Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spintronic terahertz emitter: Performance, manipulation, and applications

Feng Zheng Wang Da-Cheng Sun Song Tan Wei

Citation:

Spintronic terahertz emitter: Performance, manipulation, and applications

Feng Zheng, Wang Da-Cheng, Sun Song, Tan Wei
PDF
HTML
Get Citation
  • Spintronic terahertz (THz) emitter, which is based on ultrafast spin-to-charge current conversion in ferromagnetic/nonmagnetic heterostructures, provides excellent advantages such as ultra-broadband, tunable polarization, and ultra-thin structure, thereby attracting increasing interests recently. In this review article, we first introduce the fundamental concepts of THz wave, THz spintronics and spintronic THz emitter. Next, we focus on the recent progress of spintronic THz emitter by closely looking at the performances, manipulations and applications. Performance improvement is presented based on the three fundamental processes: optical excitation, ultrafast spin transport, and THz emission. The active manipulation of polarization and spectral response, as well as the relevant applications such as ultra broadband measurements, magnetic structure detection and imaging, and THz near-field microscopy, are reviewed comprehensively. Finally, a brief summary and outlook are given.
      Corresponding author: Feng Zheng, fengzheng@mtrc.ac.cn ; Tan Wei, tanwei@mtrc.ac.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2018003), the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11504345, 11504346, 61905225, 62005256), and the China Academy of Engineering Physics Innovation Grant (Grant No. CX20200011)
    [1]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [2]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [3]

    Withayachumnankul W, Naftaly M 2014 J. Infrared Millim Terahertz Waves 35 610Google Scholar

    [4]

    Neu J, Schmuttenmaer C A 2018 J. Appl. Phys. 124 231101Google Scholar

    [5]

    Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar

    [6]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2010 Nat. Photonics 5 31

    [7]

    Nishitani J, Kozuki K, Nagashima T, Hangyo M 2010 Appl. Phys. Lett. 96 221906Google Scholar

    [8]

    Chun S H, Shin K W, Kim H J, Jung S, Park J, Bahk Y, Park H, Kyoung J S, Choi D, Kim D 2018 Phys. Rev. Lett. 120 027202Google Scholar

    [9]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [10]

    Vicario C, Ruchert C, Ardanalamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nat. Photonics 7 720Google Scholar

    [11]

    Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Kläui M, Turchinovich D 2015 Nat. Phys. 11 761Google Scholar

    [12]

    Huisman T J, Mikhaylovskiy R V, Rasing T, Kimel A V, Tsukamoto A, de Ronde B, Ma L, Fan W J, Zhou S M 2017 Phys. Rev. B 95 094418Google Scholar

    [13]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [14]

    Valenzuela S O, Tinkham M 2006 Nature 442 176Google Scholar

    [15]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar

    [16]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [17]

    Mosendz O, Pearson J E, Fradin F Y, Bauer G E, Bader S D, Hoffmann A 2010 Phys. Rev. Lett. 104 046601Google Scholar

    [18]

    Feng Z, Hu J, Sun L, You B, Wu D, Du J, Zhang W, Hu A, Yang Y, Tang D M, Zhang B S, Ding H F 2012 Phys. Rev. B 85 214423Google Scholar

    [19]

    Pai C-F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [20]

    Yang D W, Liang J H, Zhou C, Sun L, Zheng R E, Luo S N, Wu Y Z, Qi J B 2016 Adv. Opt. Mater. 4 1944Google Scholar

    [21]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar

    [22]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [23]

    Zhang S, Jin Z M, Zhu Z, Zhu W, Zhang Z, Ma G H, Yao J 2017 J. Phys. D 51 034001

    [24]

    Sasaki Y, Kota Y, Iihama S, Suzuki K Z, Sakuma A, Mizukami S 2019 Phys. Rev. B 100 140406Google Scholar

    [25]

    Sasaki Y, Suzuki K, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar

    [26]

    Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing T, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415Google Scholar

    [27]

    Seifert T, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Münzenberg M, Goennenwein S T B, Woltersdorf G, Rethfeld B, Brouwer P W, Wolf M, Kläui M, Kampfrath T 2018 Nat. Commun. 9 2899Google Scholar

    [28]

    Gückstock O P 2018 M. S. Thesis (Berlin: Technische Universität Berlin)

    [29]

    Sánchez J C R, Vila L, Desfonds G, Gambarelli S, Attané J P, De Teresa J M, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar

    [30]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [31]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J B 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [32]

    Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar

    [33]

    Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J-X, Sun H, Wang S, Song J C W, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar

    [34]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965Google Scholar

    [35]

    Herapath R I, Hornett S M, Seifert T S, Jakob G, Kläui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107Google Scholar

    [36]

    Fülöp J A, Tzortzakis S, Kampfrath T 2020 Adv. Opt. Mater. 8 1900681Google Scholar

    [37]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Klaui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar

    [38]

    Schneider R, Fix M, Heming R, De Vasconcellos S M, Albrecht M, Bratschitsch R 2018 ACS Photonics 5 3936Google Scholar

    [39]

    Nandi U, Abdelaziz M S, Jaiswal S, Jakob G, Gueckstock O, Rouzegar S M, Seifert T S, Kläui M, Kampfrath T, Preu S 2019 Appl. Phys. Lett. 115 022405Google Scholar

    [40]

    Li J, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S, Shi J 2020 Nature 578 70Google Scholar

    [41]

    Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Express 11 092101Google Scholar

    [42]

    Chen X H, Wu X J, Shan S Y, Guo F W, Kong D Y, Wang C, Nie T X, Pandey C D, Wen L G, Zhao W S 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [43]

    Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [44]

    Feng Z, Wang D C, Ding H F, Cai J W, Tan W 2019 Proceedings of The 10th International Conference on Metamaterials, Photonic Crystals and Plasmonics Lisbon, Portugal, July 23–26, 2019 p626

    [45]

    Jin Z M, Zhang S, Zhu W, Li Q, Zhang W, Zhang Z, Lou S, Dai Y, Lin X, Ma G H 2019 Phys Status Solidi Rapid Res Lett 13 1900057Google Scholar

    [46]

    Chen M, Wu Y, Liu Y, Lee K, Qiu X, He P, Yu J, Yang H 2018 Adv. Opt. Mater. 7 1801608

    [47]

    Wang B, Shan S, Wu X J, Wang C, Pandey C, Nie T X, Zhao W, Li Y, Miao J, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [48]

    Bulgarevich D S, Akamine Y, Talara M, Magusara V K, Kitahara H, Kato H, Shiihara M, Tani M, Watanabe M 2020 Sci. Rep. 10 1158Google Scholar

    [49]

    Chen S, Feng Z, Li J, Tan W, Du L, Cai J, Ma Y, He K, Ding H F, Zhai Z H, Li Z R, Qiu C W, Zhang X C, Zhu L G 2020 Light Sci. Appl. 9 99Google Scholar

  • 图 1  自旋太赫兹源原理

    Figure 1.  Schematic of the spintronc THz emitter.

    图 2  三层结构自旋太赫兹源

    Figure 2.  Schematic of the trilayer spintronic THz emitter.

    图 3  基于逆Rashba-Edelstein效应的太赫兹发射 (a) Ag/Bi界面; (b) 拓扑绝缘体Bi2Se3表面态; (c)二维半导体材料MoS2

    Figure 3.  Schematic of THz emission via inverse Rashba-Edelstein effect: (a) Ag/Bi interface; (b) surface states of topological material Bi2Se3; (c) two-dimensional semiconductor MoS2.

    图 4  金属-介质光子晶体自旋太赫兹源[34] (a)结构示意图; (b)不同周期样品的飞秒激光吸收率与太赫兹强度随介质层SiO2厚度d的变化; (c)归一化的激光吸收率与太赫兹强度

    Figure 4.  Metal–dielectric photonic crystal type spintronic THz emitter[34]: (a) Schematic diagram; (b) fs laser absorbance and THz amplitude as the functions of SiO2 thickness d for different repeats; (c) normalized THz amplitude and fs laser absorbance as the functions of SiO2 thickness d for different repeats.

    图 5  高场强自旋太赫兹源[37] (a) 大面积自旋太赫兹源照片; (b) 实验装置示意图; (c) 太赫兹电场强度

    Figure 5.  High-field spintronic THz emitter[37]: (a) Photograph of the large area spintronic terahertz emitter; (b) schematic of the experimental setup; (c) resulting THz electric fields.

    图 6  (a)自旋太赫兹源与超半球硅透镜组合器件[22]; (b) 自旋太赫兹源与天线结构耦合器件[39]

    Figure 6.  (a) The integrated device of spintronic THz emitter and hyper hemispherical silicon lens[22]; (b) the integrated device of spintronic THz emitter and antenna[39].

    图 7  偏振可调自旋太赫兹源 (a)级联自旋太赫兹源[42]; (b)超材料集成自旋太赫兹源[44]

    Figure 7.  Polarization-tunable spintronic THz emitter: (a) Cascade spintronic THz emitter[42]; (b) metamaterial integrated spintronic THz emitter[44].

    图 8  频谱可调自旋太赫兹源 (a)条带图形自旋太赫兹源[20]; (b)电流增强复合自旋太赫兹源[46]; (c)飞秒激光脉冲对激发自旋太赫兹源[47]

    Figure 8.  Spectrum-tunable spintronic THz emitter: (a) Stripe patterned spintronic THz emitter[20]; (b) current enhanced hybrid spintronic THz emitter[46]; (c) dual-pulses pumped spintronic THz emitter[47].

    图 9  基于自旋太赫兹源的磁检测/成像芯片[48] (a)示意图; (b)不同永磁铁取向下的磁分布成像图

    Figure 9.  Magneto-optic sensor/imager based on spintronic THz emitter[48]: (a) Schematic diagram; (b) magnetic images with diferent permanent magnet orientation.

    图 10  自旋太赫兹源阵列鬼成像显微术[49] (a) 示意图; (b) 自旋太赫兹源阵列; (c)成像物体的光学照片和太赫兹鬼成像图

    Figure 10.  Ghost spintronic THz emitter array microscope(GHOSTEAM)[49]: (a) Schematic of GHOSTEAM; (b) schematic of spintronic THz emitter array; (c) optical photo and THz ghost image of an object.

  • [1]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [2]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [3]

    Withayachumnankul W, Naftaly M 2014 J. Infrared Millim Terahertz Waves 35 610Google Scholar

    [4]

    Neu J, Schmuttenmaer C A 2018 J. Appl. Phys. 124 231101Google Scholar

    [5]

    Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar

    [6]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2010 Nat. Photonics 5 31

    [7]

    Nishitani J, Kozuki K, Nagashima T, Hangyo M 2010 Appl. Phys. Lett. 96 221906Google Scholar

    [8]

    Chun S H, Shin K W, Kim H J, Jung S, Park J, Bahk Y, Park H, Kyoung J S, Choi D, Kim D 2018 Phys. Rev. Lett. 120 027202Google Scholar

    [9]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [10]

    Vicario C, Ruchert C, Ardanalamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nat. Photonics 7 720Google Scholar

    [11]

    Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Kläui M, Turchinovich D 2015 Nat. Phys. 11 761Google Scholar

    [12]

    Huisman T J, Mikhaylovskiy R V, Rasing T, Kimel A V, Tsukamoto A, de Ronde B, Ma L, Fan W J, Zhou S M 2017 Phys. Rev. B 95 094418Google Scholar

    [13]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [14]

    Valenzuela S O, Tinkham M 2006 Nature 442 176Google Scholar

    [15]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar

    [16]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [17]

    Mosendz O, Pearson J E, Fradin F Y, Bauer G E, Bader S D, Hoffmann A 2010 Phys. Rev. Lett. 104 046601Google Scholar

    [18]

    Feng Z, Hu J, Sun L, You B, Wu D, Du J, Zhang W, Hu A, Yang Y, Tang D M, Zhang B S, Ding H F 2012 Phys. Rev. B 85 214423Google Scholar

    [19]

    Pai C-F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [20]

    Yang D W, Liang J H, Zhou C, Sun L, Zheng R E, Luo S N, Wu Y Z, Qi J B 2016 Adv. Opt. Mater. 4 1944Google Scholar

    [21]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar

    [22]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [23]

    Zhang S, Jin Z M, Zhu Z, Zhu W, Zhang Z, Ma G H, Yao J 2017 J. Phys. D 51 034001

    [24]

    Sasaki Y, Kota Y, Iihama S, Suzuki K Z, Sakuma A, Mizukami S 2019 Phys. Rev. B 100 140406Google Scholar

    [25]

    Sasaki Y, Suzuki K, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar

    [26]

    Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing T, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415Google Scholar

    [27]

    Seifert T, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Münzenberg M, Goennenwein S T B, Woltersdorf G, Rethfeld B, Brouwer P W, Wolf M, Kläui M, Kampfrath T 2018 Nat. Commun. 9 2899Google Scholar

    [28]

    Gückstock O P 2018 M. S. Thesis (Berlin: Technische Universität Berlin)

    [29]

    Sánchez J C R, Vila L, Desfonds G, Gambarelli S, Attané J P, De Teresa J M, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar

    [30]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [31]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J B 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [32]

    Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar

    [33]

    Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J-X, Sun H, Wang S, Song J C W, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar

    [34]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965Google Scholar

    [35]

    Herapath R I, Hornett S M, Seifert T S, Jakob G, Kläui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107Google Scholar

    [36]

    Fülöp J A, Tzortzakis S, Kampfrath T 2020 Adv. Opt. Mater. 8 1900681Google Scholar

    [37]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Klaui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar

    [38]

    Schneider R, Fix M, Heming R, De Vasconcellos S M, Albrecht M, Bratschitsch R 2018 ACS Photonics 5 3936Google Scholar

    [39]

    Nandi U, Abdelaziz M S, Jaiswal S, Jakob G, Gueckstock O, Rouzegar S M, Seifert T S, Kläui M, Kampfrath T, Preu S 2019 Appl. Phys. Lett. 115 022405Google Scholar

    [40]

    Li J, Wilson C B, Cheng R, Lohmann M, Kavand M, Yuan W, Aldosary M, Agladze N, Wei P, Sherwin M S, Shi J 2020 Nature 578 70Google Scholar

    [41]

    Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Express 11 092101Google Scholar

    [42]

    Chen X H, Wu X J, Shan S Y, Guo F W, Kong D Y, Wang C, Nie T X, Pandey C D, Wen L G, Zhao W S 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [43]

    Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [44]

    Feng Z, Wang D C, Ding H F, Cai J W, Tan W 2019 Proceedings of The 10th International Conference on Metamaterials, Photonic Crystals and Plasmonics Lisbon, Portugal, July 23–26, 2019 p626

    [45]

    Jin Z M, Zhang S, Zhu W, Li Q, Zhang W, Zhang Z, Lou S, Dai Y, Lin X, Ma G H 2019 Phys Status Solidi Rapid Res Lett 13 1900057Google Scholar

    [46]

    Chen M, Wu Y, Liu Y, Lee K, Qiu X, He P, Yu J, Yang H 2018 Adv. Opt. Mater. 7 1801608

    [47]

    Wang B, Shan S, Wu X J, Wang C, Pandey C, Nie T X, Zhao W, Li Y, Miao J, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [48]

    Bulgarevich D S, Akamine Y, Talara M, Magusara V K, Kitahara H, Kato H, Shiihara M, Tani M, Watanabe M 2020 Sci. Rep. 10 1158Google Scholar

    [49]

    Chen S, Feng Z, Li J, Tan W, Du L, Cai J, Ma Y, He K, Ding H F, Zhai Z H, Li Z R, Qiu C W, Zhang X C, Zhu L G 2020 Light Sci. Appl. 9 99Google Scholar

  • [1] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [3] Xiang Xing-Cheng, Ma Hai-Bei, Wang Lei, Tian Da, Zhang Wei, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Ultramicro-sensing of terahertz metamaterials implemented by using sample traps. Acta Physica Sinica, 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [4] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [5] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [6] Du Meng-Yao, Qiu Zhi-Yong. Spin blocking effect at Ni/Pt heterojunction. Acta Physica Sinica, 2023, 72(5): 057501. doi: 10.7498/aps.72.20222288
    [7] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [8] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [9] Wei Gao-Shuai, Zhang Hui, Wu Xiao-Jun, Zhang Hong-Rui, Wang Chun, Wang Bo, Wang Li, Sun Ji-Rong. Terahertz emission from LaAlO3/SrTiO3 heterostructures pumped with femtosecond laser. Acta Physica Sinica, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [10] Zhu Zhao-Zhao, Feng Zheng, Cai Jian-Wang. Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [11] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [12] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [13] Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211831
    [14] Su Yu-Lun, Wei Zheng-Xing, Cheng Liang, Qi Jing-Bo. Terahertz emitters based on ultrafast spin-to-charge conversion. Acta Physica Sinica, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [15] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [16] Zhang Shun-Nong, Zhu Wei-Hua, Li Ju-Geng, Jin Zuan-Ming, Dai Ye, Zhang Zong-Zhi, Ma Guo-Hong, Yao Jian-Quan. Coherent terahertz radiation via ultrafast manipulation of spin currents in ferromagnetic heterostructures. Acta Physica Sinica, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [17] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [18] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [19] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [20] Yao Jian-Ming, Yang Chong. Spin-dependent transport through a multi-electrodes controlled by an Aharonov-Bohm ring. Acta Physica Sinica, 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
Metrics
  • Abstract views:  11271
  • PDF Downloads:  514
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2020
  • Accepted Date:  27 May 2020
  • Available Online:  19 October 2020
  • Published Online:  20 October 2020

/

返回文章
返回