Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of monocentric wide field-of-view and high-resolution computational imaging system

Liu Fei Wei Ya-Zhe Han Ping-Li Liu Jia-Wei Shao Xiao-Peng

Citation:

Design of monocentric wide field-of-view and high-resolution computational imaging system

Liu Fei, Wei Ya-Zhe, Han Ping-Li, Liu Jia-Wei, Shao Xiao-Peng
PDF
HTML
Get Citation
  • Imaging systems with a wide field-of-view (FOV) and high-resolution, which can provide abundant target information, are always desired in various applications including target detection, environment monitoring, marine rescue, etc. Various approaches to realizing the wide FOV and high-resolution imaging have been developed, for example, fisheye lens imaging system, and panoramic optical annular staring imaging technology. In these single aperture imaging systems, the maximum resolution and FOV are determined by either the geometric aberration or the diffraction limit of the optics. Multi-scale monocentric ball-lens imaging system is of particular importance due to its high real-time ability, small image distortion, and wide FOV. The complete geometrical symmetry of multilayer monocentric ball-lens makes it possible to compensate for the geometric aberration with no need of additional assistance. However, the major problem in designing imaging system based on multi-scale monocentric ball-lens is that there are too many variables needed to be set for a ball-lens imaging structure and the problems of high time cost and computation complexity.For simplifying the design process, in this manuscript, we apply the computational imaging theory to optical system design, thereby developing a geometric aberration optimization function to determine the initial values of the desired system by the sound computation rather than repetitive iterations by using the optical system design software. Function development starts from the aberration theory. Since the monocentric ball lens does not bring in the aberrations relating to FOV, only spherical aberration and chromatic aberration are needed to be considered. The optimization function is then founded according to the principle of minimizing the spherical aberration and chromatic aberration. And then with the determined initial parameters, ZEMAX is employed to globally optimize the residual geometric aberrations, which is time-efficient. After required parameters are finally determined, the system performance is evaluated via the modulation transmission function, the spot diagram distribution, the field-curve and distortion value and the ray fan curve. Favorable results are obtained, which demonstrates the feasibility of the developed system designing approach. Imaging results from the finished prototype system are pretty satisfactory with wide FOV and high resolution which is captured through only one frame. The multi-scale wide FOV and high-resolution computation imaging system not only solves the conflict between the wide FOV and high resolution, but also provides the research foundation for computational imaging.
      Corresponding author: Shao Xiao-Peng, xpshao@xidian.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2017M613063), the Fundamental Research Fund for the Central Universities, China (Grant No. JB170503), the State Key Laboratory of Optical Technology for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (Grant No. CS16017050001), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61705175).
    [1]

    Claire S K, Jeffrey R H, Timothy K L, Joi W, Raymond G F, Bryan Z, Takahiro I, Allen B, Seung J, John P C, Amit C, Markus W C, Tannishtha R 2016 Nat. Commun. 7 1

    [2]

    Jisoo K, Doo J P, Sun J B, Jaeho L, Soo B C, Seongjun P, Sung W H 2014 Opt. Express 22 31875Google Scholar

    [3]

    Brady D J, Gehm M E, Stack R A, Marks D L, Kittle D S, Golish D R, Vera E M, Feller S D 2012 Nature 486 386Google Scholar

    [4]

    Golish D R, Vera E M, Kelly K J, Gong Q, Jansen P A, Hughes J M, Kittle D S, Brady D J, Gehm M E 2012 Opt. Express 20 22048Google Scholar

    [5]

    闫阿奇, 祝青, 曹剑中, 周泗忠, 杨正, 刘宇波 2008 光子学报 37 1975

    Yan A Q, Zhu Q, Cao J Z, Zhou S Z, Yang Z, Liu Y B 2008 Acta Photon. Sin. 37 1975

    [6]

    Matthew J L, George B, Michael F 2012 Remote Sensing 4 3006Google Scholar

    [7]

    Wang X, Li L, Hou G Q 2016 Appl. Opt. 55 2580Google Scholar

    [8]

    Yu H, Wan Q H, Lu X R, Du Y C, Yang S W 2017 Appl. Opt. 56 755Google Scholar

    [9]

    Tremblay E J, Marks D L, Brady D J, Ford J E 2012 Appl. Opt. 51 4691Google Scholar

    [10]

    Wang S, Heidrich W 2004 Comput. Graphics Forum 23 441Google Scholar

    [11]

    Donggyun K, Jinho P, Joonki P 2014 Opt. Lett. 39 6261Google Scholar

    [12]

    Antonino F, Giovanni M F, Arcangelo R B, Sebastiano B 2017 IEEE Trans. Image Process. 26 696Google Scholar

    [13]

    Mo Z, Robert H C, Juliet T G 2016 Opt. Express 21 23798

    [14]

    Huang Z, Bai J, Lu T X, Hou X Y 2013 Opt. Express 21 10810Google Scholar

    [15]

    Yan J L, Kong L S, Diao Z H, Liu X F, Zhu L L, Jia P 2018 Appl. Opt. 3 396

    [16]

    Lohmann A W 1989 Appl. Opt. 28 4996Google Scholar

    [17]

    Cossairt O S, Nayar S K 2010 Proceeding on 2010 IEEE International Conference on Computational Photography (ICCP) Pittsburgh, USA, March 29–30, 2010 p1

    [18]

    Brady D J, Hagen H 2009 Opt. Express 13 10659

    [19]

    Marks D L, Llull P R, Philips Z, Anderson J G, Feller S D, Vera E M, Son H S, Youn S, Kim J, Gehm M E, Brady D J, Nichols J M, Judd K P, Duncan M D, Waterman J R, Stack R A, Johnson A, Tennill R, Olson C C 2014 Appl. Opt. 53 C54Google Scholar

    [20]

    Patrick L, Lauren B, Zachary P, Kyle D, Marks D L, Brady D J 2015 Optica 2 1086Google Scholar

    [21]

    Cossairt O S, Miau D, Nayar S K 2011 J. Opt. Soc. Am. A 28 2540Google Scholar

    [22]

    Born M, Wolf E 2016 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7nd Edition (Cambridge: Cambridge University Press) p210

    [23]

    Luke P L, Robert S 2005 Science 310 1148Google Scholar

    [24]

    Sasian J 2010 Appl. Opt. 49 D69Google Scholar

    [25]

    Lijun L, Yiqing C 2017 Appl. Opt. 56 8570Google Scholar

  • 图 1  基于共心球透镜的广域高分辨率成像原理图

    Figure 1.  Schematic of monocentric wide field of view (FOV) and high-resolution computational imaging system.

    图 2  共心球透镜成像光路图

    Figure 2.  Ray diagram of themonocentric multi-scale ball-lens.

    图 3  (a)共心球透镜二维成像结构图; (b)调制传递函数曲线图; (c)共心球透镜点列图; (d)共心球透镜光线像差图

    Figure 3.  (a) Structure of the designed monocentric ball-lens; (b) MTF curves; (c) the spot diagram; (d) the ray fan curves.

    图 4  相邻小尺度相机视场重叠对应关系示意图

    Figure 4.  Schematic showing the FOV overlapping betweenthe adjacent micro cameras.

    图 5  小尺度相机排布示意图

    Figure 5.  Distribution of the small-scale micro camera.

    图 6  光学系统结构图

    Figure 6.  Structure of the whole optical system.

    图 7  (a)系统MTF曲线图; (b)系统点列图; (c)系统场曲和畸变图; (d)系统光线像差图

    Figure 7.  (a) MTF curves of the whole system; (b) the spot diagram; (c) the field-curve and distortion; (d) the ray fan of the system.

    图 8  不同公差分配时的MTF叠加曲线

    Figure 8.  MTF curves at different tolerance values.

    图 9  多尺度广域高分辨率计算成像系统结构图

    Figure 9.  Prototype of the multi-scale wide FOV high-resolution computational imaging system.

    图 10  (a)测试平台结构示意图; (b)测试平台实物; (c)靶标板图像; (d)分辨率图案参数表

    Figure 10.  (a) Test platform structure diagram; (b) test platform; (c) the image of target plate; (d) resolution pattern parameters table

    图 11  系统成像效果图(部分)

    Figure 11.  Imaging results of the designed system (partial result).

    表 1  共心球透镜初始结构参数

    Table 1.  Structural parameters of the monocentric ball-lens.

    面序号曲率半径/mm厚度/mm玻璃半口径/mm
    156.9031.89H-ZF1251.516
    225.0125.01H-BAK823.238
    STOInfinity32.20H-BAK86.4240
    4–32.2024.70H-ZF1228.975
    5–56.9040.13550.247
    DownLoad: CSV
  • [1]

    Claire S K, Jeffrey R H, Timothy K L, Joi W, Raymond G F, Bryan Z, Takahiro I, Allen B, Seung J, John P C, Amit C, Markus W C, Tannishtha R 2016 Nat. Commun. 7 1

    [2]

    Jisoo K, Doo J P, Sun J B, Jaeho L, Soo B C, Seongjun P, Sung W H 2014 Opt. Express 22 31875Google Scholar

    [3]

    Brady D J, Gehm M E, Stack R A, Marks D L, Kittle D S, Golish D R, Vera E M, Feller S D 2012 Nature 486 386Google Scholar

    [4]

    Golish D R, Vera E M, Kelly K J, Gong Q, Jansen P A, Hughes J M, Kittle D S, Brady D J, Gehm M E 2012 Opt. Express 20 22048Google Scholar

    [5]

    闫阿奇, 祝青, 曹剑中, 周泗忠, 杨正, 刘宇波 2008 光子学报 37 1975

    Yan A Q, Zhu Q, Cao J Z, Zhou S Z, Yang Z, Liu Y B 2008 Acta Photon. Sin. 37 1975

    [6]

    Matthew J L, George B, Michael F 2012 Remote Sensing 4 3006Google Scholar

    [7]

    Wang X, Li L, Hou G Q 2016 Appl. Opt. 55 2580Google Scholar

    [8]

    Yu H, Wan Q H, Lu X R, Du Y C, Yang S W 2017 Appl. Opt. 56 755Google Scholar

    [9]

    Tremblay E J, Marks D L, Brady D J, Ford J E 2012 Appl. Opt. 51 4691Google Scholar

    [10]

    Wang S, Heidrich W 2004 Comput. Graphics Forum 23 441Google Scholar

    [11]

    Donggyun K, Jinho P, Joonki P 2014 Opt. Lett. 39 6261Google Scholar

    [12]

    Antonino F, Giovanni M F, Arcangelo R B, Sebastiano B 2017 IEEE Trans. Image Process. 26 696Google Scholar

    [13]

    Mo Z, Robert H C, Juliet T G 2016 Opt. Express 21 23798

    [14]

    Huang Z, Bai J, Lu T X, Hou X Y 2013 Opt. Express 21 10810Google Scholar

    [15]

    Yan J L, Kong L S, Diao Z H, Liu X F, Zhu L L, Jia P 2018 Appl. Opt. 3 396

    [16]

    Lohmann A W 1989 Appl. Opt. 28 4996Google Scholar

    [17]

    Cossairt O S, Nayar S K 2010 Proceeding on 2010 IEEE International Conference on Computational Photography (ICCP) Pittsburgh, USA, March 29–30, 2010 p1

    [18]

    Brady D J, Hagen H 2009 Opt. Express 13 10659

    [19]

    Marks D L, Llull P R, Philips Z, Anderson J G, Feller S D, Vera E M, Son H S, Youn S, Kim J, Gehm M E, Brady D J, Nichols J M, Judd K P, Duncan M D, Waterman J R, Stack R A, Johnson A, Tennill R, Olson C C 2014 Appl. Opt. 53 C54Google Scholar

    [20]

    Patrick L, Lauren B, Zachary P, Kyle D, Marks D L, Brady D J 2015 Optica 2 1086Google Scholar

    [21]

    Cossairt O S, Miau D, Nayar S K 2011 J. Opt. Soc. Am. A 28 2540Google Scholar

    [22]

    Born M, Wolf E 2016 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7nd Edition (Cambridge: Cambridge University Press) p210

    [23]

    Luke P L, Robert S 2005 Science 310 1148Google Scholar

    [24]

    Sasian J 2010 Appl. Opt. 49 D69Google Scholar

    [25]

    Lijun L, Yiqing C 2017 Appl. Opt. 56 8570Google Scholar

  • [1] Shen Xiao-Yang, Cheng Yi-Hao, Xia Lin. Design of compact high resolution imaging system for cold atom experiments. Acta Physica Sinica, 2024, 73(6): 066701. doi: 10.7498/aps.73.20231689
    [2] Huang Yi-Fan, Xing Yang-Guang, Shen Wen-Jie, Peng Ji-Long, Dai Shu-Wu, Wang Ying, Duan Zi-Wen, Yan Lei, Liu Yue, Li Lin. Optical design of sub-angular second spatially resolved solar extreme ultraviolet broadband imaging spectrometer. Acta Physica Sinica, 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [3] Wu Chang-Mao, Tang Xiong-Xin, Xia Yuan-Yuan, Yang Han-Xiang, Xu Fan-Jiang. High precision ray tracing method for space camera in optical design. Acta Physica Sinica, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [4] Hou Chen-Yang, Meng Fan-Chao, Zhao Yi-Ming, Ding Jin-Min, Zhao Xiao-Ting, Liu Hong-Wei, Wang Xin, Lou Shu-Qin, Sheng Xin-Zhi, Liang Sheng. “Machine micro/nano optics scientist”: Application and development of artificial intelligence in micro/nano optical design. Acta Physica Sinica, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [5] Liu You-Hai, Qin Tian-Xiang, Wang Ying-Ce, Kang Xing-Wang, Liu Jun, Wu Jia-Chen, Cao Liang-Cai. Research advances in simple and compact optical imaging techniques. Acta Physica Sinica, 2023, 72(8): 084205. doi: 10.7498/aps.72.20230092
    [6] Qiu Yi-Geng, Fan Yuan-Yuan, Yan Bo-Xia, Wang Yan-Wei, Wu Yi-Hang, Han Zhe, Qi Yan, Lu Ping. Design and experiment of light field shaping system for three-dimensional extended light source used in photoacoustic spectrometer. Acta Physica Sinica, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [7] Xu Xiang-Xin, Chang Jun, Wu Chu-Han, Song Da-Lin. Local hybrid optical encryption system based on double random phase encoding. Acta Physica Sinica, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [8] Feng Shuai, Chang Jun, Hu Yao-Yao, Wu Hao, Liu Xin. Design and analysis of polarization imaging lidar and short wave infrared composite optical receiving system. Acta Physica Sinica, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [9] Xu Ping, Yang Wei, Zhang Xu-Lin, Luo Tong-Zheng, Huang Yan-Yan. Two-dimensional distribution design of micro-prism for partial integrated light guide plate. Acta Physica Sinica, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [10] Cao Chao, Liao Zhi-Yuan, Bai Yu, Fan Zhen-Jie, Liao Sheng. Initial configuration design of off-axis reflective optical system based on vector aberration theory. Acta Physica Sinica, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [11] Yao Wei-Qiang, Huang Wen-Hao, Yang Chu-Ping. Theoretical analysis of spectrum reconstruction imaging using single-pixel detection. Acta Physica Sinica, 2017, 66(3): 034201. doi: 10.7498/aps.66.034201
    [12] Feng Wei, Zhang Fu-Min, Wang Wei-Jing, Qu Xing-Hua. Adaptive high-dynamic-range imaging method and its application based on digital micromirror device. Acta Physica Sinica, 2017, 66(23): 234201. doi: 10.7498/aps.66.234201
    [13] Lü Xiang-Bo, Zhu Jing, Yang Bao-Xi, Huang Hui-Jie. An approach for calculating the optical structure based on ybar-y diagram. Acta Physica Sinica, 2015, 64(11): 114201. doi: 10.7498/aps.64.114201
    [14] Shen Ben-Lan, Chang Jun, Wang Xi, Niu Ya-Jun, Feng Shu-Long. Design of the active zoom system with three-mirror. Acta Physica Sinica, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [15] Pei Lin-Lin, Lü Qun-Bo, Wang Jian-Wei, Liu Yang-Yang. Optical system design of the coded aperture imaging spectrometer. Acta Physica Sinica, 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [16] Ren Hong-Liang. Design and error analysis for optical tweezers based on finite conjugate microscope. Acta Physica Sinica, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [17] Wen Chang-Li, Ji Jia-Rong, Dou Wen-Hua, Feng Xiang-Hua, Xu Rong, Men Tao, Liu Chang-Hai. Improvement of the technology of making multi-mode polysiloxane waveguides. Acta Physica Sinica, 2012, 61(9): 094202. doi: 10.7498/aps.61.094202
    [18] Dong Ke-Yan, Sun Qiang, Li Yong-Da, Zhang Yun-Cui, Wang Jian, Ge Zhen-Jie, Sun Jin-Xia, Liu Jian-Zhuo. Design of a refractive/diffractive hybrid infrared bifocal optical system. Acta Physica Sinica, 2006, 55(9): 4602-4607. doi: 10.7498/aps.55.4602
    [19] Wang Fang, Zhu Qi-Hua, Jiang Dong-Bin, Zhang Qing-Quan, Deng Wu, Jing Feng. Optimization of optical design of the master amplifier in multi-pass off-axis amplification system. Acta Physica Sinica, 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
    [20] Sun Qiang, Yu Bin, Wang Zhao-Qi, Mu Guo-Guang, Lu Zhen-Wu. Study on hyperspectral detection system with the harmonic diffractive element in infrared dual-band. Acta Physica Sinica, 2004, 53(3): 756-761. doi: 10.7498/aps.53.756
Metrics
  • Abstract views:  10032
  • PDF Downloads:  193
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2018
  • Accepted Date:  15 January 2019
  • Available Online:  01 April 2019
  • Published Online:  20 April 2019

/

返回文章
返回