteristics of S/L interface are observed in situ under different pulling velocities (10.3 μm/s, 13.4 μm/s and 100 μm/s, respectively). In this paper we successfully solve the problem of orientation determination and manipulation of ice orientation in the study of directional solidification of ice crystal, which may provide an effective experimental approach for investigating the theoretical problems concerning ice crystal growth.
      Corresponding author: Wang Zhi-Jun, zhjwang@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51701155), Natural Science Foundation of Shaanxi Province of China (Grant No. 2017JM5112), and State Key Laboratory of Solidification Processing, China (Grant Nos. 158-QP-2016, SKLSP201627).
    [1]

    Ma J, Hung H, Tian C, Kallenborn R 2011 Nat. Clim. Change 1 255

    [2]

    Fu Q, Hou R, Li T, Jiang R, Yan P, Ma Z, Zhou Z 2018 Sci. Rep. 8 1325

    [3]

    Furukawa Y, Nagashima K, Nakatsubo SI, Yoshizaki I, Tamaru H, Shimaoka T, Sone T, Yokoyama E, Zepeda S, Terasawa T, Asakawa H, Murata K I, Sazaki G 2017 Sci. Rep. 7 43157

    [4]

    Petrenko V, Whitworth R 2002 Physics of Ice (New York:Oxford University Press) pp3-4, 24-30

    [5]

    Morris C E, Sands D C, Vinatzer B A, Glaux C, Guilbaud C, Buffière A, Yan S, Dominguez H, Thompson B M 2008 ISME J. 2 321

    [6]

    Deville S, Nalla R K 2006 Science 312 1312

    [7]

    Anesio A M, Lutz S, Chrismas N A M, Benning L G 2017 Npj Biofilms Microbiomes 3 10

    [8]

    Xu X Z, Wang J C, Zhang L X 2001 Physics of Frozen Soil (Beijing:Science Press) pp1-4 (in Chinese) [徐学祖, 王家澄, 张立新 2001 冻土物理学 (北京:科学出版社) 第1–4页]

    [9]

    Dachs J 2011 Nat. Clim. Change 1 247

    [10]

    Libbrecht K G 2001 Eng. Sci. 64 10

    [11]

    Furukawa Y, Shimada W 1993 J. Cryst. Growth 128 234

    [12]

    Macklin W C, Ryan B F 1965 J. Atmos. Sci. 22 452

    [13]

    Singer H M 2006 Phys. Rev. E 73 051606

    [14]

    Shibkov A A, Golovin Y I, Zheltov M A, Korolev A A, Leonov A A 2003 Physica A 319 65

    [15]

    Thomas D N, Dieckmann G S 2003 Sea Ice:An Introduction to its Physics, Chemistry, Biology and Geology (Blackwell:John Wiley & Sons) p24

    [16]

    Saruya T, Kurita K, Rempel A W 2013 Phys. Rev. E 87 9

    [17]

    Deville S 2017 Scr. Mater. 147 119

    [18]

    Rudolph P 2014 Handbook of Crystal Growth:Bulk Crystal Growth (USA:Elsevier) pp46-47, 414-415

    [19]

    Harrison J D, Tiller W A 1963 J. Appl. Phys. 34 3349

    [20]

    Bai H, Chen Y, Delattre B, Tomsia A P, Ritchie R O 2015 Sci. Adv. 1 e1500849

    [21]

    Deville S, Adrien J, Maire E, Scheel M, Di Michiel M 2013 Acta Mater. 61 2077

    [22]

    Lasalle A, Guizard C, Maire E, Adrien J, Deville S 2012 Acta Mater. 60 4594

    [23]

    Deville S, Maire E, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C 2009 J. Am. Ceram. Soc. 92 2497

    [24]

    Zhao L S, Pan L Q, Ji A L, Cao Z X, Wang Q 2016 Chin. Phys. B 25 075101

    [25]

    Jia L, Wang L L, Shen J N, Zhang Z M, Li J J, Wang J C, Wang Z J 2017 Acta Phys. Sin. 66 196402 (in Chinese) [贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军 2017 物理学报 66 196402]

    [26]

    Wang X 2014 Crystal Optics (Nanjing:Nanjing University Press) pp9-13, 43-51 (in Chinese) [汪相 2014 晶体光学·彩色第2版(南京:南京大学出版社) 第 9-13 页, 第43-51 页]

    [27]

    Nagashima K, Furukawa Y 1997 J. Cryst. Growth 171 577

    [28]

    Wang Z J, Li J J, Wang J C 2011 J. Cryst. Growth 328 108

    [29]

    Gosting L J 1950 J. Am. Chem. Soc. 72 4418

  • [1]

    Ma J, Hung H, Tian C, Kallenborn R 2011 Nat. Clim. Change 1 255

    [2]

    Fu Q, Hou R, Li T, Jiang R, Yan P, Ma Z, Zhou Z 2018 Sci. Rep. 8 1325

    [3]

    Furukawa Y, Nagashima K, Nakatsubo SI, Yoshizaki I, Tamaru H, Shimaoka T, Sone T, Yokoyama E, Zepeda S, Terasawa T, Asakawa H, Murata K I, Sazaki G 2017 Sci. Rep. 7 43157

    [4]

    Petrenko V, Whitworth R 2002 Physics of Ice (New York:Oxford University Press) pp3-4, 24-30

    [5]

    Morris C E, Sands D C, Vinatzer B A, Glaux C, Guilbaud C, Buffière A, Yan S, Dominguez H, Thompson B M 2008 ISME J. 2 321

    [6]

    Deville S, Nalla R K 2006 Science 312 1312

    [7]

    Anesio A M, Lutz S, Chrismas N A M, Benning L G 2017 Npj Biofilms Microbiomes 3 10

    [8]

    Xu X Z, Wang J C, Zhang L X 2001 Physics of Frozen Soil (Beijing:Science Press) pp1-4 (in Chinese) [徐学祖, 王家澄, 张立新 2001 冻土物理学 (北京:科学出版社) 第1–4页]

    [9]

    Dachs J 2011 Nat. Clim. Change 1 247

    [10]

    Libbrecht K G 2001 Eng. Sci. 64 10

    [11]

    Furukawa Y, Shimada W 1993 J. Cryst. Growth 128 234

    [12]

    Macklin W C, Ryan B F 1965 J. Atmos. Sci. 22 452

    [13]

    Singer H M 2006 Phys. Rev. E 73 051606

    [14]

    Shibkov A A, Golovin Y I, Zheltov M A, Korolev A A, Leonov A A 2003 Physica A 319 65

    [15]

    Thomas D N, Dieckmann G S 2003 Sea Ice:An Introduction to its Physics, Chemistry, Biology and Geology (Blackwell:John Wiley & Sons) p24

    [16]

    Saruya T, Kurita K, Rempel A W 2013 Phys. Rev. E 87 9

    [17]

    Deville S 2017 Scr. Mater. 147 119

    [18]

    Rudolph P 2014 Handbook of Crystal Growth:Bulk Crystal Growth (USA:Elsevier) pp46-47, 414-415

    [19]

    Harrison J D, Tiller W A 1963 J. Appl. Phys. 34 3349

    [20]

    Bai H, Chen Y, Delattre B, Tomsia A P, Ritchie R O 2015 Sci. Adv. 1 e1500849

    [21]

    Deville S, Adrien J, Maire E, Scheel M, Di Michiel M 2013 Acta Mater. 61 2077

    [22]

    Lasalle A, Guizard C, Maire E, Adrien J, Deville S 2012 Acta Mater. 60 4594

    [23]

    Deville S, Maire E, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C 2009 J. Am. Ceram. Soc. 92 2497

    [24]

    Zhao L S, Pan L Q, Ji A L, Cao Z X, Wang Q 2016 Chin. Phys. B 25 075101

    [25]

    Jia L, Wang L L, Shen J N, Zhang Z M, Li J J, Wang J C, Wang Z J 2017 Acta Phys. Sin. 66 196402 (in Chinese) [贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军 2017 物理学报 66 196402]

    [26]

    Wang X 2014 Crystal Optics (Nanjing:Nanjing University Press) pp9-13, 43-51 (in Chinese) [汪相 2014 晶体光学·彩色第2版(南京:南京大学出版社) 第 9-13 页, 第43-51 页]

    [27]

    Nagashima K, Furukawa Y 1997 J. Cryst. Growth 171 577

    [28]

    Wang Z J, Li J J, Wang J C 2011 J. Cryst. Growth 328 108

    [29]

    Gosting L J 1950 J. Am. Chem. Soc. 72 4418

  • [1] Wang Xian-Bin, Lin Xin, Wang Li-Lin, Bai Bei-Bei, Wang Meng, Huang Wei-Dong. Effect of crystallographic orientation on dendrite growth in directional solidification. Acta Physica Sinica, 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [2] Wang Li-Lin, Wang Xian-Bin, Wang Hong-Yan, Lin Xin, Huang Wei-Dong. Effect of crystallographic orientation on instability behavior of planar interface in directional solidification. Acta Physica Sinica, 2012, 61(14): 148104. doi: 10.7498/aps.61.148104
    [3] Li Mei-E, Yang Gen-Cang, Zhou Yao-He. Phase field modeling of directional solidification of a binary alloy at high velocities. Acta Physica Sinica, 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
    [4] Wang Zhi-Jun, Wang Jin-Cheng, Yang Gen-Cang. The asymptotic analysis of interfacial stability with surface tension anisotropy for directional solidification of alloys. Acta Physica Sinica, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [5] Chu Shuo, Guo Chun-Wen, Wang Zhi-Jun, Li Jun-Jie, Wang Jin-Cheng. Effect of concentration-dependent diffusion coefficient on dendrite growth in directional solidification. Acta Physica Sinica, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [6] Wang Xian-Bin, Lin Xin, Wang Li-Lin, Yu Hong-Lei, Wang Meng, Huang Wei-Dong. Influence of liquid flow on cellular and dendritic spacings. Acta Physica Sinica, 2013, 62(7): 078102. doi: 10.7498/aps.62.078102
    [7] Chen Ming-Wen, Chen Yi-Chen, Zhang Wen-Long, Liu Xiu-Min, Wang Zi-Dong. Effect of anisotropic surface tension on deep cellular crystal growth in directional solidification. Acta Physica Sinica, 2014, 63(3): 038101. doi: 10.7498/aps.63.038101
    [8] Chen Rui, Xu Qing-Yan, Liu Bai-Cheng. Simulation of dendritic competitive growth during directional solidification using modified cellular automaton method. Acta Physica Sinica, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [9] Guo Chun-Wen, Li Jun-Jie, Ma Yuan, Wang Jin-Cheng. Growth behaviors and forced modulation characteristics of dendritic sidebranches in directional solidification. Acta Physica Sinica, 2015, 64(14): 148101. doi: 10.7498/aps.64.148101
    [10] Kang Yong-Sheng, Zhao Yu-Hong, Hou Hua, Jin Yu-Chun, Chen Li-Wen. Simulation of liquid channel of Fe-C alloy directional solidification by phase-field method. Acta Physica Sinica, 2016, 65(18): 188102. doi: 10.7498/aps.65.188102
    [11] Jia Lin, Wang Li-Lin, Shen Jie-Nan, Zhang Zhong-Ming, Li Jun-Jie, Wang Jin-Cheng, Wang Zhi-Jun. Microstructure evolution of polyvinyl alcohol aqueous solution solidated in two-dimensional direction. Acta Physica Sinica, 2017, 66(19): 196402. doi: 10.7498/aps.66.196402
    [12] Guo Jing-Jie, Li Bang-Sheng, Wang Kuang-Fei, Mi Guo-Fa, Fu Heng-Zhi. Numerical simulation of microstructure evolution during directional solidification of Ti-45at.%Al alloy. Acta Physica Sinica, 2008, 57(5): 3048-3058. doi: 10.7498/aps.57.3048
    [13] Xu Xiao-Hua, Chen Ming-Wen, Wang Zi-Dong. Effect of anisotropic surface tension on morphological stability of lamellar eutectic growth in directional solidification. Acta Physica Sinica, 2018, 67(11): 118103. doi: 10.7498/aps.67.20180186
    [14] Jiang Han, Chen Ming-Wen, Wang Tao, Wang Zi-Dong. Effects of anisotropic interface kinetics and surface tension on deep cellular crystal growth in directional solidification. Acta Physica Sinica, 2017, 66(10): 106801. doi: 10.7498/aps.66.106801
    [15] Wang Ya-Qin, Wang Jin-Cheng, Li Jun-Jie. Phase field modeling of the growth and competition behavior of tilted dendrites in directional solidification. Acta Physica Sinica, 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [16] Wang Jian-Yuan, Chen Chang-Le, Zhai Wei, Jin Ke-Xin. Directional dendrite growth of SCN-3wt% H2O under shear flow. Acta Physica Sinica, 2009, 58(9): 6554-6559. doi: 10.7498/aps.58.6554
    [17] Jia Ming, Tian Zhong-Liang, Lai Yan-Qing, Li Jie, Yi Ji-Guang, Yan Jian-Feng, Liu Ye-Xiang. Study on the removal of impurities in silicon by electrorefining. Acta Physica Sinica, 2010, 59(3): 1938-1945. doi: 10.7498/aps.59.1938
    [18] Shi Yu-Feng, Xu Qing-Yan, Liu Bai-Cheng. Simulation and experimental research of melt convection on dendrite morphology evolution. Acta Physica Sinica, 2011, 60(12): 126101. doi: 10.7498/aps.60.126101
    [19] Fang Hui, Xue Hua, Tang Qian-Yu, Zhang Qing-Yu, Pan Shi-Yan, Zhu Ming-Fang. Cellular automaton simulation of molten pool migration due to temperature gradient zone melting. Acta Physica Sinica, 2019, 68(4): 048102. doi: 10.7498/aps.68.20181587
    [20] Bai Bei-Bei, Lin Xin, Wang Li-Lin, Wang Xian-Bin, Wang Meng, Huang Wei-Dong. Influence of pulling velocity on microstructure and morphologies of SCN-DC eutectic alloy. Acta Physica Sinica, 2013, 62(21): 218103. doi: 10.7498/aps.62.218103
  • Citation:
Metrics
  • Abstract views:  560
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2018
  • Accepted Date:  24 July 2018
  • Published Online:  05 October 2018

Orientation determination and manipulation of single ice crystal via unidirectional solidification

    Corresponding author: Wang Zhi-Jun, zhjwang@nwpu.edu.cn
  • 1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
  • 2. School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 51701155), Natural Science Foundation of Shaanxi Province of China (Grant No. 2017JM5112), and State Key Laboratory of Solidification Processing, China (Grant Nos. 158-QP-2016, SKLSP201627).

Abstract: The growth of ice crystal has been widely investigated by researchers from various fields, but efficient method that can meet the experimental requirements for identifying and reproducing the ice crystal with specific orientation is still lacking. In this paper, an ice crystal can be characterized with unique orientation information, where tilt angle of optical axis α, extinction angle β and the angle γ relative to preferred orientation 〈1120〉 in the basal plane (0001) and the direction of temperature gradient G are determined based on the properties of optic polarization of hexagonal ice in the directional solidification. An integrated criterion for determining the orientation of hexagonal ice is proposed by combining the crystal optics and solidification interface morphology. Precise manipulation of the orientation of single ice crystal is achieved by using a step-by-step method via a unidirectional platform combined with a polarized optical microscope. Three coordinate systems are established to achieve the manipulation of ice. They are the microscope coordinate system termed as “A-P-L”, where A, P and L refer to the directions of analyzer, polarizer and incident beam of the optical microscope, respectively, the specimen box coordinate system named “xyz”, and the crystallographic coordinate system described by the optical axis and 〈1120〉 in the basal plane (0001). Ice crystals are all confined in a series of glass specimen boxes filled with KCl solution (0.2 mol/L) and the growth sequence of the single ice crystal from one specimen box to another is specially designed to ensure the specific orientation relations among specimen boxes, and the orientation relations among the specimen boxes are adjusted according to the integrated criterion. Single ice crystals with three typical orientations (α3=90°, β3 a=0°; α3=90°, β3b=90°; α4=90°, β4 dose not exist, γ ≈ 33°) relative to the microscope coordinate A-P-L are obtained, and their morphological characteristics of S/L interface are observed in situ under different pulling velocities (10.3 μm/s, 13.4 μm/s and 100 μm/s, respectively). In this paper we successfully solve the problem of orientation determination and manipulation of ice orientation in the study of directional solidification of ice crystal, which may provide an effective experimental approach for investigating the theoretical problems concerning ice crystal growth.

Reference (29)

Catalog

    /

    返回文章
    返回