Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of compact high resolution imaging system for cold atom experiments

Shen Xiao-Yang Cheng Yi-Hao Xia Lin

Citation:

Design of compact high resolution imaging system for cold atom experiments

Shen Xiao-Yang, Cheng Yi-Hao, Xia Lin
PDF
HTML
Get Citation
  • In cold atom experiments, high resolution imaging systems have been used to extract in-situ density information when studying quantum gases, which is one of the hot topics in this field. Such a system is usually called “quantum-gas microscope”. In order to achieve a long working distance and large magnification, high resolution imaging of cold atoms through a vacuum window usually requires a long distance between the atoms and the camera. However, due to space limitation caused by a large number of nearby optical elements, it may be difficult to realize a long imaging system, which is a common case in cold atom experiments. Herein we present an imaging system that can achieve a short distance between the atoms and the image plane with diffraction-limited 1 μm resolution and 50 magnification. The telephoto lens design is adopted to reduce the back focal length and enhance the pointing stability of the imaging lens. The system is optimized at an operating wavelength of 767 nm and corrects aberrations induced by a 5-mm-thick silica vacuum window. At a working distance of 32 mm, a diffraction-limited field of view of 408 μm is obtained. The simulation result shows that by changing the air space between lenses, our design operates across a wide range of window thicknesses (0–15 mm), which makes it robust enough to be used in typical laboratories. This compact imaging system is made from commercial on-shelf Φ2 in (1 in = 2.54 cm) singlets and consists of two components: a microscope objective with a numerical aperture of 0.47 and a telephoto objective with a long effective focal length of 1826 mm. Both are infinitely corrected, allowing the distance between them to be adjusted to insert optical elements for irradiating atoms with laser beams of different wavelengths without affecting the imaging resolution. Taking the manufacturing and assembling tolerances into consideration, the Monte Carlo analyses show that more than 95% of the random samples are diffraction-limited within the field of view. This high success rate ensures that these two objectives can be achieved easily in the experiment. Combined with its performance with other wavelengths (470–1064 nm), this imaging system can be used for imaging different atom species, such as sodium, lithium, and cesium.
      Corresponding author: Xia Lin, linxia@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400900, 2021YFA0718302) and the National Natural Science Foundation of China (Grant No. 11874418).
    [1]

    Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S 2010 Nature 467 68Google Scholar

    [2]

    Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T, Zwierlein M W 2015 Phys. Rev. Lett. 114 193001Google Scholar

    [3]

    Wei D, Rubio-Abadal A, Ye B, Machado F, Kemp J, Srakaew K, Hollerith S, Rui J, Gopalakrishnan S, Yao N Y, Bloch I, Zeiher J 2022 Science 376 716Google Scholar

    [4]

    Bakr W S, Gillen J I, Peng A, Fölling S, Greiner M 2009 Nature 462 74Google Scholar

    [5]

    Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, Folling S, Pollet L, Greiner M 2010 Science 329 547Google Scholar

    [6]

    Salim E A, Caliga S C, Pfeiffer J B, Anderson D Z 2013 Appl. Phys. Lett. 102 084104Google Scholar

    [7]

    Preiss P M, Ma R C, Tai M E, Lukin A, Rispoli M, Zupancic P, Lahini Y, Islam R, Greiner M 2015 Science 347 1229Google Scholar

    [8]

    Britton J W, Sawyer B C, Keith A C, Wang C C J, Freericks J K, Uys H, Biercuk M J, Bollinger J J 2012 Nature 484 489Google Scholar

    [9]

    Graham T M, Song Y, Scott J, Poole C, Phuttitarn L, Jooya K, Eichler P, Jiang X, Marra A, Grinkemeyer B, Kwon M, Ebert M, Cherek J, Lichtman M T, Gillette M, Gilbert J, Bowman D, Ballance T, Campbell C, Dahl E D, Crawford O, Blunt N S, Rogers B, Noel T, Saffman M 2022 Nature 604 457Google Scholar

    [10]

    Weiss D S, Saffman M 2017 Phys. Today 70 44Google Scholar

    [11]

    Wu X L, Liang X H, Tian Y Q, Yang F, Chen C, Liu Y C, Tey M K, You L 2021 Chin. Phys. B 30 020305Google Scholar

    [12]

    Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, Zhang J 2023 Nature 615 231Google Scholar

    [13]

    王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖 2023 物理学报 72 064201Google Scholar

    Wang L W, Liu F D, Li Y D, Han W, Meng Z M, Zhang J 2023 Acta Phys. Sin. 72 064201Google Scholar

    [14]

    Trisnadi J, Zhang M, Weiss L, Chin C 2022 Rev. Sci. Instrum. 93 083203Google Scholar

    [15]

    Raithel G, Duspayev A, Dash B, Carrasco S C, Goerz M H, Vuletić V, Malinovsky V S 2023 Quantum Sci. Technol. 8 014001Google Scholar

    [16]

    Rispoli M, Lukin A, Schittko R, Kim S, Tai M E, Léonard J, Greiner M 2019 Nature 573 385Google Scholar

    [17]

    Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J, Greiner M 2019 Science 364 256Google Scholar

    [18]

    Kaufman A M, Tai M E, Lukin A, Rispoli M, Schittko R, Preiss P M, Greiner M 2016 Science 353 794Google Scholar

    [19]

    Gemelke N, Zhang X B, Hung C L, Chin C 2009 Nature 460 995Google Scholar

    [20]

    Preiss P M, Ma R C, Tai M E, Simon J, Greiner M 2015 Phys. Rev. A 91 041602Google Scholar

    [21]

    Gempel M W, Hartmann T, Schulze T A, Voges K K, Zenesini A, Ospelkaus S 2019 Rev. Sci. Instrum. 90 053201Google Scholar

    [22]

    Knottnerus I H A, Pyatchenkov S, Onishchenko O, Urech A, Schreck F, Siviloglou G A 2020 Opt. Express 28 11106Google Scholar

    [23]

    Li S K, Li G, Yang P F, Wang Z H, Zhang P F, Zhang T C 2020 Opt. Express 28 36122Google Scholar

    [24]

    Li X, Zhou F, Ke M, Xu P, He X D, Wang J, Zhan M S 2018 Appl. Opt. 57 7584Google Scholar

    [25]

    Bennie L M, Starkey P T, Jasperse M, Billington C J, Anderson R P, Turner L D 2013 Opt. Express 21 9011Google Scholar

    [26]

    Shen C Y, Chen C, Wu X L, Dong S, Cui Y, You L, Tey M K 2020 Rev. Sci. Instrum. 91 063202Google Scholar

    [27]

    Li S K, Li G, Wu W, Fan Q, Tian Y L, Yang P, Zhang P F, Zhang T C 2020 Rev. Sci. Instrum. 91 043104Google Scholar

    [28]

    Pritchard J D, Isaacs J A, Saffman M 2016 Rev. Sci. Instrum. 87 073107Google Scholar

    [29]

    Müller T 2011 Ph. D. Dissertation (Zurich: ETH Zurich

    [30]

    徐睆垚, 徐亮, 沈先春, 徐寒杨, 孙永丰, 刘文清, 刘建国 2021 物理学报 70 184201Google Scholar

    Xu H Y, Xu L, Shen X C, Xu H Y, Sun Y F, Liu W Q, Liu J G 2021 Acta Phys. Sin. 70 184201Google Scholar

    [31]

    Fischer R, Tadic-Galeb B, Yoder P 2008 Optical System Design (2nd Ed.) (New York: McGraw-Hill Education) pp136–137

    [32]

    Knottnerus I 2018 M. S. Thesis (Amsterdam: University of Amsterdam

    [33]

    Alt W 2002 Optik 113 142Google Scholar

    [34]

    Gross H, Zügge H, Peschka M, Blechinger F 2006 Image Quality Criteria (Weinheim: Wiley-VCH) pp91–99

    [35]

    Öttl T 2019 M. S. Thesis (Innsbruck: University of Innsbruck

  • 图 1  成像系统的光路结构

    Figure 1.  Layout of the imaging system.

    图 2  显微物镜的光路结构

    Figure 2.  Layout of the microscope objective.

    图 3  显微物镜的仿真结果 (a) 不同视场角下出瞳不同位置光线的波像差(单位为767 nm); (b) 不同视场角下的点列图, 圆圈表示艾里斑大小; (c) 0.13°视场角时的MTF曲线, 插图为1000 cycles/mm处的MTF曲线

    Figure 3.  Simulated results of the microscope objective. (a) Wavefront error at different positions of the exit pupil at different fields (The unit is 767 nm). (b) Spot diagrams at different fields. The black circles represent the Airy disks. (c) MTF curves at 1.0 field. The inset plots the MTF near 1000 cycles/mm.

    图 4  远摄物镜示意图

    Figure 4.  Telephoto lens group.

    图 5  远摄物镜的光路结构

    Figure 5.  Layout of the telephoto objective.

    图 6  远摄物镜的仿真结果 (a) 不同视场角下出瞳不同位置光线的波像差; (b)不同视场角下的点列图; (c) 0.13°视场角时的MTF曲线

    Figure 6.  Simulated results of the telephoto objective: (a) Wavefront error inside the circular pupil at different fields; (b) spot diagrams at different fields; (c) MTF curves at 1.0 field.

    图 7  中心视场处的分辨率仿真 (a) 物平面上的USAF 1951分辨率板; (b) 像平面上的仿真结果; (c) 像平面上PSF的径向分布, 插图为PSF在像平面上的投影, 峰值对应斯特列尔比率

    Figure 7.  Simulation of the system’s resolution at 0 field: (a) The USAF 1951 resolution target in the object plane; (b) the simulation result in the image plane; (c) PSF along the radial direction in the image plane. The inset in panel (c) shows the projection of the PSF on the image plane, where the peak value corresponds to the Strehl ratio.

    表 1  相机附近长焦成像镜组光路长度(L)的比对

    Table 1.  Comparison of the optical path lengths (L) of the long foci imaging lens group near the camera.

    Magnification L/mm Ref.
    40.6 $ \sim $1678 [21]
    32 1000 [23]
    18.9 1000 [24]
    21.4 1000 [25]
    14.9 1000 [28]
    50 874 This work
    DownLoad: CSV

    表 2  真空窗厚度范围(R)的比对

    Table 2.  Comparison of the vacuum window thickness ranges (R).

    NAR
    /mm
    Ref.
    0.526—10[21]
    0.553—7[23]
    0.783—7[23]
    0.440—13[24]
    0.45—7[27]
    0.470—15This work
    DownLoad: CSV

    表 3  成像系统的设计要求

    Table 3.  Design requirements of the imaging system.

    ItemsSpecifications
    Resolution/μm1
    Wavelength/nm767
    Working distance/mm>20
    Magnification50
    Track length/m<1
    Image diameter/mm8.2
    DownLoad: CSV

    表 4  显微物镜的参数

    Table 4.  Specifications of the microscope objective.

    Surface No. Radius/mm Thickness/mm Material
    1 Infinity 4.00 N-BK7
    2 51.46 31.50(d1) Air
    3 127.37 8.12 N-BK7
    4 –127.37 0.50 Air
    5 256.59 5.52 N-BK7
    6 –256.59 0.50 Air
    7 47.87 7.29 N-BK7
    8 119.32 1.40 Air
    9 30.34 9.70 N-BK7
    10 65.80 17.0264 Air
    11 Infinity 5.00 Silica
    12 Infinity 15.00 Vacuum
    DownLoad: CSV

    表 5  公差分析中使用的公差值

    Table 5.  Tolerances used in the tolerance analysis.

    Tolerance typeItemsValue
    Manufacturing toleranceLens thickness±0.1 mm
    Air space±0.05 mm
    Radii±3${\lambda _{633}}$
    Refractive index±0.001
    Centering±3 arcmin
    Assembling toleranceDecentration±0.05 mm
    Clear aperture tilt±0.02°
    DownLoad: CSV

    表 6  远摄物镜的参数

    Table 6.  Specifications of the telephoto objective.

    Surface No. Radius/mm Thicknesses/mm Material
    1 64.38 8.22 N-BK7
    2 Infinity 9.60(d2) Air
    3 –517.255 2.50 N-BK7
    4 517.255 71.00(d3) Air
    5 –38.59 3.50 N-BK7
    6 Infinity 772.016 Air
    7 Infinity 1.50 Silica
    8 Infinity 5.55 Vacuum
    DownLoad: CSV

    表 7  不同真空窗厚度与波长下的表现

    Table 7.  Performance of the imaging system at different window thicknesses and wavelengths.

    Wavelength/nm Window
    thickness/mm
    d1/mm d2/mm d3/mm Diffraction-limited
    FOV/μm
    Magnification Track
    length/mm
    470 0 26.1 226 –48.8 963
    5 31.4 0.624 83.9 230 –51.5 969
    15 50.8 173 –50.0 827
    767 0 26.2 398 –47.7 986
    5 31.5 9.6 71.0 408 –50.6 993
    15 50.8 404 –61.6 1013
    1064 0 26.2 440 –48.9 1022
    5 31.4 11.0 69.4 440 –51.7 1028
    15 50.5 502 –63.0 1048
    DownLoad: CSV
  • [1]

    Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S 2010 Nature 467 68Google Scholar

    [2]

    Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T, Zwierlein M W 2015 Phys. Rev. Lett. 114 193001Google Scholar

    [3]

    Wei D, Rubio-Abadal A, Ye B, Machado F, Kemp J, Srakaew K, Hollerith S, Rui J, Gopalakrishnan S, Yao N Y, Bloch I, Zeiher J 2022 Science 376 716Google Scholar

    [4]

    Bakr W S, Gillen J I, Peng A, Fölling S, Greiner M 2009 Nature 462 74Google Scholar

    [5]

    Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, Folling S, Pollet L, Greiner M 2010 Science 329 547Google Scholar

    [6]

    Salim E A, Caliga S C, Pfeiffer J B, Anderson D Z 2013 Appl. Phys. Lett. 102 084104Google Scholar

    [7]

    Preiss P M, Ma R C, Tai M E, Lukin A, Rispoli M, Zupancic P, Lahini Y, Islam R, Greiner M 2015 Science 347 1229Google Scholar

    [8]

    Britton J W, Sawyer B C, Keith A C, Wang C C J, Freericks J K, Uys H, Biercuk M J, Bollinger J J 2012 Nature 484 489Google Scholar

    [9]

    Graham T M, Song Y, Scott J, Poole C, Phuttitarn L, Jooya K, Eichler P, Jiang X, Marra A, Grinkemeyer B, Kwon M, Ebert M, Cherek J, Lichtman M T, Gillette M, Gilbert J, Bowman D, Ballance T, Campbell C, Dahl E D, Crawford O, Blunt N S, Rogers B, Noel T, Saffman M 2022 Nature 604 457Google Scholar

    [10]

    Weiss D S, Saffman M 2017 Phys. Today 70 44Google Scholar

    [11]

    Wu X L, Liang X H, Tian Y Q, Yang F, Chen C, Liu Y C, Tey M K, You L 2021 Chin. Phys. B 30 020305Google Scholar

    [12]

    Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, Zhang J 2023 Nature 615 231Google Scholar

    [13]

    王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖 2023 物理学报 72 064201Google Scholar

    Wang L W, Liu F D, Li Y D, Han W, Meng Z M, Zhang J 2023 Acta Phys. Sin. 72 064201Google Scholar

    [14]

    Trisnadi J, Zhang M, Weiss L, Chin C 2022 Rev. Sci. Instrum. 93 083203Google Scholar

    [15]

    Raithel G, Duspayev A, Dash B, Carrasco S C, Goerz M H, Vuletić V, Malinovsky V S 2023 Quantum Sci. Technol. 8 014001Google Scholar

    [16]

    Rispoli M, Lukin A, Schittko R, Kim S, Tai M E, Léonard J, Greiner M 2019 Nature 573 385Google Scholar

    [17]

    Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J, Greiner M 2019 Science 364 256Google Scholar

    [18]

    Kaufman A M, Tai M E, Lukin A, Rispoli M, Schittko R, Preiss P M, Greiner M 2016 Science 353 794Google Scholar

    [19]

    Gemelke N, Zhang X B, Hung C L, Chin C 2009 Nature 460 995Google Scholar

    [20]

    Preiss P M, Ma R C, Tai M E, Simon J, Greiner M 2015 Phys. Rev. A 91 041602Google Scholar

    [21]

    Gempel M W, Hartmann T, Schulze T A, Voges K K, Zenesini A, Ospelkaus S 2019 Rev. Sci. Instrum. 90 053201Google Scholar

    [22]

    Knottnerus I H A, Pyatchenkov S, Onishchenko O, Urech A, Schreck F, Siviloglou G A 2020 Opt. Express 28 11106Google Scholar

    [23]

    Li S K, Li G, Yang P F, Wang Z H, Zhang P F, Zhang T C 2020 Opt. Express 28 36122Google Scholar

    [24]

    Li X, Zhou F, Ke M, Xu P, He X D, Wang J, Zhan M S 2018 Appl. Opt. 57 7584Google Scholar

    [25]

    Bennie L M, Starkey P T, Jasperse M, Billington C J, Anderson R P, Turner L D 2013 Opt. Express 21 9011Google Scholar

    [26]

    Shen C Y, Chen C, Wu X L, Dong S, Cui Y, You L, Tey M K 2020 Rev. Sci. Instrum. 91 063202Google Scholar

    [27]

    Li S K, Li G, Wu W, Fan Q, Tian Y L, Yang P, Zhang P F, Zhang T C 2020 Rev. Sci. Instrum. 91 043104Google Scholar

    [28]

    Pritchard J D, Isaacs J A, Saffman M 2016 Rev. Sci. Instrum. 87 073107Google Scholar

    [29]

    Müller T 2011 Ph. D. Dissertation (Zurich: ETH Zurich

    [30]

    徐睆垚, 徐亮, 沈先春, 徐寒杨, 孙永丰, 刘文清, 刘建国 2021 物理学报 70 184201Google Scholar

    Xu H Y, Xu L, Shen X C, Xu H Y, Sun Y F, Liu W Q, Liu J G 2021 Acta Phys. Sin. 70 184201Google Scholar

    [31]

    Fischer R, Tadic-Galeb B, Yoder P 2008 Optical System Design (2nd Ed.) (New York: McGraw-Hill Education) pp136–137

    [32]

    Knottnerus I 2018 M. S. Thesis (Amsterdam: University of Amsterdam

    [33]

    Alt W 2002 Optik 113 142Google Scholar

    [34]

    Gross H, Zügge H, Peschka M, Blechinger F 2006 Image Quality Criteria (Weinheim: Wiley-VCH) pp91–99

    [35]

    Öttl T 2019 M. S. Thesis (Innsbruck: University of Innsbruck

  • [1] Huang Yi-Fan, Xing Yang-Guang, Shen Wen-Jie, Peng Ji-Long, Dai Shu-Wu, Wang Ying, Duan Zi-Wen, Yan Lei, Liu Yue, Li Lin. Optical design of sub-angular second spatially resolved solar extreme ultraviolet broadband imaging spectrometer. Acta Physica Sinica, 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [2] Li Yue, Li Jun, Xue Zheng-Yue, Wang Jing-Jing, Wang Gui-Shi, Gao Xiao-Ming, Tan Tu. Research on application of local oscillator power locking method to laser heterodyne radiometer. Acta Physica Sinica, 2023, 72(9): 093201. doi: 10.7498/aps.72.20230261
    [3] Wu Chang-Mao, Tang Xiong-Xin, Xia Yuan-Yuan, Yang Han-Xiang, Xu Fan-Jiang. High precision ray tracing method for space camera in optical design. Acta Physica Sinica, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [4] Hou Chen-Yang, Meng Fan-Chao, Zhao Yi-Ming, Ding Jin-Min, Zhao Xiao-Ting, Liu Hong-Wei, Wang Xin, Lou Shu-Qin, Sheng Xin-Zhi, Liang Sheng. “Machine micro/nano optics scientist”: Application and development of artificial intelligence in micro/nano optical design. Acta Physica Sinica, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [5] Qiu Yi-Geng, Fan Yuan-Yuan, Yan Bo-Xia, Wang Yan-Wei, Wu Yi-Hang, Han Zhe, Qi Yan, Lu Ping. Design and experiment of light field shaping system for three-dimensional extended light source used in photoacoustic spectrometer. Acta Physica Sinica, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [6] Xu Xiang-Xin, Chang Jun, Wu Chu-Han, Song Da-Lin. Local hybrid optical encryption system based on double random phase encoding. Acta Physica Sinica, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [7] Feng Shuai, Chang Jun, Hu Yao-Yao, Wu Hao, Liu Xin. Design and analysis of polarization imaging lidar and short wave infrared composite optical receiving system. Acta Physica Sinica, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [8] Zhang Xu-Lin, Yang Wei, Luo Tong-Zheng, Huang Yan-Yan, Lei Lei, Li Gui-Jun, Xu Ping. Two-dimensional distribution expressions of micro-prism on bottom surface of partial integrated light guide plate. Acta Physica Sinica, 2019, 68(21): 218501. doi: 10.7498/aps.68.20190854
    [9] Feng Shuai, Chang Jun, Niu Ya-Jun, Mu Yu, Liu Xin. A method of designing asymmetric double-sided off-axis aspheric mirror detection compensation zoom light path. Acta Physica Sinica, 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [10] Xu Ping, Yang Wei, Zhang Xu-Lin, Luo Tong-Zheng, Huang Yan-Yan. Two-dimensional distribution design of micro-prism for partial integrated light guide plate. Acta Physica Sinica, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [11] Cao Chao, Liao Zhi-Yuan, Bai Yu, Fan Zhen-Jie, Liao Sheng. Initial configuration design of off-axis reflective optical system based on vector aberration theory. Acta Physica Sinica, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [12] Liu Fei, Wei Ya-Zhe, Han Ping-Li, Liu Jia-Wei, Shao Xiao-Peng. Design of monocentric wide field-of-view and high-resolution computational imaging system. Acta Physica Sinica, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [13] Liu Yan, Li Jian-Jun, Gao Dong-Yang, Zhai Wen-Chao, Hu You-Bo, Guo Yuan-Yuan, Xia Mao-Peng, Zheng Xiao-Bing. Research on the time-correlation characterisrtic of correlated photon circles generated by the type-I spontaneous parametric down-conversion. Acta Physica Sinica, 2016, 65(19): 194211. doi: 10.7498/aps.65.194211
    [14] Lü Xiang-Bo, Zhu Jing, Yang Bao-Xi, Huang Hui-Jie. An approach for calculating the optical structure based on ybar-y diagram. Acta Physica Sinica, 2015, 64(11): 114201. doi: 10.7498/aps.64.114201
    [15] Shen Ben-Lan, Chang Jun, Wang Xi, Niu Ya-Jun, Feng Shu-Long. Design of the active zoom system with three-mirror. Acta Physica Sinica, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [16] Pei Lin-Lin, Lü Qun-Bo, Wang Jian-Wei, Liu Yang-Yang. Optical system design of the coded aperture imaging spectrometer. Acta Physica Sinica, 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [17] Ren Hong-Liang. Design and error analysis for optical tweezers based on finite conjugate microscope. Acta Physica Sinica, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [18] Wen Chang-Li, Ji Jia-Rong, Dou Wen-Hua, Feng Xiang-Hua, Xu Rong, Men Tao, Liu Chang-Hai. Improvement of the technology of making multi-mode polysiloxane waveguides. Acta Physica Sinica, 2012, 61(9): 094202. doi: 10.7498/aps.61.094202
    [19] Dong Ke-Yan, Sun Qiang, Li Yong-Da, Zhang Yun-Cui, Wang Jian, Ge Zhen-Jie, Sun Jin-Xia, Liu Jian-Zhuo. Design of a refractive/diffractive hybrid infrared bifocal optical system. Acta Physica Sinica, 2006, 55(9): 4602-4607. doi: 10.7498/aps.55.4602
    [20] Wang Fang, Zhu Qi-Hua, Jiang Dong-Bin, Zhang Qing-Quan, Deng Wu, Jing Feng. Optimization of optical design of the master amplifier in multi-pass off-axis amplification system. Acta Physica Sinica, 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
Metrics
  • Abstract views:  789
  • PDF Downloads:  45
  • Cited By: 0
Publishing process
  • Received Date:  23 October 2023
  • Accepted Date:  01 December 2023
  • Available Online:  15 December 2023
  • Published Online:  20 March 2024

/

返回文章
返回