Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application of heterostructures in halide perovskite photovoltaic devices

Xi Yu-Ying Han Yue Li Guo-Hui Zhai Ai-Ping Ji Ting Hao Yu-Ying Cui Yan-Xia

Citation:

Application of heterostructures in halide perovskite photovoltaic devices

Xi Yu-Ying, Han Yue, Li Guo-Hui, Zhai Ai-Ping, Ji Ting, Hao Yu-Ying, Cui Yan-Xia
PDF
HTML
Get Citation
  • Perovskites are widely used in various kinds of optoelectronic devices, including solar cells, photodetectors, light-emitting diodes, etc., due to their excellent properties such as long carrier diffusion length, high absorption coefficient, low trap state density and so on. Functional materials such as layered two-dimensional materials (graphene, transition metal dichalcogenides, etc.),low-dimensional semiconductor nanostructures (nanoparticles, quantum dots, nanowires, nanotubes,nanorods,nanopieces,etc.), metallic nanostructures(Au,Ag, etc.) and insulating materials (insulating polymer, organic amine, inorganic insulating film, etc.) have attracted more and more attention due to their special chemical, electrical and physical properties.In order to broaden the application of perovskites in photovoltaic devices, perovskites can be combined with various functional materials to form heterostructures so as to combine the advantages of the two types of materials.The heterostructures of perovskites/functional materials can be used as the interface modification layer in halide perovskites photovoltaic devices, to improve the crystallinity of perovskite, effectively reduce the surface defects and suppress the carrier recombination loss at the interface. The heterostructures of perovskites/functional materials can be used as the charge transporting layer in halide perovskites photovoltaic devices, can match well with the perovskite energy levels, which is beneficial to the efficient extraction of holes and electrons. The heterostructures of perovskites/functional materials also can be used as encapsulation layer in halide perovskites photovoltaic devices, to reduce the contact between water and perovskite, it can effectively prevent the degradation of perovskite, to improve the device stability.In addition, the semiconductor with narrow bandgap or array structure can be used to broaden the spectral response and to improve the light absorption of the perovskite photovoltaic devices.In a word, the heterostructures of perovskites/functional materials are applied to devices is an effective way to obtain high performance and low cost photovoltaic devices.In this review, recent works on the applications of the heterostructures in halide perovskite photovoltaic devices are comprehensively presented and discussed. The progress and advantages of the heterostructures as the interface modification layer, charge transporting layers and encapsulation layer in halide perovskite photovoltaic devices are systemically reviewed. Finally, we summarize the whole paper and give a prospect for the development of heterostructures based perovskite photovoltaic devices in the future.
    [1]

    Fang H H, Raissa R, Abdu Aguye M, Adjokatse S, Blake G R, Even J, Loi M A 2015 Adv. Funct. Mater. 25 2378Google Scholar

    [2]

    Du M H 2014 J. Mater.Chem.A 2 9091Google Scholar

    [3]

    Sun J, Wu J, Tong X, Lin F, Wang Y, Wang Z M 2018 Adv. Sci. (Weinh) 5 1700780Google Scholar

    [4]

    Ma Y, Liu Y, Shin I, Hwang I W, Jung Y K, Jeong J H, Park S H, Kim K H 2017 ACS Appl. Mater. Interfaces 9 33925Google Scholar

    [5]

    Liu Y, Zhang Y, Yang Z, Ye H, Feng J, Xu Z, Zhang X, Munir R, Liu J, Zuo P, Li Q, Hu M, Meng L, Wang K, Smilgies D M, Zhao G, Xu H, Yang Z, Amassian A, Li J, Zhao K, Liu S F 2018 Nat. Commun 9 5302Google Scholar

    [6]

    Yang Z, Deng Y, Zhang X, Wang S, Chen H, Yang S, Khurgin J, Fang N X, Zhang X, Ma R 2018 Adv. Mater. 30 1704333Google Scholar

    [7]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [8]

    Yan F, Xing J, Xing G, Quan L, Tan S T, Zhao J, Su R, Zhang L, Chen S, Zhao Y, Huan A, Sargent E H, Xiong Q, Demir H V 2018 Nano Lett. 18 3157Google Scholar

    [9]

    Wang Y, Zhang Y, Lu Y, Xu W, Mu H, Chen C, Qiao H, Song J, Li S, Sun B, Cheng Y B, Bao Q 2015 Adv. Opt. Mater. 3 1389Google Scholar

    [10]

    Dang V Q, Han G S, Trung T Q, Duy L T, Jin Y U, Hwang B U, Jung H S, Lee N E 2016 Carbon 105 353Google Scholar

    [11]

    Huo C, Liu X, Wang Z, Song X, Zeng H 2018 Adv. Opt. Mater. 6 1800152Google Scholar

    [12]

    Li Z, Moon J, Gharajeh A, Haroldson R, Hawkins R, Hu W, Zakhidov A, Gu Q 2018 ACS Nano 12 10968Google Scholar

    [13]

    Liu X, Yu D, Song X, Zeng H 2018 Small 14 1801460Google Scholar

    [14]

    Qiu L, Ono L K, Qi Y 2018 Mater. Today Energy 7 169Google Scholar

    [15]

    Rothenbach N, Gruner M E, Ollefs K, Schmitz Antoniak C, Salamon S, Zhou P, Li R, Mo M, Park S, Shen X, Weathersby S, Yang J, Wang X J, Pentcheva R, Wende H, Bovensiepen U, Sokolowski Tinten K, Eschenlohr A 2019 Phys. Rev. B 100 174301Google Scholar

    [16]

    Jing H, Ling F, Liu X, Chen Y, Zeng W, Zhang Y, Fang L, Zhou M 2019 Electron. Struct. 1 015010Google Scholar

    [17]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [18]

    You P, Tang G, Yan F 2019 Mater.Today Energy 11 128Google Scholar

    [19]

    王军霞, 毕卓能, 梁柱荣, 徐雪青 2016 物理学报 65 058801Google Scholar

    Wang J X, Bi Z N, Liang Z R, Xu X Q 2016 Acta Phys. Sin. 65 058801Google Scholar

    [20]

    Luo Q, Zhang Y, Liu C, Li J, Wang N, Lin H 2015 J. Mater. Chem. A 3 15996Google Scholar

    [21]

    Feng S, Yang Y, Li M, Wang J, Cheng Z, Li J, Ji G, Yin G, Song F, Wang Z, Li J, Gao X 2016 ACS Appl. Mater. Interfaces 8 14503Google Scholar

    [22]

    Kakavelakis G, Maksudov T, Konios D, Paradisanos I, Kioseoglou G, Stratakis E, Kymakis E 2017 Adv.Energy Mater. 7 1602120Google Scholar

    [23]

    Han G S, Song Y H, Jin Y U, Lee J W, Park N G, Kang B K, Lee J K, Cho I S, Yoon D H, Jung H S 2015 ACS Appl. Mater. Interfaces 7 23521Google Scholar

    [24]

    Wang J T W, Ball J M, Barea E M, Abate A, Alexander Webber J A, Huang J, Saliba M, Mora Sero I, Bisquert J, Snaith H J, Nicholas R J 2013 Nano Lett. 14 724

    [25]

    Yang Z, Xie J, Arivazhagan V, Xiao K, Qiang Y, Huang K, Hu M, Cui C, Yu X, Yang D R 2017 Nano Energy 40 345Google Scholar

    [26]

    Gan X, Yang S, Zhang J, Wang G, He P, Sun H, Yuan H, Yu L, Ding G, Zhu Y J 2019 ACS Appl. Mater. Interfaces 11 37796Google Scholar

    [27]

    Xie J, Huang K, Yu X, Yang Z, Xiao K, Qiang Y, Zhu X, Xu L, Wang P, Cui C, Yang D 2017 ACS Nano 11 9176Google Scholar

    [28]

    Pang S, Zhang C, Zhang H, Dong H, Chen D, Zhu W, Xi H, Chang J, Lin Z, Zhang J, Hao Y 2020 Appl. Surf. Sci. 507 145099Google Scholar

    [29]

    Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y, Sun B 2014 Nanoscale 6 10505Google Scholar

    [30]

    Li H, Tao L, Huang F, Sun Q, Zhao X, Han J, Shen Y, Wang M 2017 ACS Appl. Mater. Interfaces 9 38967Google Scholar

    [31]

    Hadadian M, Correa Baena J P, Goharshadi E K, Ummadisingu A, Seo J Y, Luo J, Gholipour S, Zakeeruddin S M, Saliba M, Abate A, Gratzel M, Hagfeldt A 2016 Adv. Mater. 28 8681Google Scholar

    [32]

    李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强 2019 物理学报 68 158803Google Scholar

    Li X G, Zhang X, Shi Z J, Zang H J, Zhu C J, Zhan Y Q 2019 Acta Phys. Sin. 68 158803Google Scholar

    [33]

    Tavakoli M M, Tavakoli R, Yadav P, Kong J 2019 J. Mater. Chem. A 7 679Google Scholar

    [34]

    Agresti A, Pescetelli S, Palma A L, Del Rio Castillo A E, Konios D, Kakavelakis G, Razza S, Cinà L, Kymakis E, Bonaccorso F, Di Carlo A 2017 ACS Energy Letter. 2 279Google Scholar

    [35]

    Agresti A, Pescetelli S, Taheri B, Del Rio Castillo A E, Cinà L, Bonaccorso F, Di Carlo A 2016 ChemSusChem 9 2609Google Scholar

    [36]

    Wang Z, Ou Q, Zhang Y, Zhang Q, Hoh H Y, Bao Q 2018 ACS Appl. Mater. Interfaces 10 24258Google Scholar

    [37]

    Lee D Y, Na S I, Kim S S 2016 Nanoscale 8 1513Google Scholar

    [38]

    Mahmoudi T, Wang Y, Hahn Y B 2018 ACS Energy Letter. 4 235

    [39]

    范伟利, 杨宗林, 张振雲, 齐俊杰 2018 物理学报 67 228801Google Scholar

    Fan W L, Yang Z L, Zhang Z Y, Qi J J 2018 Acta Phys. Sin. 67 228801Google Scholar

    [40]

    Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung H S, Choi M 2013 Energy Environ. Sci. 10 337

    [41]

    Sung H, Ahn N, Jang M S, Lee J K, Yoon H, Park N G, Choi M 2016 Adv. Energy Mater. 6 1501873Google Scholar

    [42]

    Guo X, Han B, Gao Y, Liu D, Chen J, Chen P, Xu L, Cui C 2020 Mater. Res. Express 7 016415Google Scholar

    [43]

    Chen S, Shi G 2017 Adv. Mater. 29 1605448Google Scholar

    [44]

    Shi E, Gao Y, Finkenauer B P, Akriti, Coffey A H, Dou L 2018 Chem. Soc. Rev. 47 6046Google Scholar

    [45]

    李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然 2017 物理学报 66 218503Google Scholar

    Li W S, Zhou J, Wang H C, Wang S X, Yu Z H, Li S L, Shi Y, Wang X R 2017 Acta Phys. Sin. 66 218503Google Scholar

    [46]

    Capasso A, Matteocci F, Najafi L, Prato M, Buha J, Cinà L, Pellegrini V, Carlo A D, Bonaccorso F 2016 Adv. Energy Mater. 6 1600920Google Scholar

    [47]

    Agresti A, Pescetelli S, Palma A L, Martín García B, Najafi L, Bellani S, Moreels I, Prato M, Bonaccorso F, Di Carlo A 2019 ACS Energy Letter. 4 1862Google Scholar

    [48]

    Wang D, Elumalai N K, Mahmud M A, Yi H, Upama M B, Lee Chin R A, Conibeer G, Xu C, Haque F, Duan L, Uddin A 2018 Synth. Met. 246 195Google Scholar

    [49]

    Choi Y, Jung S, Oh N K, Lee J, Seo J, Kim U, Koo D, Park H 2019 ChemNanoMat 5 1050Google Scholar

    [50]

    Dasgupta U, Chatterjee S, Pal A J 2017 Sol. Energy Mater. Sol. Cells 172 353Google Scholar

    [51]

    Najafi L, Taheri B, Martín García B, Bellani S, Di Girolamo D, Agresti A, Oropesa Nuñez R, Pescetelli S, Vesce L, Calabrò E, Prato M, Del Rio Castillo A E, Di Carlo A, Bonaccorso F 2018 ACS Nano 12 10736Google Scholar

    [52]

    Ahmed M I, Hussain Z, Khalid A, Amin H M N, Habib A 2016 Mater. Res. Express 3 045022Google Scholar

    [53]

    Singh R, Giri A, Pal M, Thiyagarajan K, Kwak J, Lee J J, Jeong U, Cho K 2019 J. Mater. Chem. A 7 7151Google Scholar

    [54]

    Huang P, Wang Z, Liu Y, Zhang K, Yuan L, Zhou Y, Song B, Li Y 2017 ACS Appl. Mater. Interfaces 9 25323Google Scholar

    [55]

    Kakavelakis G, Paradisanos I, Paci B, Generosi A, Papachatzakis M, Maksudov T, Najafi L, Del Rio Castillo A E, Kioseoglou G, Stratakis E, Bonaccorso F, Kymakis E 2018 Adv. Energy Mater. 8 1702287Google Scholar

    [56]

    Ray R, Sarkar A S, Pal S K 2019 Sol. Energy 193 95Google Scholar

    [57]

    Deng Y L, Xu Z Y, Cai K, Ma F, Hou J, Peng S L 2019 Chin. Phys.B 28 098802Google Scholar

    [58]

    Maitani M M, Satou H, Ohmura A, Tsubaki S, Wada Y 2017 Jpn. J. Appl. Phys. 56 08M

    [59]

    Jiang Q, Zhang X, You J 2018 Small 14 1801154Google Scholar

    [60]

    Zhu Z, Bai Y, Liu X, Chueh C C, Yang S, Jen A K Y 2016 Adv. Mater. 28 6478Google Scholar

    [61]

    Halvani Anaraki E, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren Cruz S H, Seo J, Luo J, Zakeeruddin S M, Tress W R, Edvinsson T, Grätzel M, Hagfeldt A, Correa Baena J P 2018 ACS Energy Letter. 3 773Google Scholar

    [62]

    Park M, Kim J Y, Son H J, Lee C H, Jang S S, Ko M J 2016 Nano Energy 26 208Google Scholar

    [63]

    Dong Q, Li J, Shi Y, Chen M, Ono L K, Zhou K, Zhang C, Qi Y, Zhou Y, Padture N P, Wang L Z 2019 Adv. Energy Mater. 9 1900834

    [64]

    You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y 2016 Nat. Nanotechnol. 11 75Google Scholar

    [65]

    Li C, Han C, Zhang Y, Zang Z, Wang M, Tang X, Du J 2017 Sol. Energy Mater. Sol. Cells 172 341Google Scholar

    [66]

    Guo Y, Li X, Kang L L, He X, Ren Z Q, Wu J D, Qi J Y 2016 RSC Adv. 6 62522Google Scholar

    [67]

    Zheng X, Troughton J, Gasparini N, Lin Y, Wei M, Hou Y, Liu J, Song K, Chen Z, Yang C, Turedi B, Alsalloum A Y, Pan J, Chen J, Zhumekenov A A, Anthopoulos T D, Han Y, Baran D, Mohammed O F, Sargent E H, Bakr O M 2019 Joule 3 1963Google Scholar

    [68]

    Liu C, Hu M, Zhou X, Wu J, Zhang L, Kong W, Li X, Zhao X, Dai S, Xu B, Cheng C 2018 NPG Asia. Mater. 10 552Google Scholar

    [69]

    Liu C, Wang K, Du P, Wang E, Gong X, Heeger A J 2015 Nanoscale 7 16460Google Scholar

    [70]

    宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振 2012 物理学报 61 052901Google Scholar

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 052901Google Scholar

    [71]

    Dharani S, Mulmudi H K, Yantara N, Thu Trang P T, Park N G, Graetzel M, Mhaisalkar S, Mathews N, Boix P P 2014 Nanoscale 6 1675Google Scholar

    [72]

    Yu J, Chen X, Wang Y, Zhou H, Xue M, Xu Y, Li Z, Ye C, Zhang J, van Aken P A, Lund P D, Wang H 2016 J.Mater.Chem.C 4 7302Google Scholar

    [73]

    Zhou H, Yang L, Gui P, Grice C R, Song Z, Wang H, Fang G 2019 Sol. Energy Mater. Sol. Cells 193 246Google Scholar

    [74]

    Gu Z, Chen F, Zhang X, Liu Y, Fan C, Wu G, Li H, Chen H 2015 Sol. Energy Mater. Sol. Cells 140 396Google Scholar

    [75]

    Gao X, Li J, Baker J, Hou Y, Guan D, Chen J, Yuan C 2014 Chem. Commun (Camb) 50 6368Google Scholar

    [76]

    Gao X, Li J, Gollon S, Qiu M, Guan D, Guo X, Chen J, Yuan C 2017 Phys. Chem. Chem. Phys. 19 4956Google Scholar

    [77]

    Liu Z, Zhang M, Xu X, Cai F, Yuan H, Bu L, Li W, Zhu A, Zhao Z, Wang M, Cheng Y B, He H 2015 J. Mater. Chem. A 3 24121Google Scholar

    [78]

    Choi D H, Nam S K, Jung K, Moon J H 2019 Nano Energy 56 365Google Scholar

    [79]

    He J, Wu J, Hu S, Shen H, Hu X 2019 Opt. Mater. 88 689Google Scholar

    [80]

    虞华康, 刘伯东, 吴婉玲, 李志远 2019 物理学报 68 149101Google Scholar

    Yu H K, Liu B D, Wu W L, Li Z Y 2019 Acta Phys. Sin. 68 149101Google Scholar

    [81]

    Baek S W, Noh J, Lee C H, Kim B, Seo M K, Lee J Y 2013 Sci. Rep. 3 1726

    [82]

    Carretero Palacios S, Calvo M E, Míguez H 2015 J. Phys. Chem. 119 18635

    [83]

    Wu R, Yang B, Zhang C, Huang Y, Cui Y, Liu P, Zhou C, Hao Y, Gao Y, Yang J 2016 J. Phys. Chem. C 120 6996Google Scholar

    [84]

    Sawanta S M, Chang S S, Chang K H 2016 Nanoscale 8 2664

    [85]

    Balakrishnan S K, Kamat P V 2016 ACS Energy Lett. 2 88

    [86]

    Han N, Ji T, Wang W, Li G, Li Z, Hao Y, Wu Y, Cui Y 2019 Org. Electron. 74 190Google Scholar

    [87]

    Hsu H L, Juang T Y, Chen C P, Hsieh C M, Yang C C, Huang C L, Jeng R J 2015 Sol. Energy Mater. Sol. Cells 140 224Google Scholar

    [88]

    Nourolahi H, Behjat A, Hosseini Zarch S M M, Bolorizadeh M A 2016 Sol. Energy 139 475Google Scholar

    [89]

    Zhang X, Liu J, Kou D, Zhou W, Zhou Z, Tian Q, Meng Y, Wu S, Cao A, Ouyang C 2017 Solar RRL 1 1700151Google Scholar

    [90]

    Kakavelakis G, Alexaki K, Stratakis E, Kymakis E 2017 RSC Advances 7 12998Google Scholar

    [91]

    Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J 2013 Nano Lett. 13 4505Google Scholar

    [92]

    Lu Z L, Pan X J, Ma Y Z, Li Y, Zheng L L, Zhang D F, Xu Q, Chen Z J, Wang S F, Qu B, Liu F, Huang Y D, Xiao L X, Qi H G 2015 RSC Adv. 5 11175

    [93]

    Ye T, Ma S, Jiang X, Wei L, Vijila C, Ramakrishna S 2017 Adv. Funct. Mater. 27 1606545Google Scholar

    [94]

    Chueh C C, Li C Z, Jen A K Y 2015 Energy. Environ. Sci. 8 1160Google Scholar

    [95]

    Wen X R, Wu J M, Ye M D, Gao D, Lin C J 2016 Chem. Commun. 52 11355

    [96]

    Yavari M, Mazloum Ardakani M, Gholipour S, Tavakoli M M, Taghavinia N, Hagfeldt A, Tress W 2018 ACS Omega 3 5038Google Scholar

    [97]

    Li G, Deng S, Zhang M, Chen R, Xu P, Wong M, Kwok H S 2018 Solar RRL 2 1800151Google Scholar

    [98]

    Zhang F, Song J, Hu R, Xiang Y, He J, Hao Y, Lian J, Zhang B, Zeng P, Qu J 2018 Small 14 e1704007Google Scholar

    [99]

    Chaudhary B, Kulkarni A, Jena A K, Ikegami M, Udagawa Y, Kunugita H, Ema K, Miyasaka T 2017 ChemSusChem 10 2473Google Scholar

    [100]

    Wang Q, Dong Q, Li T, Gruverman A, Huang J 2016 Adv. Mater. 28 6734Google Scholar

    [101]

    Xiong H, Giovanni DeLucab, Rui Y C, Zhang B X, Li Y G, Zhang Q H, Wang H Z, Elsa Reichmanis 2018 ACS Appl. Mater. Interfaces 10 35385Google Scholar

    [102]

    Yang J a, Qin T, Xie L, Liao K, Li T, Hao F 2019 J. Mater. Chem.C 7 10724Google Scholar

    [103]

    刘晓敏, 李亦回, 王兴涛, 赵一新 2019 物理学报 68 158805Google Scholar

    Liu X M, Li Y H, Wang X T, Zhao Y X 2019 Acta Phys. Sin. 68 158805Google Scholar

    [104]

    Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan L N, Quintero Bermudez R, Sutherland B R, Mi Q, Sargent E H, Ning Z 2017 J. Am. Chem. Soc. 139 6693Google Scholar

    [105]

    Wu Q W, Yang Z B, Peter N. Rudd, Shao Y C, Dai X Z, Wei H T, Zhao J J, Fang Y J, Wang Q, Liu Y, Deng Y H, Xiao X, Feng Y X, Huang J 2019 Sci. Adv. 5 8925Google Scholar

    [106]

    Chen L, Xie X, Liu Z, Lee E C 2017 J. Mater. Chem. A 5 6974Google Scholar

    [107]

    Yao K, Wang X, Xu Y x, Li F, Zhou L 2016 Chem. Mater. 28 3131Google Scholar

    [108]

    Cohen B E, Wierzbowska M, Etgar L 2017 Adv. Funct. Mater. 27 1604733Google Scholar

    [109]

    周立, 朱俊, 徐亚峰, 邵志鹏, 张旭辉, 叶加久, 黄阳, 张昌能, 戴松元 2016 物理化学学报 32 1207Google Scholar

    Zhou L, Zhu J, Xu Y F, Shao Z P, Zhang X H, Ye J J, Huang Y, Zhang C N, Dai S Y 2016 Acta Phys. Sin. 32 1207Google Scholar

    [110]

    Malgorzata Kot, Chittaranjan Das, Wang Z P, Karsten Henkel, Zied Rouissi, Konrad Wojciechowski, Henry J Snaith, Schmeisser D 2016 ChemSusChem 9 1Google Scholar

    [111]

    Si H, Liao Q, Zhang Z, Li Y, Yang X, Zhang G, Kang Z, Zhang Y 2016 Nano Energy 22 223Google Scholar

    [112]

    Sutherland B R, Johnston A K, Ip A H, Xu J, Adinolfi V, Kanjanaboos P, Sargent E H 2015 ACS Photonics 2 1117Google Scholar

    [113]

    Yu X, Chen S, Yan K, Cai X, Hu H, Peng M, Chen B, Dong B, Gao X, Zou D 2016 J. Power Sources 325 534Google Scholar

    [114]

    Cheng N, Liu P, Bai S, Yu Z, Liu W, Guo S S, Zhao X Z 2016 J. Power Sources 321 71Google Scholar

    [115]

    Ma C, Shi Y, Hu W, Chiu M H, Liu Z, Bera A, Li F, Wang H, Li L J, Wu T 2016 Adv. Mater. 28 3683Google Scholar

    [116]

    Lee Y, Kwon J, Hwang E, Ra C H, Yoo W J, Ahn J H, Park J H, Cho J H 2015 Adv. Mater. 27 41Google Scholar

    [117]

    Yao Z, Yang Z, Liu Y, Zhao W, Zhang X, Liu B, Wu H, Liu S 2017 Rsc Adv. 7 38155Google Scholar

    [118]

    Chuantian Z, Liming D 2017 Angew. Chem. 129 6628Google Scholar

  • 图 1  (a) 基于GO:Spiro-OMe-TAD复合HTL的钙钛矿太阳电池的结构示意图和能级示意图[20]; (b) 基于rGO:PCBM复合ETL的钙钛矿太阳电池的结构图[22]; (c) 钙钛矿薄膜在不同基底(ITO/GO, ITO/PEDOT:PSS和ITO)上的SEM图像[29]; (d) 有无Ag-rGO掺杂的钙钛矿太阳电池分别在相对湿度为45%—55%的室温下放置330 天后器件的PCE变化曲线[38]

    Figure 1.  (a)Structural diagram and energy level diagram of the perovskite solar cell based on the GO:Spiro-OMe-TAD composite HTL[20]; (b)structural diagram of the perovskite solar cell based on the rGO:PCBM composite ETL[22]; (c)SEM images of perovskite films on different substrates (ITO/GO, ITO/PEDOT:PSS, and bare ITO)[29]; (d)PCE degradation trend for the perovskite solar cells with/without Ag-rGO after 330 days storage in 45%–55% relative humidity at room temperature[38].

    图 2  (a) 基于MoS2:Spiro-OMe-TAD复合HTL的钙钛矿太阳电池的结构图[47]; (b) 基于MoS2:Spiro-OMe-TAD复合HTL的钙钛矿太阳电池的能级图[47]; (c) 基于TiO2:MoS2复合ETL的钙钛矿太阳电池的阻抗分析图(Rs代表串联电阻、Rsc代表电子选择性接触产生的并联电阻、Rrec代表与活性层相关的并联电阻)[52]

    Figure 2.  (a)Schematic diagram of the perovskite solar cell based on the MoS2:Spiro-OMe-TAD composite HTL [47]; (b)energy level diagram of the perovskite solar cell based on the MoS2:Spiro-OMe-TAD composite HTL[47]; (c)impedance analysis spectrum of the perovskite solar cell based on the TiO2:MoS2 composite ETL (Rs: the series resistance, Rsc: the shunt resistance generated by electron selective contacts, and Rrec; the shunt resistance associated with the active layer)[52].

    图 3  (a) ZnO纳米颗粒作ETL的钙钛矿太阳电池的能级图[64]; (b) 基于CsPbBr3:ZnO异质结构的光电探测器原理图[65]; (c) 无机钙钛矿α-CsPbI3量子点作为界面层应用在钙钛矿太阳电池中的示意图[68]; (d) 不同薄膜的光学吸收谱(纯PbS QDs, 纯CH3NH3PbI3, PbS QDs/CH3NH3PbI3)[69]; (e) TiO2纳米管填充钙钛矿前后的电镜图对比图[75]; (f) 不同薄膜(CH3NH3PbI3/NiO-NP、CH3NH3PbI3/NiO-NS、CH3NH3PbI3/ZrO2-NP)的时间分辨PL图[77]

    Figure 3.  (a)Energy level diagram of the perovskite solar cell based on the ZnO nanoparticles ETL [64]; (b)schematic diagram of the photodetector based on the CsPbBr3:ZnO heterostructure [65]; (c)schematic diagram of the perovskite solar cell using α-CsPbI3 quantum dots as the interface layer[68]; (d)absorption spectra of different thin films (pristine PbS QDs, pristine CH3NH3PbI3, and PbS QDs/CH3NH3PbI3)[69]; (e) SEM images of TiO2 nanotubes before and after the perovskite deposition[75]; (f)time-resolved photoluminescence decays of different thin films (CH3NH3PbI3/NiO-NP, CH3NH3PbI3/NiO-NS, and CH3NH3PbI3/ZrO2-NP)[77].

    图 4  (a) 基于Au-NRs@SiO2/CH3NH3PbI3异质结构的钙钛矿太阳电池的原理图[83]; (b) 与AuAg-NPs@SiO2相结合的二维钙钛矿太阳电池的结构图和能级图[86]; (c) CH3NH3PbI3钙钛矿太阳电池的结构为FTO/Ag-NPs@compact-TiO2/CH3NH3PbI3:TiO2/Au[88]; (d) 不同薄膜的稳态PL谱(CH3NH3PbI3, TiO2/CH3NH3PbI3, TiO2:AuAg-NPs/CH3NH3PbI3)[92]

    Figure 4.  (a)Schematic diagram of the perovskite solar cell with CH3NH3PbI3/Au-NRs@SiO2 heterostructure[83]; (b)schematic diagram and energy level diagram of the quasi-2 D perovskite solar cell incorporated with AuAg-NPs@SiO2[86]; (c)schematic diagram of the perovskite solar cell with a configuration of FTO/Ag-NPs@compact-TiO2/CH3NH3PbI3:TiO2/Au[88]; (d)steady-state PL spectra of different films (CH3NH3PbI3, TiO2/CH3NH3PbI3, and TiO2:AuAg-NPs/CH3NH3PbI3)[92].

    图 5  (a) 含PS层的钙钛矿太阳电池的能级图和钙钛矿层与HTL层之间的电荷传输示意图[95]; (b) PVP作界面层的钙钛矿太阳电池的结构图[96]; (c) 有无PVP绝缘材料时钙钛矿薄膜表面的SEM对比图[101]; (d) 有无PVP绝缘材料的钙钛矿太阳电池在相对湿度为50%的室温下储存30天后, 器件的PCE的变化曲线[99]

    Figure 5.  (a) Energy level diagram of the perovskite solar cell incorporated with a PS layer and schematic diagram illustrating the carrier transfer at the interface between the perovskite and HTL layers[95]; (b) schematic diagram of the perovskite solar cell with a the PVP layer inserted between the perovskite and the HTL[96]; (c)SEM images of the perovskite films with/without PVP [101]; (d) PCE degradation trend for perovskite solar cells devices with/without PVP after 30 days storage in 50% relative humidity at room temperature [99].

  • [1]

    Fang H H, Raissa R, Abdu Aguye M, Adjokatse S, Blake G R, Even J, Loi M A 2015 Adv. Funct. Mater. 25 2378Google Scholar

    [2]

    Du M H 2014 J. Mater.Chem.A 2 9091Google Scholar

    [3]

    Sun J, Wu J, Tong X, Lin F, Wang Y, Wang Z M 2018 Adv. Sci. (Weinh) 5 1700780Google Scholar

    [4]

    Ma Y, Liu Y, Shin I, Hwang I W, Jung Y K, Jeong J H, Park S H, Kim K H 2017 ACS Appl. Mater. Interfaces 9 33925Google Scholar

    [5]

    Liu Y, Zhang Y, Yang Z, Ye H, Feng J, Xu Z, Zhang X, Munir R, Liu J, Zuo P, Li Q, Hu M, Meng L, Wang K, Smilgies D M, Zhao G, Xu H, Yang Z, Amassian A, Li J, Zhao K, Liu S F 2018 Nat. Commun 9 5302Google Scholar

    [6]

    Yang Z, Deng Y, Zhang X, Wang S, Chen H, Yang S, Khurgin J, Fang N X, Zhang X, Ma R 2018 Adv. Mater. 30 1704333Google Scholar

    [7]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [8]

    Yan F, Xing J, Xing G, Quan L, Tan S T, Zhao J, Su R, Zhang L, Chen S, Zhao Y, Huan A, Sargent E H, Xiong Q, Demir H V 2018 Nano Lett. 18 3157Google Scholar

    [9]

    Wang Y, Zhang Y, Lu Y, Xu W, Mu H, Chen C, Qiao H, Song J, Li S, Sun B, Cheng Y B, Bao Q 2015 Adv. Opt. Mater. 3 1389Google Scholar

    [10]

    Dang V Q, Han G S, Trung T Q, Duy L T, Jin Y U, Hwang B U, Jung H S, Lee N E 2016 Carbon 105 353Google Scholar

    [11]

    Huo C, Liu X, Wang Z, Song X, Zeng H 2018 Adv. Opt. Mater. 6 1800152Google Scholar

    [12]

    Li Z, Moon J, Gharajeh A, Haroldson R, Hawkins R, Hu W, Zakhidov A, Gu Q 2018 ACS Nano 12 10968Google Scholar

    [13]

    Liu X, Yu D, Song X, Zeng H 2018 Small 14 1801460Google Scholar

    [14]

    Qiu L, Ono L K, Qi Y 2018 Mater. Today Energy 7 169Google Scholar

    [15]

    Rothenbach N, Gruner M E, Ollefs K, Schmitz Antoniak C, Salamon S, Zhou P, Li R, Mo M, Park S, Shen X, Weathersby S, Yang J, Wang X J, Pentcheva R, Wende H, Bovensiepen U, Sokolowski Tinten K, Eschenlohr A 2019 Phys. Rev. B 100 174301Google Scholar

    [16]

    Jing H, Ling F, Liu X, Chen Y, Zeng W, Zhang Y, Fang L, Zhou M 2019 Electron. Struct. 1 015010Google Scholar

    [17]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [18]

    You P, Tang G, Yan F 2019 Mater.Today Energy 11 128Google Scholar

    [19]

    王军霞, 毕卓能, 梁柱荣, 徐雪青 2016 物理学报 65 058801Google Scholar

    Wang J X, Bi Z N, Liang Z R, Xu X Q 2016 Acta Phys. Sin. 65 058801Google Scholar

    [20]

    Luo Q, Zhang Y, Liu C, Li J, Wang N, Lin H 2015 J. Mater. Chem. A 3 15996Google Scholar

    [21]

    Feng S, Yang Y, Li M, Wang J, Cheng Z, Li J, Ji G, Yin G, Song F, Wang Z, Li J, Gao X 2016 ACS Appl. Mater. Interfaces 8 14503Google Scholar

    [22]

    Kakavelakis G, Maksudov T, Konios D, Paradisanos I, Kioseoglou G, Stratakis E, Kymakis E 2017 Adv.Energy Mater. 7 1602120Google Scholar

    [23]

    Han G S, Song Y H, Jin Y U, Lee J W, Park N G, Kang B K, Lee J K, Cho I S, Yoon D H, Jung H S 2015 ACS Appl. Mater. Interfaces 7 23521Google Scholar

    [24]

    Wang J T W, Ball J M, Barea E M, Abate A, Alexander Webber J A, Huang J, Saliba M, Mora Sero I, Bisquert J, Snaith H J, Nicholas R J 2013 Nano Lett. 14 724

    [25]

    Yang Z, Xie J, Arivazhagan V, Xiao K, Qiang Y, Huang K, Hu M, Cui C, Yu X, Yang D R 2017 Nano Energy 40 345Google Scholar

    [26]

    Gan X, Yang S, Zhang J, Wang G, He P, Sun H, Yuan H, Yu L, Ding G, Zhu Y J 2019 ACS Appl. Mater. Interfaces 11 37796Google Scholar

    [27]

    Xie J, Huang K, Yu X, Yang Z, Xiao K, Qiang Y, Zhu X, Xu L, Wang P, Cui C, Yang D 2017 ACS Nano 11 9176Google Scholar

    [28]

    Pang S, Zhang C, Zhang H, Dong H, Chen D, Zhu W, Xi H, Chang J, Lin Z, Zhang J, Hao Y 2020 Appl. Surf. Sci. 507 145099Google Scholar

    [29]

    Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y, Sun B 2014 Nanoscale 6 10505Google Scholar

    [30]

    Li H, Tao L, Huang F, Sun Q, Zhao X, Han J, Shen Y, Wang M 2017 ACS Appl. Mater. Interfaces 9 38967Google Scholar

    [31]

    Hadadian M, Correa Baena J P, Goharshadi E K, Ummadisingu A, Seo J Y, Luo J, Gholipour S, Zakeeruddin S M, Saliba M, Abate A, Gratzel M, Hagfeldt A 2016 Adv. Mater. 28 8681Google Scholar

    [32]

    李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强 2019 物理学报 68 158803Google Scholar

    Li X G, Zhang X, Shi Z J, Zang H J, Zhu C J, Zhan Y Q 2019 Acta Phys. Sin. 68 158803Google Scholar

    [33]

    Tavakoli M M, Tavakoli R, Yadav P, Kong J 2019 J. Mater. Chem. A 7 679Google Scholar

    [34]

    Agresti A, Pescetelli S, Palma A L, Del Rio Castillo A E, Konios D, Kakavelakis G, Razza S, Cinà L, Kymakis E, Bonaccorso F, Di Carlo A 2017 ACS Energy Letter. 2 279Google Scholar

    [35]

    Agresti A, Pescetelli S, Taheri B, Del Rio Castillo A E, Cinà L, Bonaccorso F, Di Carlo A 2016 ChemSusChem 9 2609Google Scholar

    [36]

    Wang Z, Ou Q, Zhang Y, Zhang Q, Hoh H Y, Bao Q 2018 ACS Appl. Mater. Interfaces 10 24258Google Scholar

    [37]

    Lee D Y, Na S I, Kim S S 2016 Nanoscale 8 1513Google Scholar

    [38]

    Mahmoudi T, Wang Y, Hahn Y B 2018 ACS Energy Letter. 4 235

    [39]

    范伟利, 杨宗林, 张振雲, 齐俊杰 2018 物理学报 67 228801Google Scholar

    Fan W L, Yang Z L, Zhang Z Y, Qi J J 2018 Acta Phys. Sin. 67 228801Google Scholar

    [40]

    Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung H S, Choi M 2013 Energy Environ. Sci. 10 337

    [41]

    Sung H, Ahn N, Jang M S, Lee J K, Yoon H, Park N G, Choi M 2016 Adv. Energy Mater. 6 1501873Google Scholar

    [42]

    Guo X, Han B, Gao Y, Liu D, Chen J, Chen P, Xu L, Cui C 2020 Mater. Res. Express 7 016415Google Scholar

    [43]

    Chen S, Shi G 2017 Adv. Mater. 29 1605448Google Scholar

    [44]

    Shi E, Gao Y, Finkenauer B P, Akriti, Coffey A H, Dou L 2018 Chem. Soc. Rev. 47 6046Google Scholar

    [45]

    李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然 2017 物理学报 66 218503Google Scholar

    Li W S, Zhou J, Wang H C, Wang S X, Yu Z H, Li S L, Shi Y, Wang X R 2017 Acta Phys. Sin. 66 218503Google Scholar

    [46]

    Capasso A, Matteocci F, Najafi L, Prato M, Buha J, Cinà L, Pellegrini V, Carlo A D, Bonaccorso F 2016 Adv. Energy Mater. 6 1600920Google Scholar

    [47]

    Agresti A, Pescetelli S, Palma A L, Martín García B, Najafi L, Bellani S, Moreels I, Prato M, Bonaccorso F, Di Carlo A 2019 ACS Energy Letter. 4 1862Google Scholar

    [48]

    Wang D, Elumalai N K, Mahmud M A, Yi H, Upama M B, Lee Chin R A, Conibeer G, Xu C, Haque F, Duan L, Uddin A 2018 Synth. Met. 246 195Google Scholar

    [49]

    Choi Y, Jung S, Oh N K, Lee J, Seo J, Kim U, Koo D, Park H 2019 ChemNanoMat 5 1050Google Scholar

    [50]

    Dasgupta U, Chatterjee S, Pal A J 2017 Sol. Energy Mater. Sol. Cells 172 353Google Scholar

    [51]

    Najafi L, Taheri B, Martín García B, Bellani S, Di Girolamo D, Agresti A, Oropesa Nuñez R, Pescetelli S, Vesce L, Calabrò E, Prato M, Del Rio Castillo A E, Di Carlo A, Bonaccorso F 2018 ACS Nano 12 10736Google Scholar

    [52]

    Ahmed M I, Hussain Z, Khalid A, Amin H M N, Habib A 2016 Mater. Res. Express 3 045022Google Scholar

    [53]

    Singh R, Giri A, Pal M, Thiyagarajan K, Kwak J, Lee J J, Jeong U, Cho K 2019 J. Mater. Chem. A 7 7151Google Scholar

    [54]

    Huang P, Wang Z, Liu Y, Zhang K, Yuan L, Zhou Y, Song B, Li Y 2017 ACS Appl. Mater. Interfaces 9 25323Google Scholar

    [55]

    Kakavelakis G, Paradisanos I, Paci B, Generosi A, Papachatzakis M, Maksudov T, Najafi L, Del Rio Castillo A E, Kioseoglou G, Stratakis E, Bonaccorso F, Kymakis E 2018 Adv. Energy Mater. 8 1702287Google Scholar

    [56]

    Ray R, Sarkar A S, Pal S K 2019 Sol. Energy 193 95Google Scholar

    [57]

    Deng Y L, Xu Z Y, Cai K, Ma F, Hou J, Peng S L 2019 Chin. Phys.B 28 098802Google Scholar

    [58]

    Maitani M M, Satou H, Ohmura A, Tsubaki S, Wada Y 2017 Jpn. J. Appl. Phys. 56 08M

    [59]

    Jiang Q, Zhang X, You J 2018 Small 14 1801154Google Scholar

    [60]

    Zhu Z, Bai Y, Liu X, Chueh C C, Yang S, Jen A K Y 2016 Adv. Mater. 28 6478Google Scholar

    [61]

    Halvani Anaraki E, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren Cruz S H, Seo J, Luo J, Zakeeruddin S M, Tress W R, Edvinsson T, Grätzel M, Hagfeldt A, Correa Baena J P 2018 ACS Energy Letter. 3 773Google Scholar

    [62]

    Park M, Kim J Y, Son H J, Lee C H, Jang S S, Ko M J 2016 Nano Energy 26 208Google Scholar

    [63]

    Dong Q, Li J, Shi Y, Chen M, Ono L K, Zhou K, Zhang C, Qi Y, Zhou Y, Padture N P, Wang L Z 2019 Adv. Energy Mater. 9 1900834

    [64]

    You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y 2016 Nat. Nanotechnol. 11 75Google Scholar

    [65]

    Li C, Han C, Zhang Y, Zang Z, Wang M, Tang X, Du J 2017 Sol. Energy Mater. Sol. Cells 172 341Google Scholar

    [66]

    Guo Y, Li X, Kang L L, He X, Ren Z Q, Wu J D, Qi J Y 2016 RSC Adv. 6 62522Google Scholar

    [67]

    Zheng X, Troughton J, Gasparini N, Lin Y, Wei M, Hou Y, Liu J, Song K, Chen Z, Yang C, Turedi B, Alsalloum A Y, Pan J, Chen J, Zhumekenov A A, Anthopoulos T D, Han Y, Baran D, Mohammed O F, Sargent E H, Bakr O M 2019 Joule 3 1963Google Scholar

    [68]

    Liu C, Hu M, Zhou X, Wu J, Zhang L, Kong W, Li X, Zhao X, Dai S, Xu B, Cheng C 2018 NPG Asia. Mater. 10 552Google Scholar

    [69]

    Liu C, Wang K, Du P, Wang E, Gong X, Heeger A J 2015 Nanoscale 7 16460Google Scholar

    [70]

    宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振 2012 物理学报 61 052901Google Scholar

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 052901Google Scholar

    [71]

    Dharani S, Mulmudi H K, Yantara N, Thu Trang P T, Park N G, Graetzel M, Mhaisalkar S, Mathews N, Boix P P 2014 Nanoscale 6 1675Google Scholar

    [72]

    Yu J, Chen X, Wang Y, Zhou H, Xue M, Xu Y, Li Z, Ye C, Zhang J, van Aken P A, Lund P D, Wang H 2016 J.Mater.Chem.C 4 7302Google Scholar

    [73]

    Zhou H, Yang L, Gui P, Grice C R, Song Z, Wang H, Fang G 2019 Sol. Energy Mater. Sol. Cells 193 246Google Scholar

    [74]

    Gu Z, Chen F, Zhang X, Liu Y, Fan C, Wu G, Li H, Chen H 2015 Sol. Energy Mater. Sol. Cells 140 396Google Scholar

    [75]

    Gao X, Li J, Baker J, Hou Y, Guan D, Chen J, Yuan C 2014 Chem. Commun (Camb) 50 6368Google Scholar

    [76]

    Gao X, Li J, Gollon S, Qiu M, Guan D, Guo X, Chen J, Yuan C 2017 Phys. Chem. Chem. Phys. 19 4956Google Scholar

    [77]

    Liu Z, Zhang M, Xu X, Cai F, Yuan H, Bu L, Li W, Zhu A, Zhao Z, Wang M, Cheng Y B, He H 2015 J. Mater. Chem. A 3 24121Google Scholar

    [78]

    Choi D H, Nam S K, Jung K, Moon J H 2019 Nano Energy 56 365Google Scholar

    [79]

    He J, Wu J, Hu S, Shen H, Hu X 2019 Opt. Mater. 88 689Google Scholar

    [80]

    虞华康, 刘伯东, 吴婉玲, 李志远 2019 物理学报 68 149101Google Scholar

    Yu H K, Liu B D, Wu W L, Li Z Y 2019 Acta Phys. Sin. 68 149101Google Scholar

    [81]

    Baek S W, Noh J, Lee C H, Kim B, Seo M K, Lee J Y 2013 Sci. Rep. 3 1726

    [82]

    Carretero Palacios S, Calvo M E, Míguez H 2015 J. Phys. Chem. 119 18635

    [83]

    Wu R, Yang B, Zhang C, Huang Y, Cui Y, Liu P, Zhou C, Hao Y, Gao Y, Yang J 2016 J. Phys. Chem. C 120 6996Google Scholar

    [84]

    Sawanta S M, Chang S S, Chang K H 2016 Nanoscale 8 2664

    [85]

    Balakrishnan S K, Kamat P V 2016 ACS Energy Lett. 2 88

    [86]

    Han N, Ji T, Wang W, Li G, Li Z, Hao Y, Wu Y, Cui Y 2019 Org. Electron. 74 190Google Scholar

    [87]

    Hsu H L, Juang T Y, Chen C P, Hsieh C M, Yang C C, Huang C L, Jeng R J 2015 Sol. Energy Mater. Sol. Cells 140 224Google Scholar

    [88]

    Nourolahi H, Behjat A, Hosseini Zarch S M M, Bolorizadeh M A 2016 Sol. Energy 139 475Google Scholar

    [89]

    Zhang X, Liu J, Kou D, Zhou W, Zhou Z, Tian Q, Meng Y, Wu S, Cao A, Ouyang C 2017 Solar RRL 1 1700151Google Scholar

    [90]

    Kakavelakis G, Alexaki K, Stratakis E, Kymakis E 2017 RSC Advances 7 12998Google Scholar

    [91]

    Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J 2013 Nano Lett. 13 4505Google Scholar

    [92]

    Lu Z L, Pan X J, Ma Y Z, Li Y, Zheng L L, Zhang D F, Xu Q, Chen Z J, Wang S F, Qu B, Liu F, Huang Y D, Xiao L X, Qi H G 2015 RSC Adv. 5 11175

    [93]

    Ye T, Ma S, Jiang X, Wei L, Vijila C, Ramakrishna S 2017 Adv. Funct. Mater. 27 1606545Google Scholar

    [94]

    Chueh C C, Li C Z, Jen A K Y 2015 Energy. Environ. Sci. 8 1160Google Scholar

    [95]

    Wen X R, Wu J M, Ye M D, Gao D, Lin C J 2016 Chem. Commun. 52 11355

    [96]

    Yavari M, Mazloum Ardakani M, Gholipour S, Tavakoli M M, Taghavinia N, Hagfeldt A, Tress W 2018 ACS Omega 3 5038Google Scholar

    [97]

    Li G, Deng S, Zhang M, Chen R, Xu P, Wong M, Kwok H S 2018 Solar RRL 2 1800151Google Scholar

    [98]

    Zhang F, Song J, Hu R, Xiang Y, He J, Hao Y, Lian J, Zhang B, Zeng P, Qu J 2018 Small 14 e1704007Google Scholar

    [99]

    Chaudhary B, Kulkarni A, Jena A K, Ikegami M, Udagawa Y, Kunugita H, Ema K, Miyasaka T 2017 ChemSusChem 10 2473Google Scholar

    [100]

    Wang Q, Dong Q, Li T, Gruverman A, Huang J 2016 Adv. Mater. 28 6734Google Scholar

    [101]

    Xiong H, Giovanni DeLucab, Rui Y C, Zhang B X, Li Y G, Zhang Q H, Wang H Z, Elsa Reichmanis 2018 ACS Appl. Mater. Interfaces 10 35385Google Scholar

    [102]

    Yang J a, Qin T, Xie L, Liao K, Li T, Hao F 2019 J. Mater. Chem.C 7 10724Google Scholar

    [103]

    刘晓敏, 李亦回, 王兴涛, 赵一新 2019 物理学报 68 158805Google Scholar

    Liu X M, Li Y H, Wang X T, Zhao Y X 2019 Acta Phys. Sin. 68 158805Google Scholar

    [104]

    Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan L N, Quintero Bermudez R, Sutherland B R, Mi Q, Sargent E H, Ning Z 2017 J. Am. Chem. Soc. 139 6693Google Scholar

    [105]

    Wu Q W, Yang Z B, Peter N. Rudd, Shao Y C, Dai X Z, Wei H T, Zhao J J, Fang Y J, Wang Q, Liu Y, Deng Y H, Xiao X, Feng Y X, Huang J 2019 Sci. Adv. 5 8925Google Scholar

    [106]

    Chen L, Xie X, Liu Z, Lee E C 2017 J. Mater. Chem. A 5 6974Google Scholar

    [107]

    Yao K, Wang X, Xu Y x, Li F, Zhou L 2016 Chem. Mater. 28 3131Google Scholar

    [108]

    Cohen B E, Wierzbowska M, Etgar L 2017 Adv. Funct. Mater. 27 1604733Google Scholar

    [109]

    周立, 朱俊, 徐亚峰, 邵志鹏, 张旭辉, 叶加久, 黄阳, 张昌能, 戴松元 2016 物理化学学报 32 1207Google Scholar

    Zhou L, Zhu J, Xu Y F, Shao Z P, Zhang X H, Ye J J, Huang Y, Zhang C N, Dai S Y 2016 Acta Phys. Sin. 32 1207Google Scholar

    [110]

    Malgorzata Kot, Chittaranjan Das, Wang Z P, Karsten Henkel, Zied Rouissi, Konrad Wojciechowski, Henry J Snaith, Schmeisser D 2016 ChemSusChem 9 1Google Scholar

    [111]

    Si H, Liao Q, Zhang Z, Li Y, Yang X, Zhang G, Kang Z, Zhang Y 2016 Nano Energy 22 223Google Scholar

    [112]

    Sutherland B R, Johnston A K, Ip A H, Xu J, Adinolfi V, Kanjanaboos P, Sargent E H 2015 ACS Photonics 2 1117Google Scholar

    [113]

    Yu X, Chen S, Yan K, Cai X, Hu H, Peng M, Chen B, Dong B, Gao X, Zou D 2016 J. Power Sources 325 534Google Scholar

    [114]

    Cheng N, Liu P, Bai S, Yu Z, Liu W, Guo S S, Zhao X Z 2016 J. Power Sources 321 71Google Scholar

    [115]

    Ma C, Shi Y, Hu W, Chiu M H, Liu Z, Bera A, Li F, Wang H, Li L J, Wu T 2016 Adv. Mater. 28 3683Google Scholar

    [116]

    Lee Y, Kwon J, Hwang E, Ra C H, Yoo W J, Ahn J H, Park J H, Cho J H 2015 Adv. Mater. 27 41Google Scholar

    [117]

    Yao Z, Yang Z, Liu Y, Zhao W, Zhang X, Liu B, Wu H, Liu S 2017 Rsc Adv. 7 38155Google Scholar

    [118]

    Chuantian Z, Liming D 2017 Angew. Chem. 129 6628Google Scholar

  • [1] Chang Jing, Chen Ji. One-dimensional structures in nanoconfinement. Acta Physica Sinica, 2022, 71(12): 126101. doi: 10.7498/aps.71.20220035
    [2] Song Rui, Wang Bi-Li, Feng Kai, Wang Li, Liang Dan-Dan. Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [3] Wu Yan-Fei, Zhu Meng-Yuan, Zhao Rui-Jie, Liu Xin-Jie, Zhao Yun-Chi, Wei Hong-Xiang, Zhang Jing-Yan, Zheng Xin-Qi, Shen Jian-Xin, Huang He, Wang Shou-Guo. The fabrication and physical properties of two-dimensional van der Waals heterostructures. Acta Physica Sinica, 2022, 71(4): 048502. doi: 10.7498/aps.71.20212033
    [4] Sun Ying-Hui, Mu Cong-Yan, Jiang Wen-Gui, Zhou Liang, Wang Rong-Ming. Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials. Acta Physica Sinica, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [5] Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211516
    [6] Meng Yu-Xin, Zhao Yi-Fan, Li Shao-Chun. Research progress of puckered honeycomb monolayers. Acta Physica Sinica, 2021, 70(14): 148101. doi: 10.7498/aps.70.20210638
    [7] Wu Min, Fei Hong-Ming, Lin Han, Zhao Xiao-Dan, Yang Yi-Biao, Chen Zhi-Hui. Design of asymmetric transmission of photonic crystal heterostructure based on two-dimensional hexagonal boron nitride material. Acta Physica Sinica, 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [8] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [9] Hu Meng-Dan, Zhang Qing-Yu, Sun Dong-Ke, Zhu Ming-Fang. Three-dimensional lattice Boltzmann modeling of droplet condensation on superhydrophobic nanostructured surfaces. Acta Physica Sinica, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [10] Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan. Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Acta Physica Sinica, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [11] Song Rui, Feng Kai, Lin Shang-Jin, He Man-Li, Tong Liang. First principles study of structural, electric, and magnetic properties of fluoride perovskite NaFeF3. Acta Physica Sinica, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [12] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [13] Wang Dan, He Yong-Ning, Ye Ming, Cui Wan-Zhao. Secondary electron emission characteristics of gold nanostructures. Acta Physica Sinica, 2018, 67(8): 087902. doi: 10.7498/aps.67.20180079
    [14] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [15] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [16] Zhang Yang, Gu Shu-Lin, Ye Jian-Dong, Huang Shi-Min, Gu Ran, Chen Bin, Zhu Shun-Ming, Zhen You-Dou. Two-dimensional electron Gas in ZnMgO/ZnO heterostructures. Acta Physica Sinica, 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [17] Han Yu-Yan, Cao Liang, Xu Fa-Qiang, Chen Tie-Xin, Zheng Zhi-Yuan, Wan Li, Liu Ling-Yun. Preparation and investigation of the formation mechanism of organic single crystal nanostructures of PTCDA. Acta Physica Sinica, 2012, 61(7): 078103. doi: 10.7498/aps.61.078103
    [18] Wu Xiang, Cai Wei, Qu Feng-Yu. Tailoring the morphology and wettability of ZnO one-dimensional nanostructures. Acta Physica Sinica, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [19] Ma Hai-Lin, Su Qing, Lan Wei, Liu Xue-Qin. Influence of oxygen pressure on the structure and photoluminescence of β-Ga2O3 nano-material prepared by thermal evaporation. Acta Physica Sinica, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [20] Frequency response of photonic heterostructures consisting of single-negative materials. Acta Physica Sinica, 2007, 56(12): 7280-7285. doi: 10.7498/aps.56.7280
Metrics
  • Abstract views:  10334
  • PDF Downloads:  238
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2020
  • Accepted Date:  15 May 2020
  • Available Online:  22 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回