Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum transport in topological matters under magnetic fields

Qiang Xiao-Bin Lu Hai-Zhou

Citation:

Quantum transport in topological matters under magnetic fields

Qiang Xiao-Bin, Lu Hai-Zhou
PDF
HTML
Get Citation
  • Topological matters include topological insulator, topological semimetal and topological superconductor. The topological semimetals are three-dimensional topological states of matter with gapless electronic excitations. They are simply divided into Weyl, Dirac, and nodal-line semimetals according to the touch type of the conduction band and the valence band. Their characteristic electronic structures lead to topologically protected surface states at certain surfaces, corresponding to the novel transport properties. We review our recent works on quantum transport mainly in topological semimetals. The main theories describing the transport behavior of topological matters are given in different magnetic regions.
      Corresponding author: Lu Hai-Zhou, luhz@sustech.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301700), the National Natural Science Foundation of China (Grant No. 11925402), the Natural Science Foundation of Guangdong Province, China (Grant No. 2016ZT06D348), and the Science and Technology Innovation Commission of Shenzhen, China (Grant Nos. ZDSYS20170303165926217, JCYJ20170412152620376)
    [1]

    Balents L 2011 Physics 4 36Google Scholar

    [2]

    Volovik G E 2003 The Universe in a Helium Droplet (Vol. 117) (New York: Oxford University Press) pp32−41

    [3]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [4]

    Yang K Y, Lu Y M, Ran Y 2011 Phys. Rev. B 84 075129Google Scholar

    [5]

    Burkov A, Balents L 2011 Phys. Rev. Lett. 107 127205Google Scholar

    [6]

    Xu G, Weng H, Wang Z, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806Google Scholar

    [7]

    Jiang J H 2012 Phys. Rev. A 85 033640Google Scholar

    [8]

    Young S M, Zaheer S, Teo J C, Kane C L, Mele E J, Rappe A M 2012 Phys. Rev. Lett. 108 140405Google Scholar

    [9]

    Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [10]

    Singh B, Sharma A, Lin H, Hasan M, Prasad R, Bansil A 2012 Phys. Rev. B 86 115208Google Scholar

    [11]

    Wang Z, Weng H, Wu Q, Dai X, Fang Z 2013 Phys. Rev. B 88 125427Google Scholar

    [12]

    Liu J, Vanderbilt D 2014 Phys. Rev. B 90 155316Google Scholar

    [13]

    Bulmash D, Liu C X, Qi X L 2014 Phys. Rev. B 89 081106Google Scholar

    [14]

    Brahlek M, Bansal N, Koirala N, Xu S Y, Neupane M, Liu C, Hasan M Z, Oh S 2012 Phys. Rev. Lett. 109 186403Google Scholar

    [15]

    Wu L, Brahlek M, Aguilar R V, Stier A, Morris C, Lubashevsky Y, Bilbro L, Bansal N, Oh S, Armitage N 2013 Nat. Phys. 9 410Google Scholar

    [16]

    Liu Z, Zhou B, Zhang Y, Wang Z, Weng H, Prabhakaran D, Mo S K, Shen Z, Fang Z, Dai X 2014 Science 343 864Google Scholar

    [17]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C 2015 Science 349 613Google Scholar

    [18]

    Liu Z, Jiang J, Zhou B, Wang Z, Zhang Y, Weng H, Prabhakaran D, Mo S K, Peng H, Dudin P 2014 Nat. Mater. 13 677Google Scholar

    [19]

    Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H 2014 Nat. Commun. 5 3786

    [20]

    Yi H, Wang Z, Chen C, Shi Y, Feng Y, Liang A, Xie Z, He S, He J, Peng Y 2014 Sci. Rep. 4 6106

    [21]

    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603Google Scholar

    [22]

    Weng H, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029

    [23]

    Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C 2015 Nat. Commun. 6 7373

    [24]

    Lv B, Weng H, Fu B, Wang X P, Miao H, Ma J, Richard P, Huang X, Zhao L, Chen G, et al. 2015 Phys. Rev. X 5 031013

    [25]

    Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, van den Brink J, Hoesch M, Fedorov A 2019 Nat. Commun. 10 3424Google Scholar

    [26]

    Nielsen H B, Ninomiya M 1981 Nucl. Phys. B 185 20Google Scholar

    [27]

    Nielsen H B, Ninomiya M 1983 Phys. Lett. B 130 389Google Scholar

    [28]

    Son D, Spivak B 2013 Phys. Rev. B 88 104412Google Scholar

    [29]

    Burkov A 2014 Phys. Rev. Lett. 113 247203Google Scholar

    [30]

    Kharzeev D E, Yee H U 2013 Phys. Rev. B 88 115119Google Scholar

    [31]

    Parameswaran S, Grover T, Abanin D, Pesin D, Vishwanath A 2014 Phys. Rev. X 4 031035

    [32]

    Zhou J, Chang H R, Xiao D 2015 Phys. Rev. B 91 035114Google Scholar

    [33]

    Son D T, Yamamoto N 2012 Phys. Rev. Lett. 109 181602Google Scholar

    [34]

    Stephanov M, Yin Y 2012 Phys. Rev. Lett. 109 162001Google Scholar

    [35]

    Landsteiner K, Megias E, Pena-Benitez F 2011 Phys. Rev. Lett. 107 021601Google Scholar

    [36]

    Chang M C, Yang M F 2015 Phys. Rev. B 91 115203Google Scholar

    [37]

    Jiang Q D, Jiang H, Liu H, Sun Q F, Xie X 2015 Phys. Rev. Lett. 115 156602Google Scholar

    [38]

    Jiang Q D, Jiang H, Liu H, Sun Q F, Xie X 2016 Phys. Rev. B 93 195165Google Scholar

    [39]

    Chen C Z, Song J, Jiang H, Sun Q f, Wang Z, Xie X 2015 Phys. Rev. Lett. 115 246603Google Scholar

    [40]

    Chen C Z, Liu H, Jiang H, Xie X 2016 Phys. Rev. B 93 165420Google Scholar

    [41]

    Kim H J, Kim K S, Wang J F, Sasaki M, Satoh N, Ohnishi A, Kitaura M, Yang M, Li L 2013 Phys. Rev. Lett. 111 246603Google Scholar

    [42]

    Kim K S, Kim H J, Sasaki M 2014 Phys. Rev. B 89 195137Google Scholar

    [43]

    Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosić I, Fedorov A, Zhong R, Schneeloch J, Gu G, Valla T 2016 Nat. Phys. 12 550Google Scholar

    [44]

    Chen R, Chen Z, Song X Y, Schneeloch J, Gu G, Wang F, Wang N 2015 Phys. Rev. Lett. 115 176404Google Scholar

    [45]

    Zheng G, Lu J, Zhu X, Ning W, Han Y, Zhang H, Zhang J, Xi C, Yang J, Du H, et al. 2016 Phys. Rev. B 93 115414Google Scholar

    [46]

    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J, Ong N P 2015 Science 350 413Google Scholar

    [47]

    Jeon S, Zhou B B, Gyenis A, Feldman B E, Kimchi I, Potter A C, Gibson Q D, Cava R J, Vishwanath A, Yazdani A 2014 Nat. Mater. 13 851Google Scholar

    [48]

    Liang T, Gibson Q, Ali M N, Liu M, Cava R, Ong N 2015 Nat. Mater. 14 280Google Scholar

    [49]

    Feng J, Pang Y, Wu D, Wang Z, Weng H, Li J, Dai X, Fang Z, Shi Y, Lu L 2015 Phys. Rev. B 92 081306Google Scholar

    [50]

    He L, Hong X, Dong J, Pan J, Zhang Z, Zhang J, Li S 2014 Phys. Rev. Lett. 113 246402Google Scholar

    [51]

    Zhao Y, Liu H, Zhang C, Wang H, Wang J, Lin Z, Xing Y, Lu H, Liu J, Wang Y, et al. 2015 Phys. Rev. X 5 031037

    [52]

    Cao J, Liang S, Zhang C, Liu Y, Huang J, Jin Z, Chen Z G, Wang Z, Wang Q, Zhao J 2015 Nat. Commun. 6 7779

    [53]

    Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z 2015 Nat. Phys. 11 645Google Scholar

    [54]

    Narayanan A, Watson M, Blake S, Bruyant N, Drigo L, Chen Y, Prabhakaran D, Yan B, Felser C, Kong T 2015 Phys. Rev. Lett. 114 117201Google Scholar

    [55]

    Li C Z, Wang L X, Liu H, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137

    [56]

    Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q, Wang J 2016 Nat. Commun. 7 10301

    [57]

    Zhang C, Zhang E, Liu Y, Chen Z G, Liang S, Cao J, Yuan X, Tang L, Li Q, Gu T, et al. 2015 arXiv: 1504.07698 [cond-mat]

    [58]

    Wang H, Wang H, Liu H, Lu H, Yang W, Jia S, Liu X J, Xie X, Wei J, Wang J 2016 Nat. Mater. 15 38Google Scholar

    [59]

    Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K, Sheet G 2016 Nat. Mater. 15 32Google Scholar

    [60]

    Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z 2015 Phys. Rev. X 5 031023

    [61]

    Zhang C L, Xu S Y, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N, Lee C C, Huang S M 2016 Nat. Commun. 7 10735

    [62]

    Zhang C, Guo C, Lu H, Zhang X, Yuan Z, Lin Z, Wang J, Jia S 2015 Phys. Rev. B 92 041203Google Scholar

    [63]

    Arnold F, Shekhar C, Wu S C, Sun Y, Dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G 2016 Nat. Commun. 7 11615

    [64]

    Zhang C L, Xu S Y, Wang C, Lin Z, Du Z, Guo C, Lee C C, Lu H, Feng Y, Huang S M 2017 Nat. Phys. 13 979Google Scholar

    [65]

    Yang X, Liu Y, Wang Z, Zheng Y, Xu Z A 2015 arXiv: 1506.03190 [cond-mat]

    [66]

    Li Y, Wang Z, Li P, Yang X, Shen Z, Sheng F, Li X, Lu Y, Zheng Y, Xu Z A 2017 Front. Phys. 12 127205Google Scholar

    [67]

    Wang Z, Zheng Y, Shen Z, Lu Y, Fang H, Sheng F, Zhou Y, Yang X, Li Y, Feng C, et al. 2016 Phys. Rev. B 93 121112Google Scholar

    [68]

    Wang H, Li C K, Liu H, Yan J, Wang J, Liu J, Lin Z, Li Y, Wang Y, Li L 2016 Phys. Rev. B 93 165127Google Scholar

    [69]

    Lu H Z, Shen S Q 2017 Front. Phys. 12 127201Google Scholar

    [70]

    Sun H P, Lu H Z 2019 Front. Phys. 14 33405Google Scholar

    [71]

    Lu H Z, Shi J, Shen S Q 2011 Phys. Rev. Lett. 107 076801Google Scholar

    [72]

    Lu H Z, Shen S Q 2014 Phys. Rev. Lett. 112 146601Google Scholar

    [73]

    Lu H Z, Shen S Q 2015 Phys. Rev. B 92 035203Google Scholar

    [74]

    Lu H Z, Zhang S B, Shen S Q 2015 Phys. Rev. B 92 045203Google Scholar

    [75]

    Dai X, Lu H Z, Shen S Q, Yao H 2016 Phys. Rev. B 93 161110Google Scholar

    [76]

    Zhang S B, Lu H Z, Shen S Q 2016 New J. Phys. 18 053039Google Scholar

    [77]

    Wang C, Lu H Z, Shen S Q 2016 Phys. Rev. Lett. 117 077201Google Scholar

    [78]

    Wang C, Sun H P, Lu H Z, Xie X 2017 Phys. Rev. Lett. 119 136806Google Scholar

    [79]

    Li C, Wang C, Wan B, Wan X, Lu H Z, Xie X 2018 Phys. Rev. Lett. 120 146602Google Scholar

    [80]

    Dai X, Du Z, Lu H Z 2017 Phys. Rev. Lett. 119 166601Google Scholar

    [81]

    Chen Y, Lu H Z, Xie X 2018 Phys. Rev. Lett. 121 036602Google Scholar

    [82]

    Du Z, Wang C, Lu H Z, Xie X 2018 Phys. Rev. Lett. 121 266601Google Scholar

    [83]

    Du Z, Wang C, Li S, Lu H Z, Xie X 2019 Nat. Commun. 10 3047

    [84]

    Cao Z, Zhang H, Lü H F, He W X, Lu H Z, Xie X 2019 Phys. Rev. Lett. 122 147701Google Scholar

    [85]

    Zhang C L, Wang C, Yuan Z, Xu X, Wang G, Lee C C, Pi L, Xi C, Lin H, Harrison N 2019 Nat. Commun. 10 1028

    [86]

    Zhang J, Wang C, Guo C, et al. 2018 Phys. Rev. Lett. 123 196602

    [87]

    Qin Fang, Li Shuai, Du Z Z, Wang C M, Zhang W Q, Yu D P, Lu H Z, Xie X C 2020 Phys. Rev. Lett. 125 206601Google Scholar

    [88]

    Lu H Z, Shen S Q 2016 Chin. Phys. B 25 117202Google Scholar

    [89]

    Hosur P, Qi X 2013 C. R. Phys. 14 857Google Scholar

    [90]

    Weng H, Dai X, Fang Z 2016 J. Phys. Condes. Matter 28 303001Google Scholar

    [91]

    Yan B, Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337Google Scholar

    [92]

    Armitage N, Mele E, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [93]

    Wang H, Wang J 2018 Chin. Phys. B 27 107402Google Scholar

    [94]

    Shen S Q 2017 Topological Insulators: Dirac Equation in Condensed Matter (Vol. 187) (Singapore: Springer) pp207−229

    [95]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [96]

    Asbóth J K, Oroszlány L, Pályi A P 2016 A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions (Vol. 919) (Heidelberg, New York, London: Springer) p33

    [97]

    Lu H Z, Shan W Y, Yao W, Niu Q, Shen S Q 2010 Phys. Rev. B 81 115407Google Scholar

    [98]

    Shan W Y, Lu H Z, Shen S Q 2010 New J. Phys. 12 043048Google Scholar

    [99]

    Shen S Q, Shan W Y, Lu H Z 2011 Spin 01 33Google Scholar

    [100]

    Shen S Q, Ma M, Xie X, Zhang F C 2004 Phys. Rev. Lett. 92 256603Google Scholar

    [101]

    Shen S Q, Bao Y J, Ma M, Xie X, Zhang F C 2005 Phys. Rev. B 71 155316Google Scholar

    [102]

    Sakurai J, Napolitano J 2017 Modern Quantum Mechanics (Cambridge: Cambridge University Press) pp105−108

    [103]

    Yang L, Liu Z, Sun Y, Peng H, Yang H, Zhang T, Zhou B, Zhang Y, Guo Y, Rahn M, et al. 2015 Nat. Phys. 11 728Google Scholar

    [104]

    Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G 2015 Nat. Phys. 11 748Google Scholar

    [105]

    Xu N, Weng H, Lv B, Matt C E, Park J, Bisti F, Strocov V N, Gawryluk D, Pomjakushina E, Conder K 2016 Nat. Commun. 7 11006

    [106]

    Guan T, Lin C, Yang C, Shi Y, Ren C, Li Y, Weng H, Dai X, Fang Z, Yan S 2015 Phys. Rev. Lett. 115 087002Google Scholar

    [107]

    Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Chang T R, Wang B, Alidoust N, Bian G, Neupane M 2016 Proc. Natl. Acad. Sci. 113 1180Google Scholar

    [108]

    Burkov A, Hook M, Balents L 2011 Phys. Rev. B 84 235126Google Scholar

    [109]

    Chiu C K, Schnyder A P 2014 Phys. Rev. B 90 205136Google Scholar

    [110]

    Fang C, Weng H, Dai X, Fang Z 2016 Chin. Phys. B 25 117106Google Scholar

    [111]

    Yang B J, Bojesen T A, Morimoto T, Furusaki A 2017 Phys. Rev. B 95 075135Google Scholar

    [112]

    Chen Y, Xie Y, Yang S A, Pan H, Zhang F, Cohen M L, Zhang S 2015 Nano Lett. 15 6974Google Scholar

    [113]

    Bzdušek T, Wu Q, Rüegg A, Sigrist M, Soluyanov A A 2016 Nature 538 75Google Scholar

    [114]

    Feng X, Yue C, Song Z, Wu Q, Wen B 2018 Phys. Rev. Mater. 2 014202Google Scholar

    [115]

    Yi C J, Lv B, Wu Q, Fu B B, Gao X, Yang M, Peng X L, Li M, Huang Y B, Richard P 2018 Phys. Rev. B 97 201107Google Scholar

    [116]

    Chen W, Luo K, Li L, Zilberberg O 2018 Phys. Rev. Lett. 121 166802Google Scholar

    [117]

    Zhu Z, Chang T R, Huang C Y, Pan H, Nie X A, Wang X Z, Jin Z T, Xu S Y, Huang S M, Guan D D 2018 Nat. Commun. 9 4153

    [118]

    Chen W, Lado J L 2019 Phys. Rev. Lett. 122 016803Google Scholar

    [119]

    Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X, Kawazoe Y 2015 Phys. Rev. B 92 045108Google Scholar

    [120]

    Yu R, Weng H, Fang Z, Dai X, Hu X 2015 Phys. Rev. Lett. 115 036807Google Scholar

    [121]

    Kim Y, Wieder B J, Kane C, Rappe A M 2015 Phys. Rev. Lett. 115 036806Google Scholar

    [122]

    Fang C, Chen Y, Kee H Y, Fu L 2015 Phys. Rev. B 92 081201Google Scholar

    [123]

    Chen Y, Lu Y M, Kee H Y 2015 Nat. Commun. 6 6593

    [124]

    Bian G, Chang T R, Zheng H, Velury S, Xu S Y, Neupert T, Chiu C K, Huang S M, Sanchez D S, Belopolski I 2016 Phys. Rev. B 93 121113Google Scholar

    [125]

    Xie L S, Schoop L M, Seibel E M, Gibson Q D, Xie W, Cava R J 2015 APL Mater. 3 083602Google Scholar

    [126]

    Chan Y H, Chiu C K, Chou M, Schnyder A P 2016 Phys. Rev. B 93 205132Google Scholar

    [127]

    Du Y, Tang F, Wang D, Sheng L, Kan E j, Duan C G, Savrasov S Y, Wan X 2017 npj Quantum Mater. 2 1Google Scholar

    [128]

    Zhao J, Yu R, Weng H, Fang Z 2016 Phys. Rev. B 94 195104Google Scholar

    [129]

    Yamakage A, Yamakawa Y, Tanaka Y, Okamoto Y 2016 J. Phys. Soc. Jpn. 85 013708Google Scholar

    [130]

    Xu Q, Yu R, Fang Z, Dai X, Weng H 2017 Phys. Rev. B 95 045136Google Scholar

    [131]

    Jin Y J, Wang R, Zhao J Z, Du Y P, Zheng C D, Gan L Y, Liu J F, Xu H, Tong S 2017 Nanoscale 9 13112Google Scholar

    [132]

    Zhu Z, Li M, Li J 2016 Phys. Rev. B 94 155121Google Scholar

    [133]

    Liang Q F, Zhou J, Yu R, Wang Z, Weng H 2016 Phys. Rev. B 93 085427Google Scholar

    [134]

    Zeng M, Fang C, Chang G, Chen Y A, Hsieh T, Bansil A, Lin H, Fu L 2015 arXiv: 1504.03492 [cond-mat]

    [135]

    Hirayama M, Okugawa R, Miyake T, Murakami S 2017 Nat. Commun. 8 14022

    [136]

    Huang H, Liu J, Vanderbilt D, Duan W 2016 Phys. Rev. B 93 201114Google Scholar

    [137]

    Li R, Ma H, Cheng X, Wang S, Li D, Zhang Z, Li Y, Chen X Q 2016 Phys. Rev. Lett. 117 096401Google Scholar

    [138]

    Wang J T, Weng H, Nie S, Fang Z, Kawazoe Y, Chen C 2016 Phys. Rev. Lett. 116 195501Google Scholar

    [139]

    Sun Y, Zhang Y, Liu C X, Felser C, Yan B 2017 Phys. Rev. B 95 235104Google Scholar

    [140]

    Schoop L M, Ali M N, Straßer C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S, Lotsch B V, Ast C R 2016 Nat. Commun. 7 11696

    [141]

    Neupane M, Belopolski I, Hosen M M, Sanchez D S, Sankar R, Szlawska M, Xu S Y, Dimitri K, Dhakal N, Maldonado P 2016 Phys. Rev. B 93 201104Google Scholar

    [142]

    Chen C, Xu X, Jiang J, Wu S C, Qi Y, Yang L, Wang M, Sun Y, Schröter N, Yang H 2017 Phys. Rev. B 95 125126Google Scholar

    [143]

    Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I 2016 Nat. Commun. 7 10556

    [144]

    Chang T R, Chen P J, Bian G, Huang S M, Zheng H, Neupert T, Sankar R, Xu S Y, Belopolski I, Chang G 2016 Phys. Rev. B 93 245130Google Scholar

    [145]

    Ekahana S A, Wu S C, Jiang J, Okawa K, Prabhakaran D, Hwang C C, Mo S K, Sasagawa T, Felser C, Yan B 2017 New J. Phys. 19 065007Google Scholar

    [146]

    Wu Y, Wang L L, Mun E, Johnson D D, Mou D, Huang L, Lee Y, Bud’ko S L, Canfield P C, Kaminski A 2016 Nat. Phys. 12 667Google Scholar

    [147]

    Chen W, Lu H Z, Zilberberg O 2019 Phys. Rev. Lett. 122 196603Google Scholar

    [148]

    Alexandradinata A, Glazman L 2018 Phys. Rev. B 97 144422Google Scholar

    [149]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [150]

    Nechaev I, Krasovskii E 2016 Phys. Rev. B 94 201410Google Scholar

    [151]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y 2010 Nat. Phys. 6 584Google Scholar

    [152]

    Wang J, Li H, Chang C, He K, Lee J S, Lu H, Sun Y, Ma X, Samarth N, Shen S 2012 Nano Res. 5 739Google Scholar

    [153]

    He H, Liu H, Li B, Guo X, Xu Z, Xie M, Wang J 2013 Appl. Phys. Lett. 103 031606Google Scholar

    [154]

    Wiedmann S, Jost A, Fauqué B, Van Dijk J, Meijer M, Khouri T, Pezzini S, Grauer S, Schreyeck S, Brüne C 2016 Phys. Rev. B 94 081302Google Scholar

    [155]

    Wang L X, Yan Y, Zhang L, Liao Z M, Wu H C, Yu D P 2015 Nanoscale 7 16687Google Scholar

    [156]

    Sun H P, Wang C M, Zhang S B, Chen R, Zhao Y, Liu C, Liu Q, Chen C, Lu H Z, Xie X C 2020 Phys. Rev. B 102 241406Google Scholar

    [157]

    Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [158]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [159]

    Yasuda K, Wakatsuki R, Morimoto T, Yoshimi R, Tsukazaki A, Takahashi K, Ezawa M, Kawasaki M, Nagaosa N, Tokura Y 2016 Nat. Phys. 12 555Google Scholar

    [160]

    Sodemann I, Fu L 2015 Phys. Rev. Lett. 115 216806Google Scholar

    [161]

    Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Valdivia A M M, Wu S, Du Z, Hsu C H, et al. 2019 Nature 565 337Google Scholar

    [162]

    Kang K, Li T, Sohn E, Shan J, Mak K F 2018 arXiv: 1809.08744 [cond-mat]

    [163]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [164]

    Leijnse M, Flensberg K 2012 Semicond. Sci. Technol. 27 124003Google Scholar

    [165]

    Beenakker C 2013 Annu. Rev. Condens. Matter Phys. 4 113Google Scholar

    [166]

    Stanescu T D, Tewari S 2013 J. Phys. Condes. Matter 25 233201Google Scholar

    [167]

    Lutchyn R M, Sau J D, Sarma S D 2010 Phys. Rev. Lett. 105 077001Google Scholar

    [168]

    Oreg Y, Refael G, Von Oppen F 2010 Phys. Rev. Lett. 105 177002Google Scholar

    [169]

    Prada E, San-Jose P, Aguado R 2012 Phys. Rev. B 86 180503Google Scholar

    [170]

    Sarma S D, Sau J D, Stanescu T D 2012 Phys. Rev. B 86 220506Google Scholar

    [171]

    Rainis D, Trifunovic L, Klinovaja J, Loss D 2013 Phys. Rev. B 87 024515Google Scholar

    [172]

    Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, Marcus C 2016 Nature 531 206Google Scholar

    [173]

    Sherman D, Yodh J, Albrecht S M, Nygård J, Krogstrup P, Marcus C M 2017 Nat. Nanotechnol. 12 212Google Scholar

    [174]

    Albrecht S, Hansen E, Higginbotham A P, Kuemmeth F, Jespersen T, Nygård J, Krogstrup P, Danon J, Flensberg K, Marcus C 2017 Phys. Rev. Lett. 118 137701Google Scholar

    [175]

    Vaitiekėnas S, Whiticar A M, Deng M T, Krizek F, Sestoft J E, Palmstrøm C, Martí-Sànchez S, Arbiol J, Krogstrup P, Casparis L 2018 Phys. Rev. Lett. 121 147701Google Scholar

    [176]

    O’Farrell E, Drachmann A, Hell M, Fornieri A, Whiticar A, Hansen E, Gronin S, Gardner G, Thomas C, Manfra M 2018 Phys. Rev. Lett. 121 256803Google Scholar

    [177]

    Shen J, Heedt S, Borsoi F, Van Heck B, Gazibegovic S, Veld R L O, Car D, Logan J A, Pendharkar M, Ramakers S J 2018 Nat. Commun. 9 4801

    [178]

    Sánchez D, Serra L 2006 Phys. Rev. B 74 153313Google Scholar

    [179]

    Sánchez D, Serra L, Choi M S 2008 Phys. Rev. B 77 035315Google Scholar

    [180]

    Glazov M, Sherman E Y 2011 Phys. Rev. Lett. 107 156602Google Scholar

    [181]

    Bommer J D, Zhang H, Gül Ö, Nijholt B, Wimmer M, Rybakov F N, Garaud J, Rodic D, Babaev E, Troyer M 2019 Phys. Rev. Lett. 122 187702Google Scholar

    [182]

    Vaitiekėnas S, Deng M T, Nygård J, Krogstrup P, Marcus C 2018 Phys. Rev. Lett. 121 037703Google Scholar

    [183]

    de Moor M W, Bommer J D, Xu D, Winkler G W, Antipov A E, Bargerbos A, Wang G, Van Loo N, het Veld R L O, Gazibegovic S 2018 New J. Phys. 20 103049Google Scholar

    [184]

    Stanescu T D, Lutchyn R M, Sarma S D 2011 Phys. Rev. B 84 144522Google Scholar

    [185]

    Reeg C, Loss D, Klinovaja J 2018 Phys. Rev. B 97 165425Google Scholar

    [186]

    Van Heck B, Lutchyn R, Glazman L 2016 Phys. Rev. B 93 235431Google Scholar

    [187]

    Fu L 2010 Phys. Rev. Lett. 104 056402Google Scholar

    [188]

    Hützen R, Zazunov A, Braunecker B, Yeyati A L, Egger R 2012 Phys. Rev. Lett. 109 166403Google Scholar

    [189]

    Higginbotham A P, Albrecht S M, Kiršanskas G, Chang W, Kuemmeth F, Krogstrup P, Jespersen T S, Nygård J, Flensberg K, Marcus C M 2015 Nat. Phys. 11 1017Google Scholar

    [190]

    Lü H F, Lu H Z, Shen S Q 2016 Phys. Rev. B 93 245418Google Scholar

    [191]

    Lee P A, Ramakrishnan T 1985 Rev. Mod. Phys. 57 287Google Scholar

    [192]

    Fu B, Wang H W, Shen S Q 2019 Phys. Rev. Lett. 122 246601Google Scholar

    [193]

    Wang H W, Fu B, Shen S Q 2020 Phys. Rev. Lett. 124 206603Google Scholar

    [194]

    Dyson F J 1962 J. Math. Phys. 3 140Google Scholar

    [195]

    Hikami S, Larkin A I, Nagaoka Y 1980 Prog. Theor. Phys. 63 707Google Scholar

    [196]

    McCann E, Kechedzhi K, Fal’ko V I, Suzuura H, Ando T, Altshuler B 2006 Phys. Rev. Lett. 97 146805Google Scholar

    [197]

    Altshuler B L, Aronov A G, Lee P 1980 Phys. Rev. Lett. 44 1288Google Scholar

    [198]

    Fukuyama H 1980 J. Phys. Soc. Jpn. 48 2169Google Scholar

    [199]

    Shan W Y, Lu H Z, Shen S Q 2012 Phys. Rev. B 86 125303Google Scholar

    [200]

    Berry M V 1984 Proc. R. Soc. A-Math. Phys. 392 45

    [201]

    Shon N H, Ando T 1998 J. Phys. Soc. Jpn. 67 2421Google Scholar

    [202]

    Suzuura H, Ando T 2002 Phys. Rev. Lett. 89 266603Google Scholar

    [203]

    Altland A, Zirnbauer M R 1997 Phys. Rev. B 55 1142Google Scholar

    [204]

    Akkermans E, Montambaux G 2007 Mesoscopic Physics of Electrons and Photons (Cambridge: Cambridge university press) pp97−100

    [205]

    Cao H, Tian J, Miotkowski I, Shen T, Hu J, Qiao S, Chen Y P 2012 Phys. Rev. Lett. 108 216803Google Scholar

    [206]

    Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J, Ong N 2009 Phys. Rev. Lett. 103 246601Google Scholar

    [207]

    Peng H, Lai K, Kong D, Meister S, Chen Y, Qi X L, Zhang S C, Shen Z X, Cui Y 2010 Nat. Mater. 9 225Google Scholar

    [208]

    Chen J, Qin H, Yang F, Liu J, Guan T, Qu F, Zhang G, Shi J, Xie X, Yang C, et al. 2010 Phys. Rev. Lett. 105 176602Google Scholar

    [209]

    Checkelsky J G, Hor Y S, Cava R J, Ong N 2011 Phys. Rev. Lett. 106 196801Google Scholar

    [210]

    Adler S L 1969 Phys. Rev. 177 2426Google Scholar

    [211]

    Bell J S, Jackiw R 1969 Il Nuovo Cimento A (1965-1970) 60 47Google Scholar

    [212]

    Burkov A 2017 Phys. Rev. B 96 041110Google Scholar

    [213]

    Nandy S, Sharma G, Taraphder A, Tewari S 2017 Phys. Rev. Lett. 119 176804Google Scholar

    [214]

    Kumar N, Guin S N, Felser C, Shekhar C 2018 Phys. Rev. B 98 041103Google Scholar

    [215]

    Wu M, Zheng G, Chu W, Liu Y, Gao W, Zhang H, Lu J, Han Y, Zhou J, Ning W 2018 Phys. Rev. B 98 161110Google Scholar

    [216]

    Li H, Wang H W, He H, Wang J, Shen S Q 2018 Phys. Rev. B 97 201110Google Scholar

    [217]

    Ma D, Jiang H, Liu H, Xie X 2019 Phys. Rev. B 99 115121Google Scholar

    [218]

    Chang M C, Niu Q 1995 Phys. Rev. Lett. 75 1348Google Scholar

    [219]

    Sundaram G, Niu Q 1999 Phys. Rev. B 59 14915Google Scholar

    [220]

    Jian H Z, Hua J, Qian N, Jun R S 2013 Chin. Phys. Lett. 30 027101Google Scholar

    [221]

    Goswami P, Tewari S 2013 Phys. Rev. B 88 245107Google Scholar

    [222]

    Zyuzin A, Burkov A 2012 Phys. Rev. B 86 115133Google Scholar

    [223]

    Yip S K 2015 arXiv: 1508.01010 [cond-mat]

    [224]

    Zhang C, Zhang E, Wang W, Liu Y, Chen Z G, Lu S, Liang S, Cao J, Yuan X, Tang L 2017 Nat. Commun. 8 13741

    [225]

    Breunig O, Wang Z, Taskin A, Lux J, Rosch A, Ando Y 2017 Nat. Commun. 8 15545

    [226]

    Assaf B, Phuphachong T, Kampert E, Volobuev V, Mandal P, Sánchez-Barriga J, Rader O, Bauer G, Springholz G, De Vaulchier L 2017 Phys. Rev. Lett. 119 106602Google Scholar

    [227]

    Zhang M, Wang H, Mu K, Wang P, Niu W, Zhang S, Xiao G, Chen Y, Tong T, Fu D 2018 ACS Nano 12 1537Google Scholar

    [228]

    Fleckenstein C, Ziani N T, Trauzettel B 2016 Phys. Rev. B 94 241406Google Scholar

    [229]

    Culcer D 2012 Physica E 44 860Google Scholar

    [230]

    Mahan G D 2013 Many-particle Physics (New York: Springer Science & Business Media) pp160−174

    [231]

    Wolos A, Szyszko S, Drabinska A, Kaminska M, Strzelecka S, Hruban A, Materna A, Piersa M, Borysiuk J, Sobczak K 2016 Phys. Rev. B 93 155114Google Scholar

    [232]

    Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H 2011 Phys. Rev. B 83 245438Google Scholar

    [233]

    He H T, Wang G, Zhang T, Sou I K, Wong G K, Wang J N, Lu H Z, Shen S Q, Zhang F C 2011 Phys. Rev. Lett. 106 166805Google Scholar

    [234]

    Morimoto T, Zhong S, Orenstein J, Moore J E 2016 Phys. Rev. B 94 245121Google Scholar

    [235]

    Gao Y, Yang S A, Niu Q 2017 Phys. Rev. B 95 165135Google Scholar

    [236]

    Gao Y, Yang S A, Niu Q 2014 Phys. Rev. Lett. 112 166601Google Scholar

    [237]

    Gao Y, Yang S A, Niu Q 2015 Phys. Rev. B 91 214405Google Scholar

    [238]

    Goswami P, Pixley J, Sarma S D 2015 Phys. Rev. B 92 075205Google Scholar

    [239]

    Andreev A, Spivak B 2018 Phys. Rev. Lett. 120 026601Google Scholar

    [240]

    Fu B, Wang H W, Shen S Q 2020 Phys. Rev. B 101 125203Google Scholar

    [241]

    Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press) pp36−67

    [242]

    Mikitik G, Sharlai Y V 1999 Phys. Rev. Lett. 82 2147Google Scholar

    [243]

    Shoenberg D, Stiles P 1964 Proc. R. Soc. A-Math. Phys. 281 62

    [244]

    Luk’yanchuk I A, Kopelevich Y 2004 Phys. Rev. Lett. 93 166402Google Scholar

    [245]

    Novak M, Sasaki S, Segawa K, Ando Y 2015 Phys. Rev. B 91 041203Google Scholar

    [246]

    Du J, Wang H, Chen Q, Mao Q, Khan R, Xu B, Zhou Y, Zhang Y, Yang J, Chen B 2016 Sci. China-Phys. Mech. Astron. 59 657406Google Scholar

    [247]

    Zhang C L, Yuan Z, Jiang Q D, Tong B, Zhang C, Xie X, Jia S 2017 Phys. Rev. B 95 085202Google Scholar

    [248]

    Park J, Lee G, Wolff-Fabris F, Koh Y, Eom M, Kim Y K, Farhan M, Jo Y, Kim C, Shim J 2011 Phys. Rev. Lett. 107 126402Google Scholar

    [249]

    Xiang F X, Wang X L, Veldhorst M, Dou S X, Fuhrer M S 2015 Phys. Rev. B 92 035123Google Scholar

    [250]

    Tafti F, Gibson Q, Kushwaha S, Haldolaarachchige N, Cava R 2016 Nat. Phys. 12 272Google Scholar

    [251]

    Luo Y, Ghimire N J, Wartenbe M, Choi H, Neupane M, McDonald R, Bauer E, Zhu J, Thompson J, Ronning F 2015 Phys. Rev. B 92 205134Google Scholar

    [252]

    Arnold F, Naumann M, Wu S C, Sun Y, Schmidt M, Borrmann H, Felser C, Yan B, Hassinger E 2016 Phys. Rev. Lett. 117 146401Google Scholar

    [253]

    Klotz J, Wu S C, Shekhar C, Sun Y, Schmidt M, Nicklas M, Baenitz M, Uhlarz M, Wosnitza J, Felser C 2016 Phys. Rev. B 93 121105Google Scholar

    [254]

    dos Reis R, Wu S, Sun Y, Ajeesh M, Shekhar C, Schmidt M, Felser C, Yan B, Nicklas M 2016 Phys. Rev. B 93 205102Google Scholar

    [255]

    Sergelius P, Gooth J, Bäßler S, Zierold R, Wiegand C, Niemann A, Reith H, Shekhar C, Felser C, Yan B 2016 Sci. Rep. 6 33859

    [256]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [257]

    Murakawa H, Bahramy M, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H, Tokura Y 2013 Science 342 1490Google Scholar

    [258]

    Kumar N, Manna K, Qi Y, Wu S C, Wang L, Yan B, Felser C, Shekhar C 2017 Phys. Rev. B 95 121109Google Scholar

    [259]

    Singha R, Pariari A K, Satpati B, Mandal P 2017 Proc. Natl. Acad. Sci. 114 2468Google Scholar

    [260]

    Ali M N, Schoop L M, Garg C, Lippmann J M, Lara E, Lotsch B, Parkin S S 2016 Sci. Adv. 2 e1601742Google Scholar

    [261]

    Wang X, Pan X, Gao M, Yu J, Jiang J, Zhang J, Zuo H, Zhang M, Wei Z, Niu W 2016 Adv. Electron. Mater. 2

    [262]

    Lv Y Y, Zhang B B, Li X, Yao S H, Chen Y, Zhou J, Zhang S T, Lu M H, Chen Y F 2016 Appl. Phys. Lett. 108 244101Google Scholar

    [263]

    Hu J, Tang Z, Liu J, Zhu Y, Wei J, Mao Z 2017 Phys. Rev. B 96 045127Google Scholar

    [264]

    Pan H, Tong B, Yu J, Wang J, Fu D, Zhang S, Wu B, Wan X, Zhang C, Wang X 2018 Sci. Rep. 8 1Google Scholar

    [265]

    Hu J, Tang Z, Liu J, Liu X, Zhu Y, Graf D, Myhro K, Tran S, Lau C N, Wei J 2016 Phys. Rev. Lett. 117 016602Google Scholar

    [266]

    Hu J, Zhu Y, Graf D, Tang Z, Liu J, Mao Z 2017 Phys. Rev. B 95 205134Google Scholar

    [267]

    Qu D X, Hor Y S, Xiong J, Cava R J, Ong N P 2010 Science 329 821Google Scholar

    [268]

    Charbonneau M, Van Vliet K, Vasilopoulos P 1982 J. Math. Phys. 23 318Google Scholar

    [269]

    Vasilopoulos P, Van Vliet C M 1984 J. Math. Phys. 25 1391Google Scholar

    [270]

    Wang C, Lei X 2012 Phys. Rev. B 86 035442Google Scholar

    [271]

    Wang C, Lei X 2015 Phys. Rev. B 92 125303Google Scholar

    [272]

    Datta S 1997 Electronic Transport in Mesoscopic Dystems (Cambridge: Cambridge university press) pp23−24

    [273]

    Vasko F T, Raichev O E 2006 Quantum Kinetic Theory and Applications: Electrons, Photons, Phonons (New York: Springer Science & Business Media) pp99−147

    [274]

    Abrikosov A 1998 Phys. Rev. B 58 2788

    [275]

    Liu Z, Yang L, Sun Y, Zhang T, Peng H, Yang H, Chen C, Zhang Y, Guo Y, Prabhakaran D 2016 Nat. Mater. 15 27Google Scholar

    [276]

    Xiong J, Kushwaha S, Krizan J, Liang T, Cava R J, Ong N P 2016 EPL 114 27002Google Scholar

    [277]

    Hu J, Liu J, Graf D, Radmanesh S, Adams D, Chuang A, Wang Y, Chiorescu I, Wei J, Spinu L 2016 Sci. Rep. 6 18674Google Scholar

    [278]

    Phillips M, Aji V 2014 Phys. Rev. B 90 115111Google Scholar

    [279]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [280]

    Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A 2005 Nature 438 197Google Scholar

    [281]

    Xu Y, Miotkowski I, Liu C, Tian J, Nam H, Alidoust N, Hu J, Shih C K, Hasan M Z, Chen Y P 2014 Nat. Phys. 10 956Google Scholar

    [282]

    Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K, Nagaosa N, Kawasaki M, Tokura Y 2015 Nat. Commun. 6 6627

    [283]

    Lu H Z 2019 Natl. Sci. Rev. 6 208Google Scholar

    [284]

    Hosur P 2012 Phys. Rev. B 86 195102Google Scholar

    [285]

    Baum Y, Berg E, Parameswaran S, Stern A 2015 Phys. Rev. X 5 041046

    [286]

    Gorbar E, Miransky V, Shovkovy I, Sukhachov P 2016 Phys. Rev. B 93 235127Google Scholar

    [287]

    Ominato Y, Koshino M 2016 Phys. Rev. B 93 245304Google Scholar

    [288]

    McCormick T M, Watzman S J, Heremans J P, Trivedi N 2018 Phys. Rev. B 97 195152Google Scholar

    [289]

    Moll P J, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A, Analytis J G 2016 Nature 535 266Google Scholar

    [290]

    Ruan J, Jian S K, Yao H, Zhang H, Zhang S C, Xing D 2016 Nat. Commun. 7 11136

    [291]

    Potter A C, Kimchi I, Vishwanath A 2014 Nat. Commun. 5 5161

    [292]

    Xu S Y, Belopolski I, Sanchez D S, Neupane M, Chang G, Yaji K, Yuan Z, Zhang C, Kuroda K, Bian G 2016 Phys. Rev. Lett. 116 096801Google Scholar

    [293]

    Belopolski I, Xu S Y, Sanchez D S, Chang G, Guo C, Neupane M, Zheng H, Lee C C, Huang S M, Bian G 2016 Phys. Rev. Lett. 116 066802Google Scholar

    [294]

    Belopolski I, Xu S Y, Ishida Y, Pan X, Yu P, Sanchez D S, Zheng H, Neupane M, Alidoust N, Chang G 2016 Phys. Rev. B 94 085127Google Scholar

    [295]

    Xu S Y, Belopolski I, Sanchez D S, Zhang C, Chang G, Guo C, Bian G, Yuan Z, Lu H, Chang T R 2015 Sci. Adv. 1 e1501092Google Scholar

    [296]

    Uchida M, Nakazawa Y, Nishihaya S, Akiba K, Kriener M, Kozuka Y, Miyake A, Taguchi Y, Tokunaga M, Nagaosa N 2017 Nat. Commun. 8 2274

    [297]

    Schumann T, Galletti L, Kealhofer D A, Kim H, Goyal M, Stemmer S 2018 Phys. Rev. Lett. 120 016801Google Scholar

    [298]

    Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z, Liu R 2019 Nature 565 331Google Scholar

    [299]

    Gusynin V, Sharapov S 2005 Phys. Rev. Lett. 95 146801Google Scholar

    [300]

    Zyuzin A, Burkov A 2011 Phys. Rev. B 83 195413Google Scholar

    [301]

    Zhang S B, Zhang Y Y, Shen S Q 2014 Phys. Rev. B 90 115305Google Scholar

    [302]

    Zhang S B, Lu H Z, Shen S Q 2015 Sci. Rep. 5 13277Google Scholar

    [303]

    Pertsova A, Canali C M, MacDonald A 2016 Phys. Rev. B 94 121409Google Scholar

    [304]

    Zheng H, Xu S Y, Bian G, Guo C, Chang G, Sanchez D S, Belopolski I, Lee C C, Huang S M, Zhang X 2016 ACS Nano 10 1378Google Scholar

    [305]

    Ma E Y, Calvo M R, Wang J, Lian B, Mühlbauer M, Brüne C, Cui Y T, Lai K, Kundhikanjana W, Yang Y 2015 Nat. Commun. 6 7252

    [306]

    Li H, Liu H, Jiang H, Xie X 2020 Phys. Rev. Lett. 125 036602Google Scholar

    [307]

    Zhang C, Narayan A, Lu S, Zhang J, Zhang H, Ni Z, Yuan X, Liu Y, Park J H, Zhang E 2017 Nat. Commun. 8 1272

    [308]

    Lin B C, Wang S, Wiedmann S, Lu J M, Zheng W Z, Yu D, Liao Z M 2019 Phys. Rev. Lett. 122 036602Google Scholar

    [309]

    Halperin B I 1987 Jpn. J. Appl. Phys. 26 1913Google Scholar

    [310]

    Tang F, Ren Y, Wang P, Zhong R, Schneeloch J, Yang S A, Yang K, Lee P A, Gu G, Qiao Z 2019 Nature 569 537Google Scholar

    [311]

    Song Z, Fang Z, Dai X 2017 Phys. Rev. B 96 235104Google Scholar

    [312]

    Pan Z, Shindou R 2019 Phys. Rev. B 100 165124Google Scholar

    [313]

    Roy B, Sau J D, Sarma S D 2014 Phys. Rev. B 89 165119Google Scholar

    [314]

    Grüner G 1988 Rev. Mod. Phys. 60 1129Google Scholar

    [315]

    Aji V 2012 Phys. Rev. B 85 241101Google Scholar

    [316]

    Ominato Y, Koshino M 2014 Phys. Rev. B 89 054202Google Scholar

    [317]

    Song J C, Refael G, Lee P A 2015 Phys. Rev. B 92 180204Google Scholar

    [318]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [319]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [320]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar

    [321]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L 2013 Science 340 167Google Scholar

    [322]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [323]

    Akhmerov A, Nilsson J, Beenakker C 2009 Phys. Rev. Lett. 102 216404Google Scholar

    [324]

    Belopolski I, Xu S Y, Koirala N, Liu C, Bian G, Strocov V N, Chang G, Neupane M, Alidoust N, Sanchez D 2017 Sci. Adv. 3 e1501692Google Scholar

    [325]

    Chiu C K, Bian G, Zheng H, Yin J X, Zhang S S, Sanchez D, Belopolski I, Xu S Y, Hasan M Z 2018 EPL 123 47005Google Scholar

    [326]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [327]

    Büttner B, Liu C, Tkachov G, Novik E, Brüne C, Buhmann H, Hankiewicz E, Recher P, Trauzettel B, Zhang S 2011 Nat. Phys. 7 418Google Scholar

    [328]

    Mani A, Benjamin C 2017 Sci. Rep. 7 6954

    [329]

    Weng H, Dai X, Fang Z 2014 Phys. Rev. X 4 011002

    [330]

    Liu Y, Yuan X, Zhang C, Jin Z, Narayan A, Luo C, Chen Z, Yang L, Zou J, Wu X 2016 Nat. Commun. 7 12516

    [331]

    Zhang W, Yu R, Feng W, Yao Y, Weng H, Dai X, Fang Z 2011 Phys. Rev. Lett. 106 156808Google Scholar

    [332]

    Sebastian S E, Harrison N, Palm E, Murphy T, Mielke C, Liang R, Bonn D, Hardy W, Lonzarich G 2008 Nature 454 200Google Scholar

    [333]

    Li L, Checkelsky J G, Hor Y S, Uher C, Hebard A F, Cava R J, Ong N 2008 Science 321 547Google Scholar

    [334]

    Zhang Z, Wei W, Yang F, Zhu Z, Guo M, Feng Y, Yu D, Yao M, Harrison N, McDonald R 2015 Phys. Rev. B 92 235402Google Scholar

    [335]

    Mikitik G, Sharlai Y V 2004 Phys. Rev. Lett. 93 106403Google Scholar

    [336]

    Mikitik G, Sharlai Y V 1996 Low Temp. Phys. 22 585

    [337]

    Mikitik G, Sharlai Y V 2016 Phys. Rev. B 94 195123Google Scholar

    [338]

    Moll P J, Potter A C, Nair N L, Ramshaw B, Modic K A, Riggs S, Zeng B, Ghimire N J, Bauer E D, Kealhofer R 2016 Nat. Commun. 7 12492

    [339]

    Koshino M, Hizbullah I F 2016 Phys. Rev. B 93 045201Google Scholar

    [340]

    Chen Z G, Chen R, Zhong R, Schneeloch J, Zhang C, Huang Y, Qu F, Yu R, Li Q, Gu G 2017 Proc. Natl. Acad. Sci. 114 816Google Scholar

    [341]

    Chen R, Zhang S, Schneeloch J, Zhang C, Li Q, Gu G, Wang N 2015 Phys. Rev. B 92 075107Google Scholar

    [342]

    Wu R, Ma J Z, Nie S M, Zhao L X, Huang X, Yin J X, Fu B B, Richard P, Chen G F, Fang Z 2016 Phys. Rev. X 6 021017

    [343]

    Li X B, Huang W K, Lv Y Y, Zhang K W, Yang C L, Zhang B B, Chen Y, Yao S H, Zhou J, Lu M H 2016 Phys. Rev. Lett. 116 176803Google Scholar

    [344]

    Xiong H, Sobota J, Yang S L, Soifer H, Gauthier A, Lu M H, Lv Y Y, Yao S H, Lu D, Hashimoto M 2017 Phys. Rev. B 95 195119Google Scholar

    [345]

    Manzoni G, Gragnaniello L, Autès G, Kuhn T, Sterzi A, Cilento F, Zacchigna M, Enenkel V, Vobornik I, Barba L 2016 Phys. Rev. Lett. 117 237601Google Scholar

    [346]

    Xu B, Zhao L, Marsik P, Sheveleva E, Lyzwa F, Dai Y, Chen G, Qiu X, Bernhard C 2018 Phys. Rev. Lett. 121 187401Google Scholar

    [347]

    Zhang J, Guo C, Zhu X, Ma L, Zheng G, Wang Y, Pi L, Chen Y, Yuan H, Tian M 2017 Phys. Rev. Lett. 118 206601Google Scholar

    [348]

    Jones T, Fuller W, Wieting T, Levy F 1982 Solid State Commun. 42 793Google Scholar

    [349]

    Behnia K, Aubin H 2016 Rep. Prog. Phys. 79 046502Google Scholar

    [350]

    Gooth J, Niemann A C, Meng T, Grushin A G, Landsteiner K, Gotsmann B, Menges F, Schmidt M, Shekhar C, Süß V 2017 Nature 547 324Google Scholar

    [351]

    Behnia K, Méasson M A, Kopelevich Y 2007 Phys. Rev. Lett. 98 166602Google Scholar

    [352]

    Fauqué B, Zhu Z, Murphy T, Behnia K 2011 Phys. Rev. Lett. 106 246405Google Scholar

    [353]

    Fauqué B, Butch N P, Syers P, Paglione J, Wiedmann S, Collaudin A, Grena B, Zeitler U, Behnia K 2013 Phys. Rev. B 87 035133Google Scholar

    [354]

    Liang T, Gibson Q, Xiong J, Hirschberger M, Koduvayur S P, Cava R J, Ong N P 2013 Nat. Commun. 4 1

    [355]

    Zhu Z, Lin X, Liu J, Fauqué B, Tao Q, Yang C, Shi Y, Behnia K 2015 Phys. Rev. Lett. 114 176601Google Scholar

    [356]

    Jia Z, Li C, Li X, Shi J, Liao Z, Yu D, Wu X 2016 Nat. Commun. 7 13013

    [357]

    Liang T, Lin J, Gibson Q, Gao T, Hirschberger M, Liu M, Cava R J, Ong N P 2017 Phys. Rev. Lett. 118 136601Google Scholar

    [358]

    Matusiak M, Cooper J, Kaczorowski D 2017 Nat. Commun. 8 15219

    [359]

    Watzman S J, McCormick T M, Shekhar C, Wu S C, Sun Y, Prakash A, Felser C, Trivedi N, Heremans J P 2018 Phys. Rev. B 97 161404Google Scholar

    [360]

    Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J, Nie S, Sun X, Zhang Y, Shen B, et al. 2017 Nat. Commun. 8 15512Google Scholar

    [361]

    Stockert U, Dos Reis R, Ajeesh M, Watzman S, Schmidt M, Shekhar C, Heremans J, Felser C, Baenitz M, Nicklas M 2017 J. Phys.-Condes. Matter 29 325701Google Scholar

    [362]

    Wang J, Niu J, Yan B, Li X, Bi R, Yao Y, Yu D, Wu X 2018 Proc. Natl. Acad. Sci. 115 9145Google Scholar

    [363]

    Skinner B, Fu L 2018 Sci. Adv. 4 eaat2621Google Scholar

    [364]

    Raikh M, Shahbazyan T 1993 Phys. Rev. B 47 1522Google Scholar

    [365]

    Pesin D, Mishchenko E, Levchenko A 2015 Phys. Rev. B 92 174202Google Scholar

    [366]

    Wang H W, Fu B, Shen S Q 2018 Phys. Rev. B 98 081202Google Scholar

    [367]

    Alexandradinata A, Glazman L 2017 Phys. Rev. Lett. 119 256601Google Scholar

    [368]

    Alexandradinata A, Wang C, Duan W, Glazman L 2018 Phys. Rev. X 8 011027

    [369]

    Hoeller J, Alexandradinata A 2018 Phys. Rev. B 98 024310Google Scholar

    [370]

    O’Brien T, Diez M, Beenakker C 2016 Phys. Rev. Lett. 116 236401Google Scholar

    [371]

    Fei F, Bo X, Wang R, Wu B, Jiang J, Fu D, Gao M, Zheng H, Chen Y, Wang X 2017 Phys. Rev. B 96 041201Google Scholar

    [372]

    Yang H, Moessner R, Lim L K 2018 Phys. Rev. B 97 165118Google Scholar

    [373]

    Oroszlány L, Dóra B, Cserti J, Cortijo A 2018 Phys. Rev. B 97 205107Google Scholar

    [374]

    Zhang Y, Bulmash D, Hosur P, Potter A C, Vishwanath A 2016 Sci. Rep. 6 23741Google Scholar

    [375]

    Wang H, Liu H, Li Y, Liu Y, Wang J, Liu J, Dai J Y, Wang Y, Li L, Yan J 2018 Sci. Adv. 4 eaau5096Google Scholar

    [376]

    Wang H, Liu Y, Liu Y, Xi C, Wang J, Liu J, Wang Y, Li L, Lau S P, Tian M 2019 Natl. Sci. Rev. 6 914Google Scholar

    [377]

    Zhang P, Zhai H 2018 Front. Phys. 13 137204Google Scholar

    [378]

    Liu H, Jiang H, Wang Z, Joynt R, Xie X 2018 arXiv: 1807.02459 [cond-mat]

    [379]

    Weng H, Fang C, Fang Z, Dai X 2016 Phys. Rev. B 93 241202Google Scholar

    [380]

    Weng H, Fang C, Fang Z, Dai X 2016 Phys. Rev. B 94 165201Google Scholar

    [381]

    Bradlyn B, Cano J, Wang Z, Vergniory M, Felser C, Cava R, Bernevig B A 2016 Science 353Google Scholar

    [382]

    Chang G, Xu S Y, Huang S M, Sanchez D S, Hsu C H, Bian G, Yu Z M, Belopolski I, Alidoust N, Zheng H 2017 Sci. Rep. 7 1688

    [383]

    Lv B, Feng Z L, Xu Q N, Gao X, Ma J Z, Kong L Y, Richard P, Huang Y B, Strocov V, Fang C 2017 Nature 546 627Google Scholar

    [384]

    Ma J Z, He J B, Xu Y F, Lv B, Chen D, Zhu W L, Zhang S, Kong L Y, Gao X, Rong L Y 2018 Nat. Phys. 14 349Google Scholar

    [385]

    He J, Chen D, Zhu W, Zhang S, Zhao L, Ren Z, Chen G 2017 Phys. Rev. B 95 195165Google Scholar

    [386]

    Zhu W, He J, Zhang S, Chen D, Shan L, Ren Z, Chen G 2017 arXiv: 1707.00942 [cond-mat]

    [387]

    Kumar N, Sun Y, Nicklas M, Watzman S J, Young O, Leermakers I, Hornung J, Klotz J, Gooth J, Manna K 2019 Nat. Commun. 10 2475

    [388]

    Felser C, Yan B 2016 Nat. Mater. 15 1149Google Scholar

    [389]

    Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kübler J 2016 Sci. Adv. 2 e1501870Google Scholar

    [390]

    Wang Z, Vergniory M, Kushwaha S, Hirschberger M, Chulkov E, Ernst A, Ong N P, Cava R J, Bernevig B A 2016 Phys. Rev. Lett. 117 236401Google Scholar

    [391]

    Chang G, Xu S Y, Zheng H, Singh B, Hsu C H, Bian G, Alidoust N, Belopolski I, Sanchez D S, Zhang S 2016 Sci. Rep. 6 38839

    [392]

    Nie S, Xu G, Prinz F B, Zhang S C 2017 Proc. Natl. Acad. Sci. 114 10596Google Scholar

    [393]

    Yang H, Sun Y, Zhang Y, Shi W J, Parkin S S, Yan B 2017 New J. Phys. 19 015008Google Scholar

    [394]

    Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q 2018 Nat. Phys. 14 1125Google Scholar

    [395]

    Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S, Lei H 2018 Nat. Commun. 9 3681

    [396]

    Guin S N, Manna K, Noky J, Watzman S J, Fu C, Kumar N, Schnelle W, Shekhar C, Sun Y, Gooth J 2019 NPG Asia Mater. 11 1Google Scholar

    [397]

    Chang G, Singh B, Xu S Y, Bian G, Huang S M, Hsu C H, Belopolski I, Alidoust N, Sanchez D S, Zheng H 2018 Phys. Rev. B 97 041104Google Scholar

    [398]

    Yin J X, Zhang S S, Li H, Jiang K, Chang G, Zhang B, Lian B, Xiang C, Belopolski I, Zheng H 2018 Nature 562 91Google Scholar

    [399]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [400]

    Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z 2016 Nat. Phys. 12 1105Google Scholar

    [401]

    Jiang J, Liu Z, Sun Y, Yang H, Rajamathi C, Qi Y, Yang L, Chen C, Peng H, Hwang C 2017 Nat. Commun. 8 13973

    [402]

    Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z 2016 Nat. Commun. 7 13142

    [403]

    Zhang E, Chen R, Huang C, Yu J, Zhang K, Wang W, Liu S, Ling J, Wan X, Lu H Z 2017 Nano Lett. 17 878Google Scholar

    [404]

    Chen D, Zhao L, He J, Liang H, Zhang S, Li C, Shan L, Wang S, Ren Z, Ren C 2016 Phys. Rev. B 94 174411Google Scholar

    [405]

    Khim S, Koepernik K, Efremov D V, Klotz J, Förster T, Wosnitza J, Sturza M I, Wurmehl S, Hess C, van den Brink J 2016 Phys. Rev. B 94 165145Google Scholar

    [406]

    Xu S Y, Alidoust N, Chang G, Lu H, Singh B, Belopolski I, Sanchez D S, Zhang X, Bian G, Zheng H 2017 Sci. Adv. 3 e1603266Google Scholar

    [407]

    Belopolski I, Sanchez D S, Ishida Y, Pan X, Yu P, Xu S Y, Chang G, Chang T R, Zheng H, Alidoust N 2016 Nat. Commun. 7 13643

    [408]

    Chang G, Xu S Y, Sanchez D S, Huang S M, Lee C C, Chang T R, Bian G, Zheng H, Belopolski I, Alidoust N 2016 Sci. Adv. 2 e1600295Google Scholar

    [409]

    Zhong C, Chen Y, Yu Z M, Xie Y, Wang H, Yang S A, Zhang S 2017 Nat. Commun. 8 15641Google Scholar

    [410]

    Chen W, Lu H Z, Hou J M 2017 Phys. Rev. B 96 041102Google Scholar

    [411]

    Yan Z, Bi R, Shen H, Lu L, Zhang S C, Wang Z 2017 Phys. Rev. B 96 041103Google Scholar

    [412]

    Ezawa M 2017 Phys. Rev. B 96 041202Google Scholar

    [413]

    Wang C, Lu H Z, Xie X 2020 Phys. Rev. B 102 041204Google Scholar

    [414]

    Hu Y, Liu H, Jiang H, Xie X 2017 Phys. Rev. B 96 134201Google Scholar

    [415]

    Wang L X, Li C Z, Yu D P, Liao Z M 2016 Nat. Commun. 7 10769Google Scholar

    [416]

    Zheng H, Bian G, Chang G, Lu H, Xu S Y, Wang G, Chang T R, Zhang S, Belopolski I, Alidoust N 2016 Phys. Rev. Lett. 117 266804Google Scholar

    [417]

    Zheng H, Zahid Hasan M 2018 Adv. Phys. X 3 1466661

    [418]

    Zheng H, Chang G, Huang S M, Guo C, Zhang X, Zhang S, Yin J, Xu S Y, Belopolski I, Alidoust N 2017 Phys. Rev. Lett. 119 196403Google Scholar

    [419]

    Chang G, Xu S Y, Zheng H, Lee C C, Huang S M, Belopolski I, Sanchez D S, Bian G, Alidoust N, Chang T R 2016 Phys. Rev. Lett. 116 066601Google Scholar

    [420]

    Wang S, Lin B C, Zheng W Z, Yu D, Liao Z M 2018 Phys. Rev. Lett. 120 257701Google Scholar

  • 图 1  拓扑半金属的能带结构和贝里曲率 (a)拓扑半金属的能谱示意图, $ (k_x, k_y, k_z) $为波矢, $k_{/\!/}^2 = k_x^2+k_y^2$; (b)贝里曲率矢量场, 拓扑半金属的导带和价带在外尔点处接触, 且在该处存在一对单极子. 转载自文献 [56]

    Figure 1.  The band structure and Berry curvature of the topological semimetal: (a) The energy spectrum of a topological semimetal,$ (k_x, k_y, k_z) $ is the wave vector, $k_{/\!/}^2 = k_x^2+k_y^2$; (b) the vector field of the Berry curvature. The conduction and valence bands of a topological semimetal touch at the Weyl nodes, and there is a pair of monopoles. Reproduced with permission from Ref. [56].

    图 2  在沿$ z $方向的磁场$ B $下, 外尔和狄拉克半金属的最小模型中沿$ k_{z} $色散的朗道能带. 转载自文献[74]

    Figure 2.  The Landau energy bands along the $ k_{z} $ dispersion in the minimum model of Weyl and Dirac semimetals under the magnetic field $ B $ along the $ z $ direction. Reproduced with permission from Ref.[74].

    图 3  测量非线性霍尔效应的示意图. 转载自文献[82]

    Figure 3.  Schematic of how to measure the nonlinear Hall effect. Reproduced with permission from Ref.[82].

    图 4  (a)半导体-超导体纳米线结构示意图[172-177], 两端可能存在一对马约拉纳束缚态; (b)−(d)杂化能随着磁场变化的振荡曲线. 红色和黑色曲线为实验数据[172], 蓝色为理论曲线. 转载自文献[84]

    Figure 4.  (a) Schematic of the semiconductor-superconductor nanowire structure[172-177], its two ends may host a pair of Majorana bound states; (b)−(d) oscillation curves of hybridization energy vary with magnetic field. The red and black curves are experimental data adapted from Ref. [172]. The blue curves are the theoritical results. Reproduced with permission from Ref.[84].

    图 5  在无序(虚线)和电子-电子相互作用(波浪线)下, 计算3D外尔半金属电导率的费曼图[71,72,191,196-199], 有向直线代表格林函数. 转载自文献 [73]

    Figure 5.  In the disorder (dashed lines) and electron-electron interaction (wavy lines), the Feynman diagram[71,72,191,196-199] of the conductivity of 3D Weyl semimetal, and the directed line represents the Green's function. Reproduced with permission from Ref [73].

    图 6  不同条件下的磁导$\delta\sigma^{\rm {qi}}(B)$对参数的依赖关系 (a) $\eta_{\rm I} = \eta_{*} = 0$ 时不同的相干长度$ l_{\phi} $; (b) $ \eta_{*} = 0 $时不同的$ \eta_{\rm I} $; (c)有限$ \eta_{*} $时不同的$ \eta_{\rm I} $; (d) $ \eta_{\rm I} $$ \eta_{*} $之间的差异, 其中$ \eta_{\rm I} $与能谷间散射相关, 而$ \eta_{*} $与能谷内散射相关. 虚线表示两个散射过程的相关性, $ \nu = \pm $是能谷指标. 转载自文献[73]

    Figure 6.  The dependence of magnetoconductivity $ \delta\sigma^{\rm {qi}}(B) $ on parameters under different conditions: (a) Different coherence length $ l_{\phi} $ at $ \eta_{\rm I} = \eta_{*} = 0 $; (b) different $ \eta_{\rm I} $ at $ \eta_{*} = 0 $; (c) different $ \eta_{\rm I} $ at finite $ \eta_{*} $; (d) the difference between $ \eta_{\rm I} $ and $ \eta_{*} $, where $ \eta_{\rm I} $ is correlated with intervalley scattering and $ \eta_{*} $ is correlated with intravalley scattering. The dashed lines indicate the correlation between the two scattering processes. $ \nu = \pm $ is the valley index. Reproduced with permission from Ref.[73].

    图 7  3D拓扑半金属动量空间中的费米球, 其中位于原点的点表示单极子荷$ {\cal{N}} $ (a) $ P $表示从波矢$ {{k}} $到标记为(${{k}}_1, {{k}}_2, \cdots, {{k}}_n$)的中间态的背散射, $ P' $ 表示$ P $的时间反演; (b) $ P $$ P' $ 之间的相位差等效于在环路 $ {\cal{C}} = P+\bar{P} $周围累计的贝里相位. 转载自文献 [75]

    Figure 7.  The Fermi sphere in 3D topological semimetal momentum space, where the dot at the origin represents monopole charge $ {\cal{N}} $: (a) $ P $ is the backscattering from the wave vector $ {{k}} $ to $ -{{k}} $ via intermediate states labeled as (${{k}}_1, {{k}}_2, \cdots, {{k}}_n$), $ P' $ represents the time-reversal of $ P $; (b) the phase difference between $ P $ and $ P' $ is equivalent to the Berry phase accumulated around loop $ {\cal{C}} = P+\bar{P} $. Reproduced with permission from Ref. [75].

    图 8  电导率$ \Delta\sigma $随温度$ T $变化的示意图. 选择$ c_{\rm {ee}} = c_{\rm {qi}} $, $ T_{\rm c} $是电导率随温度降低而下降的临界温度. 转载自文献 [73]

    Figure 8.  The schematic diagram of conductivity $ \Delta\sigma $ changes with temperature $ T $. We choose $ c_{\rm {ee}} = c_{\rm {qi}} $, $ T_{\rm c} $ is the critical temperature at which the conductivity drops with temperature. Reproduced with permission from Ref. [73].

    图 9  (a)节线半金属的轮胎状费米面, 小半径$ \kappa $, 主半径$ k_0 $, 极向角$ \varphi $, 环面角$ \theta $; (b)对于短程杂质势导致在环形方向上产生从$ { k} $$ -{ k} $ 的相干背散射; (c)在长程杂质势作用下, 沿极向的$ \delta { k} $$ -\delta { k} $的散射, 此过程积累一个大小为$ \pi $的贝里相位. 转载自文献[147]

    Figure 9.  (a) Torus-shaped Fermi surface of nodal-line semimetals, with minor radius$ \kappa $, major radius$ k_0 $, poloidal angle$ \varphi $, and toroidal angle $ \theta $; (b) a coherent backscattering from wave vector $ { k} $ to $ -{ k} $ around the toroidal direction for shortranged impurity potentials; (c) backscattering from wave vector$ \delta { k} $ to $ -\delta { k} $ along the poloidal direction under long-ranged impurity potentials.The process contributs a $ \pi $ Berry phase. Reproduced with permission from Ref.[147].

    图 10  不同相位相干长度$ l_\phi $下的磁导率, 短程极限(a)和长程极限(b)分别对应(33)式和(34)式. 转载自文献[147]

    Figure 10.  The magnetoconductivity in the (a) short range limit Eq. (33) and (b) long range limit Eq.(34) for different phase coherence lengths $ l_\phi $. Reproduced with permission from Ref.[147].

    图 11  (a)磁导率 $ \delta\sigma\equiv\sigma(B)-\sigma(0) $与磁场$ B $的关系; (b) 电导率$ \sigma $ 与温度$ T $的关系. 转载自文献[72]

    Figure 11.  The magnetoconductivity $ \delta\sigma\equiv\sigma(B)-\sigma(0) $; (b) conductivity $ \sigma $ vs temperature $ T $. Reproduced with permission from Ref. [72].

    图 12  理论计算的负磁阻与实验[152-154]的比较. 转载自文献[80]

    Figure 12.  The comparison between the theoretical negative magnetoresistance and the experiments[152-154]. Reproduced with permission from Ref. [80].

    图 13  对于(1)式描述的外尔半金属, 数值(散点)和解析(实线)得到的频率$ F $的曲线 (a)固定$ M $对应不同的$ A $; (b)固定$ A $对应不同的$ M $. (c)固定$ E_M $ 不同的$ E_A $ 对应的相移$ \phi $的曲线. 曲线断裂是因为在拍频模式出现时, F$ \phi $无法拟合. 垂直虚线表示栗弗席兹点. 转载自文献[77]

    Figure 13.  For the Weyl semimetal described in Eq. (1), the frequency $ F $ obtained by numerical (scatters) and analytical (solid curves): (a) Fixed $ M $ corresponds to different $ A $; (b) fixed $ A $ corresponds to different $ M $. (c) Fixed $ E_M $, for different $ E_A $ corresponds to the curve of phase shift $ \phi $. The curve breaks because $ F $ and $ \phi $ can not fit when beating patterns occur. The vertical dashed lines represents the Lifshitz point. Reproduced with permission from Ref.[77].

    图 14  (a) (17)式中节线半金属的节线(虚线环), 轮胎状和鼓形费米面, $ E_{\rm F} $是费米能, $ u $ 是模型参数; (b)轮胎状费米面在节线平面内的最大($ \alpha $)和最小($ \beta $)截面; (c)轮胎状费米面在节线平面外的最大($ \gamma $)和最小($ \delta $)截面. 转载自文献[79]

    Figure 14.  (a) In the model of nodal-line semimetal Eq.(17), the nodal line (dashed ring), torus and drum Fermi surface, $ E_{\rm F} $ is Fermi energy, $ u $ is model parameter; (b) the maximum ($ \alpha $) and minimum ($ \beta $) cross sections of the torus Fermi surface; (c) the maximum ($ \gamma $) and minimum ($ \delta $) cross sections of the Fermi surface outside the nodal-line plane. Reproduced with permission from Ref. [79].

    图 15  (a)外尔半金属中的费米弧和体态的色散, $ k_{/\!/} $表示$ (k_x, k_y) $; (b)在$k_z\text-k_x$平面上$ y = L/2 $, $ E_{\rm F} = E_w $处的费米弧; (c)宽度为$ W $, 厚度为$ L $的外尔半金属板; (d)在$E_{\rm F} = E_w$处的费米弧(实线); (e)−(g)波函数在$ k_z = 0 $处沿$ y $轴的分布; (h) 3D量子霍尔效应中的朗道能级和边缘态; (i)单一表面的电子无法被y方向的磁场$ B $驱动完成一个完整的回旋运动. 转载自文献[78,283]

    Figure 15.  (a) The energy dispersions of the Fermi arc and bulk states in a Weyl semimetal, $ k_{/\!/} $ stands for $ (k_x, k_y) $; (b) the Fermi arc at $ y = L/2 $ and $ E_{\rm F} = E_w $ in the $ k_z\text-k_x $ plane; (c) a Weyl semimetal slab with width $ W $ and thickness $ L $; (d) Fermi arc (solid) at $ E_{\rm F} = E_w $; (e)−(g) the distribution of wave function along $ y $-axis at $ k_z = 0 $; (h) the Landau levels and edge states in the 3D quantum Hall effect; (i) an electron in single surface could not be driven in a y-direction magnetic field $ B $ to perform a complete cyclotron motion. Reproduced with permission from Refs. [78,283].

    图 16  左图: 2D电子气在磁场中形成量子霍尔态. 中间图: 3D时朗道能级变为一系列2D的朗道能带. 右图:电荷密度波使朗道能带打开能隙, 使体态绝缘, 可以观察到3D量子霍尔效应. 转载自文献[87]

    Figure 16.  Left: the quantum Hall state in 2D electron gas under magnetic field. Center: in 3D, the Landau levels turn to one dimensional Landau bands. Right: the charge density wave gap the Landau band, so that the bulk is insulating and the 3D quantum Hall effect can be observed. Reproduced with permission from Ref. [87].

    图 17  不同的势范围下, 外尔半金属在$ \hat{{z}} $方向磁场B中的纵向电导率$ \sigma_{zz} $和横向电导率$ \sigma_{xx} $. 转载自文献[76]

    Figure 17.  The longitudinal conductivity $ \sigma_{zz} $ and transverse conductivity $ \sigma_{xx} $ of the Weyl semimetal in the $ \hat{{z}} $-direction magnetic field B under the different potential ranges. Reproduced with permission from Ref. [76].

    图 18  (a) 3D拓扑绝缘体的零场能谱($ k_x = k_y = 0 $); (b)在强磁场中, 费米能只穿过$ 0+ $朗道能带; (c)实验测得Pb1–xSnxSe的磁阻[226]; (d)理论计算出的磁阻. 转载自文献[81]

    Figure 18.  (a) The zero field energy spectrum of 3D topological insulator ($ k_x = k_y = 0 $); (b) in a strong magnetic field, fermi energy $ E_{\rm F} $ can only crosses the $ 0+ $ Landau energy band; (c) the magnetoresistance of Pb1–xSnxSe in experiment[226]; (d) the theoretical calculated magnetoresistance. Reproduced with permission from Ref. [81].

    图 19  外尔半金属在垂直$ y $方向的磁场$ {{B}} $中的朗道能带, 其中$ k_{/\!/}\equiv k_x\sin\phi+k_z\cos\phi $为平行于$ {{B}} $的波矢, $\tan\phi = B_x/B_z$. 红色曲线是第0个朗道能带, 虚线是费米能. 转载自文献[70]

    Figure 19.  The Landau energy band of Weyl semimetal in the magnetic field $ {{B}} $ perpendicular to the $ y $ direction, where $ k_{/\!/}\equiv k_x\sin\phi+k_z\cos\phi $ is the wave vector parallel to $ {{B}} $, $ \tan\phi = B_x/B_z $. The red curve is the $ 0 $th Landau energy band, and the dashed line represents the Fermi energy. Reproduced with permission from Ref. [70].

    图 20  实验与理论的比较 (a) $M_{/\!/}$(黑线); (b)$ M_{\rm T} $(黑线). 转载自文献[85]

    Figure 20.  Comparison between experiments and theory for the $M_{/\!/}$ and $ M_{\rm T} $ of TaAs: (a) $M_{/\!/}$(black line); (b) $ M_{\rm T} $(black line). Reproduced with permission from Ref. [85].

    图 21  零磁场下ZrTe5的电阻率$ \rho(T) $(黑色)和塞贝克系数$ –S_{x x}(T) $(蓝色)的温度依赖曲线. 插图:实验测量示意图, $ B $是磁场, $ \nabla T $是温度梯度, $ a $, $ b $$ c $是晶轴. 转载自文献[86]

    Figure 21.  Temperature dependence of the electrical resistivity $ \rho(T) $ (black) and Seebeck coefficient $ –S_{x x}(T) $ (blue) of ZrTe$ _5 $ at zero magnetic field. Inset: the measurement setup. $ B $ is the magnetic field and $ \nabla T $ is the temperature gradient. $ a, b$ and $c$ are crystallographic axes. Reproduced with permission from Ref. [86].

    图 22  (a)不同温度下对$ –S_{x x} $的强场测量; (b)不同温度下对 $ S_{xy} $的强场测量. 临界场$ B^{*} $附近$ S_{xy} $改变符号, $ –S_{x x} $收敛到零. 转载自文献[86]

    Figure 22.  (a) High-field measurements of $ –S_{x x} $ at several temperatures; (b) high-field measurements of $ S_{xy} $ at several temperatures. Near the critical field $ B^{*} $, $ S_{xy} $ changes its sign and $ –S_{x x} $ converges to zero. Reproduced with permission from Ref. [86].

    表 1  对称类(正交、辛和幺正)[194]与弱局域化(WL)和弱反局域化(WAL)之间的关系[195]. 转载自文献 [88]

    Table 1.  The relation between the symmetry classes (orthogonal, symplectic and unitary) [194] and weak localization (WL) and anti-localization (WAL) [195]. Reproduced with permission from Ref. [88].

    正交 幺正
    时间反演 ×
    自旋旋转 × ×
    WL/WAL WL WAL ×
    DownLoad: CSV

    表 2  对于具有不同色散和维度的系统, (48)式中的相移$\phi$. $B_z$$B_{/\!/}$是节线平面内外的磁场. $\alpha$, $\beta$, $\gamma$, δ 对应于图14中费米面的截面. 转载自文献[79]

    Table 2.  For systems with different dispersion and dimensions, the phase shift ϕ in Eq. (48). $B_z$ and $B_{/\!/}$ are magnetic fields outside and inside the nodal-line plane. $\alpha$, $\beta$, $\gamma$, and $\delta$ correspond to the cross sections of Fermi surface in Fig. 14. Reproduced with permission from Ref. [79].

    系统 电子载流子 空穴载流子
    2D抛物线 –1/2 1/2
    3D抛物线 –5/8 5/8
    2D线性 0 0
    3D线性 –1/8 1/8
    磁场$B_z$中的节线 $-5/8(\alpha), 5/8(\beta)$ $5/8(\alpha), -5/8(\beta)$
    磁场$B_{/\!/}$中的节线 $-5/8(\gamma), 1/8(\delta)$ $5/8(\gamma), -1/8(\delta)$
    DownLoad: CSV

    表 3  从Cd3As2的实验中得到的相移$\phi_{\exp}$. 转载自文献[77]

    Table 3.  The phase shift $\phi_{\exp}$ obtained from the experiment of Cd3As2. Reproduced with permission from Ref. [77].

    文献 $\phi_{\rm{exp}}$ $\phi_{\rm{Weyl}}$ $\phi_{\rm{Dirac}}$
    [50] 0.06 — 0.08 –0.94 — –0.92 –5/8
    [51] 0.11 — 0.38 –0.89 — –0.62 –5/8
    [54] 0.04 –0.96 –5/8
    DownLoad: CSV

    表 4  节线半金属的相移$\phi$. $\alpha, \beta, \gamma, \delta$图14中的极值截面. 转载自文献[79]

    Table 4.  The phase shift $\phi$ of the nodal-line semimetal. $\alpha, \beta, \gamma, \delta$ are the extremal cross sections in Fig. 14. Reproduced with permission from Ref. [79].

    贝里相位 最大/
    最小
    电子 空穴
    $\alpha$ 0 最大 $ -1/2+0-1/8 = -5/8 $ +5/8
    $\beta$ 0 最小 $-1/2+0+1/8 = -3/8 \leftrightarrow 5/8$ –5/8
    $\gamma$ 0 最大 $ -1/2+0 - 1/8 = - 5/8 $ +5/8
    δ π 最小 $-1/2+\pi/2\pi+1/8 = 1/8$ –1/8
    DownLoad: CSV
  • [1]

    Balents L 2011 Physics 4 36Google Scholar

    [2]

    Volovik G E 2003 The Universe in a Helium Droplet (Vol. 117) (New York: Oxford University Press) pp32−41

    [3]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [4]

    Yang K Y, Lu Y M, Ran Y 2011 Phys. Rev. B 84 075129Google Scholar

    [5]

    Burkov A, Balents L 2011 Phys. Rev. Lett. 107 127205Google Scholar

    [6]

    Xu G, Weng H, Wang Z, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806Google Scholar

    [7]

    Jiang J H 2012 Phys. Rev. A 85 033640Google Scholar

    [8]

    Young S M, Zaheer S, Teo J C, Kane C L, Mele E J, Rappe A M 2012 Phys. Rev. Lett. 108 140405Google Scholar

    [9]

    Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [10]

    Singh B, Sharma A, Lin H, Hasan M, Prasad R, Bansil A 2012 Phys. Rev. B 86 115208Google Scholar

    [11]

    Wang Z, Weng H, Wu Q, Dai X, Fang Z 2013 Phys. Rev. B 88 125427Google Scholar

    [12]

    Liu J, Vanderbilt D 2014 Phys. Rev. B 90 155316Google Scholar

    [13]

    Bulmash D, Liu C X, Qi X L 2014 Phys. Rev. B 89 081106Google Scholar

    [14]

    Brahlek M, Bansal N, Koirala N, Xu S Y, Neupane M, Liu C, Hasan M Z, Oh S 2012 Phys. Rev. Lett. 109 186403Google Scholar

    [15]

    Wu L, Brahlek M, Aguilar R V, Stier A, Morris C, Lubashevsky Y, Bilbro L, Bansal N, Oh S, Armitage N 2013 Nat. Phys. 9 410Google Scholar

    [16]

    Liu Z, Zhou B, Zhang Y, Wang Z, Weng H, Prabhakaran D, Mo S K, Shen Z, Fang Z, Dai X 2014 Science 343 864Google Scholar

    [17]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C 2015 Science 349 613Google Scholar

    [18]

    Liu Z, Jiang J, Zhou B, Wang Z, Zhang Y, Weng H, Prabhakaran D, Mo S K, Peng H, Dudin P 2014 Nat. Mater. 13 677Google Scholar

    [19]

    Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H 2014 Nat. Commun. 5 3786

    [20]

    Yi H, Wang Z, Chen C, Shi Y, Feng Y, Liang A, Xie Z, He S, He J, Peng Y 2014 Sci. Rep. 4 6106

    [21]

    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603Google Scholar

    [22]

    Weng H, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029

    [23]

    Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C 2015 Nat. Commun. 6 7373

    [24]

    Lv B, Weng H, Fu B, Wang X P, Miao H, Ma J, Richard P, Huang X, Zhao L, Chen G, et al. 2015 Phys. Rev. X 5 031013

    [25]

    Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, van den Brink J, Hoesch M, Fedorov A 2019 Nat. Commun. 10 3424Google Scholar

    [26]

    Nielsen H B, Ninomiya M 1981 Nucl. Phys. B 185 20Google Scholar

    [27]

    Nielsen H B, Ninomiya M 1983 Phys. Lett. B 130 389Google Scholar

    [28]

    Son D, Spivak B 2013 Phys. Rev. B 88 104412Google Scholar

    [29]

    Burkov A 2014 Phys. Rev. Lett. 113 247203Google Scholar

    [30]

    Kharzeev D E, Yee H U 2013 Phys. Rev. B 88 115119Google Scholar

    [31]

    Parameswaran S, Grover T, Abanin D, Pesin D, Vishwanath A 2014 Phys. Rev. X 4 031035

    [32]

    Zhou J, Chang H R, Xiao D 2015 Phys. Rev. B 91 035114Google Scholar

    [33]

    Son D T, Yamamoto N 2012 Phys. Rev. Lett. 109 181602Google Scholar

    [34]

    Stephanov M, Yin Y 2012 Phys. Rev. Lett. 109 162001Google Scholar

    [35]

    Landsteiner K, Megias E, Pena-Benitez F 2011 Phys. Rev. Lett. 107 021601Google Scholar

    [36]

    Chang M C, Yang M F 2015 Phys. Rev. B 91 115203Google Scholar

    [37]

    Jiang Q D, Jiang H, Liu H, Sun Q F, Xie X 2015 Phys. Rev. Lett. 115 156602Google Scholar

    [38]

    Jiang Q D, Jiang H, Liu H, Sun Q F, Xie X 2016 Phys. Rev. B 93 195165Google Scholar

    [39]

    Chen C Z, Song J, Jiang H, Sun Q f, Wang Z, Xie X 2015 Phys. Rev. Lett. 115 246603Google Scholar

    [40]

    Chen C Z, Liu H, Jiang H, Xie X 2016 Phys. Rev. B 93 165420Google Scholar

    [41]

    Kim H J, Kim K S, Wang J F, Sasaki M, Satoh N, Ohnishi A, Kitaura M, Yang M, Li L 2013 Phys. Rev. Lett. 111 246603Google Scholar

    [42]

    Kim K S, Kim H J, Sasaki M 2014 Phys. Rev. B 89 195137Google Scholar

    [43]

    Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosić I, Fedorov A, Zhong R, Schneeloch J, Gu G, Valla T 2016 Nat. Phys. 12 550Google Scholar

    [44]

    Chen R, Chen Z, Song X Y, Schneeloch J, Gu G, Wang F, Wang N 2015 Phys. Rev. Lett. 115 176404Google Scholar

    [45]

    Zheng G, Lu J, Zhu X, Ning W, Han Y, Zhang H, Zhang J, Xi C, Yang J, Du H, et al. 2016 Phys. Rev. B 93 115414Google Scholar

    [46]

    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J, Ong N P 2015 Science 350 413Google Scholar

    [47]

    Jeon S, Zhou B B, Gyenis A, Feldman B E, Kimchi I, Potter A C, Gibson Q D, Cava R J, Vishwanath A, Yazdani A 2014 Nat. Mater. 13 851Google Scholar

    [48]

    Liang T, Gibson Q, Ali M N, Liu M, Cava R, Ong N 2015 Nat. Mater. 14 280Google Scholar

    [49]

    Feng J, Pang Y, Wu D, Wang Z, Weng H, Li J, Dai X, Fang Z, Shi Y, Lu L 2015 Phys. Rev. B 92 081306Google Scholar

    [50]

    He L, Hong X, Dong J, Pan J, Zhang Z, Zhang J, Li S 2014 Phys. Rev. Lett. 113 246402Google Scholar

    [51]

    Zhao Y, Liu H, Zhang C, Wang H, Wang J, Lin Z, Xing Y, Lu H, Liu J, Wang Y, et al. 2015 Phys. Rev. X 5 031037

    [52]

    Cao J, Liang S, Zhang C, Liu Y, Huang J, Jin Z, Chen Z G, Wang Z, Wang Q, Zhao J 2015 Nat. Commun. 6 7779

    [53]

    Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z 2015 Nat. Phys. 11 645Google Scholar

    [54]

    Narayanan A, Watson M, Blake S, Bruyant N, Drigo L, Chen Y, Prabhakaran D, Yan B, Felser C, Kong T 2015 Phys. Rev. Lett. 114 117201Google Scholar

    [55]

    Li C Z, Wang L X, Liu H, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137

    [56]

    Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q, Wang J 2016 Nat. Commun. 7 10301

    [57]

    Zhang C, Zhang E, Liu Y, Chen Z G, Liang S, Cao J, Yuan X, Tang L, Li Q, Gu T, et al. 2015 arXiv: 1504.07698 [cond-mat]

    [58]

    Wang H, Wang H, Liu H, Lu H, Yang W, Jia S, Liu X J, Xie X, Wei J, Wang J 2016 Nat. Mater. 15 38Google Scholar

    [59]

    Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K, Sheet G 2016 Nat. Mater. 15 32Google Scholar

    [60]

    Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z 2015 Phys. Rev. X 5 031023

    [61]

    Zhang C L, Xu S Y, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N, Lee C C, Huang S M 2016 Nat. Commun. 7 10735

    [62]

    Zhang C, Guo C, Lu H, Zhang X, Yuan Z, Lin Z, Wang J, Jia S 2015 Phys. Rev. B 92 041203Google Scholar

    [63]

    Arnold F, Shekhar C, Wu S C, Sun Y, Dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G 2016 Nat. Commun. 7 11615

    [64]

    Zhang C L, Xu S Y, Wang C, Lin Z, Du Z, Guo C, Lee C C, Lu H, Feng Y, Huang S M 2017 Nat. Phys. 13 979Google Scholar

    [65]

    Yang X, Liu Y, Wang Z, Zheng Y, Xu Z A 2015 arXiv: 1506.03190 [cond-mat]

    [66]

    Li Y, Wang Z, Li P, Yang X, Shen Z, Sheng F, Li X, Lu Y, Zheng Y, Xu Z A 2017 Front. Phys. 12 127205Google Scholar

    [67]

    Wang Z, Zheng Y, Shen Z, Lu Y, Fang H, Sheng F, Zhou Y, Yang X, Li Y, Feng C, et al. 2016 Phys. Rev. B 93 121112Google Scholar

    [68]

    Wang H, Li C K, Liu H, Yan J, Wang J, Liu J, Lin Z, Li Y, Wang Y, Li L 2016 Phys. Rev. B 93 165127Google Scholar

    [69]

    Lu H Z, Shen S Q 2017 Front. Phys. 12 127201Google Scholar

    [70]

    Sun H P, Lu H Z 2019 Front. Phys. 14 33405Google Scholar

    [71]

    Lu H Z, Shi J, Shen S Q 2011 Phys. Rev. Lett. 107 076801Google Scholar

    [72]

    Lu H Z, Shen S Q 2014 Phys. Rev. Lett. 112 146601Google Scholar

    [73]

    Lu H Z, Shen S Q 2015 Phys. Rev. B 92 035203Google Scholar

    [74]

    Lu H Z, Zhang S B, Shen S Q 2015 Phys. Rev. B 92 045203Google Scholar

    [75]

    Dai X, Lu H Z, Shen S Q, Yao H 2016 Phys. Rev. B 93 161110Google Scholar

    [76]

    Zhang S B, Lu H Z, Shen S Q 2016 New J. Phys. 18 053039Google Scholar

    [77]

    Wang C, Lu H Z, Shen S Q 2016 Phys. Rev. Lett. 117 077201Google Scholar

    [78]

    Wang C, Sun H P, Lu H Z, Xie X 2017 Phys. Rev. Lett. 119 136806Google Scholar

    [79]

    Li C, Wang C, Wan B, Wan X, Lu H Z, Xie X 2018 Phys. Rev. Lett. 120 146602Google Scholar

    [80]

    Dai X, Du Z, Lu H Z 2017 Phys. Rev. Lett. 119 166601Google Scholar

    [81]

    Chen Y, Lu H Z, Xie X 2018 Phys. Rev. Lett. 121 036602Google Scholar

    [82]

    Du Z, Wang C, Lu H Z, Xie X 2018 Phys. Rev. Lett. 121 266601Google Scholar

    [83]

    Du Z, Wang C, Li S, Lu H Z, Xie X 2019 Nat. Commun. 10 3047

    [84]

    Cao Z, Zhang H, Lü H F, He W X, Lu H Z, Xie X 2019 Phys. Rev. Lett. 122 147701Google Scholar

    [85]

    Zhang C L, Wang C, Yuan Z, Xu X, Wang G, Lee C C, Pi L, Xi C, Lin H, Harrison N 2019 Nat. Commun. 10 1028

    [86]

    Zhang J, Wang C, Guo C, et al. 2018 Phys. Rev. Lett. 123 196602

    [87]

    Qin Fang, Li Shuai, Du Z Z, Wang C M, Zhang W Q, Yu D P, Lu H Z, Xie X C 2020 Phys. Rev. Lett. 125 206601Google Scholar

    [88]

    Lu H Z, Shen S Q 2016 Chin. Phys. B 25 117202Google Scholar

    [89]

    Hosur P, Qi X 2013 C. R. Phys. 14 857Google Scholar

    [90]

    Weng H, Dai X, Fang Z 2016 J. Phys. Condes. Matter 28 303001Google Scholar

    [91]

    Yan B, Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337Google Scholar

    [92]

    Armitage N, Mele E, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [93]

    Wang H, Wang J 2018 Chin. Phys. B 27 107402Google Scholar

    [94]

    Shen S Q 2017 Topological Insulators: Dirac Equation in Condensed Matter (Vol. 187) (Singapore: Springer) pp207−229

    [95]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [96]

    Asbóth J K, Oroszlány L, Pályi A P 2016 A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions (Vol. 919) (Heidelberg, New York, London: Springer) p33

    [97]

    Lu H Z, Shan W Y, Yao W, Niu Q, Shen S Q 2010 Phys. Rev. B 81 115407Google Scholar

    [98]

    Shan W Y, Lu H Z, Shen S Q 2010 New J. Phys. 12 043048Google Scholar

    [99]

    Shen S Q, Shan W Y, Lu H Z 2011 Spin 01 33Google Scholar

    [100]

    Shen S Q, Ma M, Xie X, Zhang F C 2004 Phys. Rev. Lett. 92 256603Google Scholar

    [101]

    Shen S Q, Bao Y J, Ma M, Xie X, Zhang F C 2005 Phys. Rev. B 71 155316Google Scholar

    [102]

    Sakurai J, Napolitano J 2017 Modern Quantum Mechanics (Cambridge: Cambridge University Press) pp105−108

    [103]

    Yang L, Liu Z, Sun Y, Peng H, Yang H, Zhang T, Zhou B, Zhang Y, Guo Y, Rahn M, et al. 2015 Nat. Phys. 11 728Google Scholar

    [104]

    Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G 2015 Nat. Phys. 11 748Google Scholar

    [105]

    Xu N, Weng H, Lv B, Matt C E, Park J, Bisti F, Strocov V N, Gawryluk D, Pomjakushina E, Conder K 2016 Nat. Commun. 7 11006

    [106]

    Guan T, Lin C, Yang C, Shi Y, Ren C, Li Y, Weng H, Dai X, Fang Z, Yan S 2015 Phys. Rev. Lett. 115 087002Google Scholar

    [107]

    Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Chang T R, Wang B, Alidoust N, Bian G, Neupane M 2016 Proc. Natl. Acad. Sci. 113 1180Google Scholar

    [108]

    Burkov A, Hook M, Balents L 2011 Phys. Rev. B 84 235126Google Scholar

    [109]

    Chiu C K, Schnyder A P 2014 Phys. Rev. B 90 205136Google Scholar

    [110]

    Fang C, Weng H, Dai X, Fang Z 2016 Chin. Phys. B 25 117106Google Scholar

    [111]

    Yang B J, Bojesen T A, Morimoto T, Furusaki A 2017 Phys. Rev. B 95 075135Google Scholar

    [112]

    Chen Y, Xie Y, Yang S A, Pan H, Zhang F, Cohen M L, Zhang S 2015 Nano Lett. 15 6974Google Scholar

    [113]

    Bzdušek T, Wu Q, Rüegg A, Sigrist M, Soluyanov A A 2016 Nature 538 75Google Scholar

    [114]

    Feng X, Yue C, Song Z, Wu Q, Wen B 2018 Phys. Rev. Mater. 2 014202Google Scholar

    [115]

    Yi C J, Lv B, Wu Q, Fu B B, Gao X, Yang M, Peng X L, Li M, Huang Y B, Richard P 2018 Phys. Rev. B 97 201107Google Scholar

    [116]

    Chen W, Luo K, Li L, Zilberberg O 2018 Phys. Rev. Lett. 121 166802Google Scholar

    [117]

    Zhu Z, Chang T R, Huang C Y, Pan H, Nie X A, Wang X Z, Jin Z T, Xu S Y, Huang S M, Guan D D 2018 Nat. Commun. 9 4153

    [118]

    Chen W, Lado J L 2019 Phys. Rev. Lett. 122 016803Google Scholar

    [119]

    Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X, Kawazoe Y 2015 Phys. Rev. B 92 045108Google Scholar

    [120]

    Yu R, Weng H, Fang Z, Dai X, Hu X 2015 Phys. Rev. Lett. 115 036807Google Scholar

    [121]

    Kim Y, Wieder B J, Kane C, Rappe A M 2015 Phys. Rev. Lett. 115 036806Google Scholar

    [122]

    Fang C, Chen Y, Kee H Y, Fu L 2015 Phys. Rev. B 92 081201Google Scholar

    [123]

    Chen Y, Lu Y M, Kee H Y 2015 Nat. Commun. 6 6593

    [124]

    Bian G, Chang T R, Zheng H, Velury S, Xu S Y, Neupert T, Chiu C K, Huang S M, Sanchez D S, Belopolski I 2016 Phys. Rev. B 93 121113Google Scholar

    [125]

    Xie L S, Schoop L M, Seibel E M, Gibson Q D, Xie W, Cava R J 2015 APL Mater. 3 083602Google Scholar

    [126]

    Chan Y H, Chiu C K, Chou M, Schnyder A P 2016 Phys. Rev. B 93 205132Google Scholar

    [127]

    Du Y, Tang F, Wang D, Sheng L, Kan E j, Duan C G, Savrasov S Y, Wan X 2017 npj Quantum Mater. 2 1Google Scholar

    [128]

    Zhao J, Yu R, Weng H, Fang Z 2016 Phys. Rev. B 94 195104Google Scholar

    [129]

    Yamakage A, Yamakawa Y, Tanaka Y, Okamoto Y 2016 J. Phys. Soc. Jpn. 85 013708Google Scholar

    [130]

    Xu Q, Yu R, Fang Z, Dai X, Weng H 2017 Phys. Rev. B 95 045136Google Scholar

    [131]

    Jin Y J, Wang R, Zhao J Z, Du Y P, Zheng C D, Gan L Y, Liu J F, Xu H, Tong S 2017 Nanoscale 9 13112Google Scholar

    [132]

    Zhu Z, Li M, Li J 2016 Phys. Rev. B 94 155121Google Scholar

    [133]

    Liang Q F, Zhou J, Yu R, Wang Z, Weng H 2016 Phys. Rev. B 93 085427Google Scholar

    [134]

    Zeng M, Fang C, Chang G, Chen Y A, Hsieh T, Bansil A, Lin H, Fu L 2015 arXiv: 1504.03492 [cond-mat]

    [135]

    Hirayama M, Okugawa R, Miyake T, Murakami S 2017 Nat. Commun. 8 14022

    [136]

    Huang H, Liu J, Vanderbilt D, Duan W 2016 Phys. Rev. B 93 201114Google Scholar

    [137]

    Li R, Ma H, Cheng X, Wang S, Li D, Zhang Z, Li Y, Chen X Q 2016 Phys. Rev. Lett. 117 096401Google Scholar

    [138]

    Wang J T, Weng H, Nie S, Fang Z, Kawazoe Y, Chen C 2016 Phys. Rev. Lett. 116 195501Google Scholar

    [139]

    Sun Y, Zhang Y, Liu C X, Felser C, Yan B 2017 Phys. Rev. B 95 235104Google Scholar

    [140]

    Schoop L M, Ali M N, Straßer C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S, Lotsch B V, Ast C R 2016 Nat. Commun. 7 11696

    [141]

    Neupane M, Belopolski I, Hosen M M, Sanchez D S, Sankar R, Szlawska M, Xu S Y, Dimitri K, Dhakal N, Maldonado P 2016 Phys. Rev. B 93 201104Google Scholar

    [142]

    Chen C, Xu X, Jiang J, Wu S C, Qi Y, Yang L, Wang M, Sun Y, Schröter N, Yang H 2017 Phys. Rev. B 95 125126Google Scholar

    [143]

    Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I 2016 Nat. Commun. 7 10556

    [144]

    Chang T R, Chen P J, Bian G, Huang S M, Zheng H, Neupert T, Sankar R, Xu S Y, Belopolski I, Chang G 2016 Phys. Rev. B 93 245130Google Scholar

    [145]

    Ekahana S A, Wu S C, Jiang J, Okawa K, Prabhakaran D, Hwang C C, Mo S K, Sasagawa T, Felser C, Yan B 2017 New J. Phys. 19 065007Google Scholar

    [146]

    Wu Y, Wang L L, Mun E, Johnson D D, Mou D, Huang L, Lee Y, Bud’ko S L, Canfield P C, Kaminski A 2016 Nat. Phys. 12 667Google Scholar

    [147]

    Chen W, Lu H Z, Zilberberg O 2019 Phys. Rev. Lett. 122 196603Google Scholar

    [148]

    Alexandradinata A, Glazman L 2018 Phys. Rev. B 97 144422Google Scholar

    [149]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [150]

    Nechaev I, Krasovskii E 2016 Phys. Rev. B 94 201410Google Scholar

    [151]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y 2010 Nat. Phys. 6 584Google Scholar

    [152]

    Wang J, Li H, Chang C, He K, Lee J S, Lu H, Sun Y, Ma X, Samarth N, Shen S 2012 Nano Res. 5 739Google Scholar

    [153]

    He H, Liu H, Li B, Guo X, Xu Z, Xie M, Wang J 2013 Appl. Phys. Lett. 103 031606Google Scholar

    [154]

    Wiedmann S, Jost A, Fauqué B, Van Dijk J, Meijer M, Khouri T, Pezzini S, Grauer S, Schreyeck S, Brüne C 2016 Phys. Rev. B 94 081302Google Scholar

    [155]

    Wang L X, Yan Y, Zhang L, Liao Z M, Wu H C, Yu D P 2015 Nanoscale 7 16687Google Scholar

    [156]

    Sun H P, Wang C M, Zhang S B, Chen R, Zhao Y, Liu C, Liu Q, Chen C, Lu H Z, Xie X C 2020 Phys. Rev. B 102 241406Google Scholar

    [157]

    Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [158]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [159]

    Yasuda K, Wakatsuki R, Morimoto T, Yoshimi R, Tsukazaki A, Takahashi K, Ezawa M, Kawasaki M, Nagaosa N, Tokura Y 2016 Nat. Phys. 12 555Google Scholar

    [160]

    Sodemann I, Fu L 2015 Phys. Rev. Lett. 115 216806Google Scholar

    [161]

    Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Valdivia A M M, Wu S, Du Z, Hsu C H, et al. 2019 Nature 565 337Google Scholar

    [162]

    Kang K, Li T, Sohn E, Shan J, Mak K F 2018 arXiv: 1809.08744 [cond-mat]

    [163]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [164]

    Leijnse M, Flensberg K 2012 Semicond. Sci. Technol. 27 124003Google Scholar

    [165]

    Beenakker C 2013 Annu. Rev. Condens. Matter Phys. 4 113Google Scholar

    [166]

    Stanescu T D, Tewari S 2013 J. Phys. Condes. Matter 25 233201Google Scholar

    [167]

    Lutchyn R M, Sau J D, Sarma S D 2010 Phys. Rev. Lett. 105 077001Google Scholar

    [168]

    Oreg Y, Refael G, Von Oppen F 2010 Phys. Rev. Lett. 105 177002Google Scholar

    [169]

    Prada E, San-Jose P, Aguado R 2012 Phys. Rev. B 86 180503Google Scholar

    [170]

    Sarma S D, Sau J D, Stanescu T D 2012 Phys. Rev. B 86 220506Google Scholar

    [171]

    Rainis D, Trifunovic L, Klinovaja J, Loss D 2013 Phys. Rev. B 87 024515Google Scholar

    [172]

    Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, Marcus C 2016 Nature 531 206Google Scholar

    [173]

    Sherman D, Yodh J, Albrecht S M, Nygård J, Krogstrup P, Marcus C M 2017 Nat. Nanotechnol. 12 212Google Scholar

    [174]

    Albrecht S, Hansen E, Higginbotham A P, Kuemmeth F, Jespersen T, Nygård J, Krogstrup P, Danon J, Flensberg K, Marcus C 2017 Phys. Rev. Lett. 118 137701Google Scholar

    [175]

    Vaitiekėnas S, Whiticar A M, Deng M T, Krizek F, Sestoft J E, Palmstrøm C, Martí-Sànchez S, Arbiol J, Krogstrup P, Casparis L 2018 Phys. Rev. Lett. 121 147701Google Scholar

    [176]

    O’Farrell E, Drachmann A, Hell M, Fornieri A, Whiticar A, Hansen E, Gronin S, Gardner G, Thomas C, Manfra M 2018 Phys. Rev. Lett. 121 256803Google Scholar

    [177]

    Shen J, Heedt S, Borsoi F, Van Heck B, Gazibegovic S, Veld R L O, Car D, Logan J A, Pendharkar M, Ramakers S J 2018 Nat. Commun. 9 4801

    [178]

    Sánchez D, Serra L 2006 Phys. Rev. B 74 153313Google Scholar

    [179]

    Sánchez D, Serra L, Choi M S 2008 Phys. Rev. B 77 035315Google Scholar

    [180]

    Glazov M, Sherman E Y 2011 Phys. Rev. Lett. 107 156602Google Scholar

    [181]

    Bommer J D, Zhang H, Gül Ö, Nijholt B, Wimmer M, Rybakov F N, Garaud J, Rodic D, Babaev E, Troyer M 2019 Phys. Rev. Lett. 122 187702Google Scholar

    [182]

    Vaitiekėnas S, Deng M T, Nygård J, Krogstrup P, Marcus C 2018 Phys. Rev. Lett. 121 037703Google Scholar

    [183]

    de Moor M W, Bommer J D, Xu D, Winkler G W, Antipov A E, Bargerbos A, Wang G, Van Loo N, het Veld R L O, Gazibegovic S 2018 New J. Phys. 20 103049Google Scholar

    [184]

    Stanescu T D, Lutchyn R M, Sarma S D 2011 Phys. Rev. B 84 144522Google Scholar

    [185]

    Reeg C, Loss D, Klinovaja J 2018 Phys. Rev. B 97 165425Google Scholar

    [186]

    Van Heck B, Lutchyn R, Glazman L 2016 Phys. Rev. B 93 235431Google Scholar

    [187]

    Fu L 2010 Phys. Rev. Lett. 104 056402Google Scholar

    [188]

    Hützen R, Zazunov A, Braunecker B, Yeyati A L, Egger R 2012 Phys. Rev. Lett. 109 166403Google Scholar

    [189]

    Higginbotham A P, Albrecht S M, Kiršanskas G, Chang W, Kuemmeth F, Krogstrup P, Jespersen T S, Nygård J, Flensberg K, Marcus C M 2015 Nat. Phys. 11 1017Google Scholar

    [190]

    Lü H F, Lu H Z, Shen S Q 2016 Phys. Rev. B 93 245418Google Scholar

    [191]

    Lee P A, Ramakrishnan T 1985 Rev. Mod. Phys. 57 287Google Scholar

    [192]

    Fu B, Wang H W, Shen S Q 2019 Phys. Rev. Lett. 122 246601Google Scholar

    [193]

    Wang H W, Fu B, Shen S Q 2020 Phys. Rev. Lett. 124 206603Google Scholar

    [194]

    Dyson F J 1962 J. Math. Phys. 3 140Google Scholar

    [195]

    Hikami S, Larkin A I, Nagaoka Y 1980 Prog. Theor. Phys. 63 707Google Scholar

    [196]

    McCann E, Kechedzhi K, Fal’ko V I, Suzuura H, Ando T, Altshuler B 2006 Phys. Rev. Lett. 97 146805Google Scholar

    [197]

    Altshuler B L, Aronov A G, Lee P 1980 Phys. Rev. Lett. 44 1288Google Scholar

    [198]

    Fukuyama H 1980 J. Phys. Soc. Jpn. 48 2169Google Scholar

    [199]

    Shan W Y, Lu H Z, Shen S Q 2012 Phys. Rev. B 86 125303Google Scholar

    [200]

    Berry M V 1984 Proc. R. Soc. A-Math. Phys. 392 45

    [201]

    Shon N H, Ando T 1998 J. Phys. Soc. Jpn. 67 2421Google Scholar

    [202]

    Suzuura H, Ando T 2002 Phys. Rev. Lett. 89 266603Google Scholar

    [203]

    Altland A, Zirnbauer M R 1997 Phys. Rev. B 55 1142Google Scholar

    [204]

    Akkermans E, Montambaux G 2007 Mesoscopic Physics of Electrons and Photons (Cambridge: Cambridge university press) pp97−100

    [205]

    Cao H, Tian J, Miotkowski I, Shen T, Hu J, Qiao S, Chen Y P 2012 Phys. Rev. Lett. 108 216803Google Scholar

    [206]

    Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J, Ong N 2009 Phys. Rev. Lett. 103 246601Google Scholar

    [207]

    Peng H, Lai K, Kong D, Meister S, Chen Y, Qi X L, Zhang S C, Shen Z X, Cui Y 2010 Nat. Mater. 9 225Google Scholar

    [208]

    Chen J, Qin H, Yang F, Liu J, Guan T, Qu F, Zhang G, Shi J, Xie X, Yang C, et al. 2010 Phys. Rev. Lett. 105 176602Google Scholar

    [209]

    Checkelsky J G, Hor Y S, Cava R J, Ong N 2011 Phys. Rev. Lett. 106 196801Google Scholar

    [210]

    Adler S L 1969 Phys. Rev. 177 2426Google Scholar

    [211]

    Bell J S, Jackiw R 1969 Il Nuovo Cimento A (1965-1970) 60 47Google Scholar

    [212]

    Burkov A 2017 Phys. Rev. B 96 041110Google Scholar

    [213]

    Nandy S, Sharma G, Taraphder A, Tewari S 2017 Phys. Rev. Lett. 119 176804Google Scholar

    [214]

    Kumar N, Guin S N, Felser C, Shekhar C 2018 Phys. Rev. B 98 041103Google Scholar

    [215]

    Wu M, Zheng G, Chu W, Liu Y, Gao W, Zhang H, Lu J, Han Y, Zhou J, Ning W 2018 Phys. Rev. B 98 161110Google Scholar

    [216]

    Li H, Wang H W, He H, Wang J, Shen S Q 2018 Phys. Rev. B 97 201110Google Scholar

    [217]

    Ma D, Jiang H, Liu H, Xie X 2019 Phys. Rev. B 99 115121Google Scholar

    [218]

    Chang M C, Niu Q 1995 Phys. Rev. Lett. 75 1348Google Scholar

    [219]

    Sundaram G, Niu Q 1999 Phys. Rev. B 59 14915Google Scholar

    [220]

    Jian H Z, Hua J, Qian N, Jun R S 2013 Chin. Phys. Lett. 30 027101Google Scholar

    [221]

    Goswami P, Tewari S 2013 Phys. Rev. B 88 245107Google Scholar

    [222]

    Zyuzin A, Burkov A 2012 Phys. Rev. B 86 115133Google Scholar

    [223]

    Yip S K 2015 arXiv: 1508.01010 [cond-mat]

    [224]

    Zhang C, Zhang E, Wang W, Liu Y, Chen Z G, Lu S, Liang S, Cao J, Yuan X, Tang L 2017 Nat. Commun. 8 13741

    [225]

    Breunig O, Wang Z, Taskin A, Lux J, Rosch A, Ando Y 2017 Nat. Commun. 8 15545

    [226]

    Assaf B, Phuphachong T, Kampert E, Volobuev V, Mandal P, Sánchez-Barriga J, Rader O, Bauer G, Springholz G, De Vaulchier L 2017 Phys. Rev. Lett. 119 106602Google Scholar

    [227]

    Zhang M, Wang H, Mu K, Wang P, Niu W, Zhang S, Xiao G, Chen Y, Tong T, Fu D 2018 ACS Nano 12 1537Google Scholar

    [228]

    Fleckenstein C, Ziani N T, Trauzettel B 2016 Phys. Rev. B 94 241406Google Scholar

    [229]

    Culcer D 2012 Physica E 44 860Google Scholar

    [230]

    Mahan G D 2013 Many-particle Physics (New York: Springer Science & Business Media) pp160−174

    [231]

    Wolos A, Szyszko S, Drabinska A, Kaminska M, Strzelecka S, Hruban A, Materna A, Piersa M, Borysiuk J, Sobczak K 2016 Phys. Rev. B 93 155114Google Scholar

    [232]

    Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H 2011 Phys. Rev. B 83 245438Google Scholar

    [233]

    He H T, Wang G, Zhang T, Sou I K, Wong G K, Wang J N, Lu H Z, Shen S Q, Zhang F C 2011 Phys. Rev. Lett. 106 166805Google Scholar

    [234]

    Morimoto T, Zhong S, Orenstein J, Moore J E 2016 Phys. Rev. B 94 245121Google Scholar

    [235]

    Gao Y, Yang S A, Niu Q 2017 Phys. Rev. B 95 165135Google Scholar

    [236]

    Gao Y, Yang S A, Niu Q 2014 Phys. Rev. Lett. 112 166601Google Scholar

    [237]

    Gao Y, Yang S A, Niu Q 2015 Phys. Rev. B 91 214405Google Scholar

    [238]

    Goswami P, Pixley J, Sarma S D 2015 Phys. Rev. B 92 075205Google Scholar

    [239]

    Andreev A, Spivak B 2018 Phys. Rev. Lett. 120 026601Google Scholar

    [240]

    Fu B, Wang H W, Shen S Q 2020 Phys. Rev. B 101 125203Google Scholar

    [241]

    Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press) pp36−67

    [242]

    Mikitik G, Sharlai Y V 1999 Phys. Rev. Lett. 82 2147Google Scholar

    [243]

    Shoenberg D, Stiles P 1964 Proc. R. Soc. A-Math. Phys. 281 62

    [244]

    Luk’yanchuk I A, Kopelevich Y 2004 Phys. Rev. Lett. 93 166402Google Scholar

    [245]

    Novak M, Sasaki S, Segawa K, Ando Y 2015 Phys. Rev. B 91 041203Google Scholar

    [246]

    Du J, Wang H, Chen Q, Mao Q, Khan R, Xu B, Zhou Y, Zhang Y, Yang J, Chen B 2016 Sci. China-Phys. Mech. Astron. 59 657406Google Scholar

    [247]

    Zhang C L, Yuan Z, Jiang Q D, Tong B, Zhang C, Xie X, Jia S 2017 Phys. Rev. B 95 085202Google Scholar

    [248]

    Park J, Lee G, Wolff-Fabris F, Koh Y, Eom M, Kim Y K, Farhan M, Jo Y, Kim C, Shim J 2011 Phys. Rev. Lett. 107 126402Google Scholar

    [249]

    Xiang F X, Wang X L, Veldhorst M, Dou S X, Fuhrer M S 2015 Phys. Rev. B 92 035123Google Scholar

    [250]

    Tafti F, Gibson Q, Kushwaha S, Haldolaarachchige N, Cava R 2016 Nat. Phys. 12 272Google Scholar

    [251]

    Luo Y, Ghimire N J, Wartenbe M, Choi H, Neupane M, McDonald R, Bauer E, Zhu J, Thompson J, Ronning F 2015 Phys. Rev. B 92 205134Google Scholar

    [252]

    Arnold F, Naumann M, Wu S C, Sun Y, Schmidt M, Borrmann H, Felser C, Yan B, Hassinger E 2016 Phys. Rev. Lett. 117 146401Google Scholar

    [253]

    Klotz J, Wu S C, Shekhar C, Sun Y, Schmidt M, Nicklas M, Baenitz M, Uhlarz M, Wosnitza J, Felser C 2016 Phys. Rev. B 93 121105Google Scholar

    [254]

    dos Reis R, Wu S, Sun Y, Ajeesh M, Shekhar C, Schmidt M, Felser C, Yan B, Nicklas M 2016 Phys. Rev. B 93 205102Google Scholar

    [255]

    Sergelius P, Gooth J, Bäßler S, Zierold R, Wiegand C, Niemann A, Reith H, Shekhar C, Felser C, Yan B 2016 Sci. Rep. 6 33859

    [256]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [257]

    Murakawa H, Bahramy M, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H, Tokura Y 2013 Science 342 1490Google Scholar

    [258]

    Kumar N, Manna K, Qi Y, Wu S C, Wang L, Yan B, Felser C, Shekhar C 2017 Phys. Rev. B 95 121109Google Scholar

    [259]

    Singha R, Pariari A K, Satpati B, Mandal P 2017 Proc. Natl. Acad. Sci. 114 2468Google Scholar

    [260]

    Ali M N, Schoop L M, Garg C, Lippmann J M, Lara E, Lotsch B, Parkin S S 2016 Sci. Adv. 2 e1601742Google Scholar

    [261]

    Wang X, Pan X, Gao M, Yu J, Jiang J, Zhang J, Zuo H, Zhang M, Wei Z, Niu W 2016 Adv. Electron. Mater. 2

    [262]

    Lv Y Y, Zhang B B, Li X, Yao S H, Chen Y, Zhou J, Zhang S T, Lu M H, Chen Y F 2016 Appl. Phys. Lett. 108 244101Google Scholar

    [263]

    Hu J, Tang Z, Liu J, Zhu Y, Wei J, Mao Z 2017 Phys. Rev. B 96 045127Google Scholar

    [264]

    Pan H, Tong B, Yu J, Wang J, Fu D, Zhang S, Wu B, Wan X, Zhang C, Wang X 2018 Sci. Rep. 8 1Google Scholar

    [265]

    Hu J, Tang Z, Liu J, Liu X, Zhu Y, Graf D, Myhro K, Tran S, Lau C N, Wei J 2016 Phys. Rev. Lett. 117 016602Google Scholar

    [266]

    Hu J, Zhu Y, Graf D, Tang Z, Liu J, Mao Z 2017 Phys. Rev. B 95 205134Google Scholar

    [267]

    Qu D X, Hor Y S, Xiong J, Cava R J, Ong N P 2010 Science 329 821Google Scholar

    [268]

    Charbonneau M, Van Vliet K, Vasilopoulos P 1982 J. Math. Phys. 23 318Google Scholar

    [269]

    Vasilopoulos P, Van Vliet C M 1984 J. Math. Phys. 25 1391Google Scholar

    [270]

    Wang C, Lei X 2012 Phys. Rev. B 86 035442Google Scholar

    [271]

    Wang C, Lei X 2015 Phys. Rev. B 92 125303Google Scholar

    [272]

    Datta S 1997 Electronic Transport in Mesoscopic Dystems (Cambridge: Cambridge university press) pp23−24

    [273]

    Vasko F T, Raichev O E 2006 Quantum Kinetic Theory and Applications: Electrons, Photons, Phonons (New York: Springer Science & Business Media) pp99−147

    [274]

    Abrikosov A 1998 Phys. Rev. B 58 2788

    [275]

    Liu Z, Yang L, Sun Y, Zhang T, Peng H, Yang H, Chen C, Zhang Y, Guo Y, Prabhakaran D 2016 Nat. Mater. 15 27Google Scholar

    [276]

    Xiong J, Kushwaha S, Krizan J, Liang T, Cava R J, Ong N P 2016 EPL 114 27002Google Scholar

    [277]

    Hu J, Liu J, Graf D, Radmanesh S, Adams D, Chuang A, Wang Y, Chiorescu I, Wei J, Spinu L 2016 Sci. Rep. 6 18674Google Scholar

    [278]

    Phillips M, Aji V 2014 Phys. Rev. B 90 115111Google Scholar

    [279]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [280]

    Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A 2005 Nature 438 197Google Scholar

    [281]

    Xu Y, Miotkowski I, Liu C, Tian J, Nam H, Alidoust N, Hu J, Shih C K, Hasan M Z, Chen Y P 2014 Nat. Phys. 10 956Google Scholar

    [282]

    Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K, Nagaosa N, Kawasaki M, Tokura Y 2015 Nat. Commun. 6 6627

    [283]

    Lu H Z 2019 Natl. Sci. Rev. 6 208Google Scholar

    [284]

    Hosur P 2012 Phys. Rev. B 86 195102Google Scholar

    [285]

    Baum Y, Berg E, Parameswaran S, Stern A 2015 Phys. Rev. X 5 041046

    [286]

    Gorbar E, Miransky V, Shovkovy I, Sukhachov P 2016 Phys. Rev. B 93 235127Google Scholar

    [287]

    Ominato Y, Koshino M 2016 Phys. Rev. B 93 245304Google Scholar

    [288]

    McCormick T M, Watzman S J, Heremans J P, Trivedi N 2018 Phys. Rev. B 97 195152Google Scholar

    [289]

    Moll P J, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A, Analytis J G 2016 Nature 535 266Google Scholar

    [290]

    Ruan J, Jian S K, Yao H, Zhang H, Zhang S C, Xing D 2016 Nat. Commun. 7 11136

    [291]

    Potter A C, Kimchi I, Vishwanath A 2014 Nat. Commun. 5 5161

    [292]

    Xu S Y, Belopolski I, Sanchez D S, Neupane M, Chang G, Yaji K, Yuan Z, Zhang C, Kuroda K, Bian G 2016 Phys. Rev. Lett. 116 096801Google Scholar

    [293]

    Belopolski I, Xu S Y, Sanchez D S, Chang G, Guo C, Neupane M, Zheng H, Lee C C, Huang S M, Bian G 2016 Phys. Rev. Lett. 116 066802Google Scholar

    [294]

    Belopolski I, Xu S Y, Ishida Y, Pan X, Yu P, Sanchez D S, Zheng H, Neupane M, Alidoust N, Chang G 2016 Phys. Rev. B 94 085127Google Scholar

    [295]

    Xu S Y, Belopolski I, Sanchez D S, Zhang C, Chang G, Guo C, Bian G, Yuan Z, Lu H, Chang T R 2015 Sci. Adv. 1 e1501092Google Scholar

    [296]

    Uchida M, Nakazawa Y, Nishihaya S, Akiba K, Kriener M, Kozuka Y, Miyake A, Taguchi Y, Tokunaga M, Nagaosa N 2017 Nat. Commun. 8 2274

    [297]

    Schumann T, Galletti L, Kealhofer D A, Kim H, Goyal M, Stemmer S 2018 Phys. Rev. Lett. 120 016801Google Scholar

    [298]

    Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z, Liu R 2019 Nature 565 331Google Scholar

    [299]

    Gusynin V, Sharapov S 2005 Phys. Rev. Lett. 95 146801Google Scholar

    [300]

    Zyuzin A, Burkov A 2011 Phys. Rev. B 83 195413Google Scholar

    [301]

    Zhang S B, Zhang Y Y, Shen S Q 2014 Phys. Rev. B 90 115305Google Scholar

    [302]

    Zhang S B, Lu H Z, Shen S Q 2015 Sci. Rep. 5 13277Google Scholar

    [303]

    Pertsova A, Canali C M, MacDonald A 2016 Phys. Rev. B 94 121409Google Scholar

    [304]

    Zheng H, Xu S Y, Bian G, Guo C, Chang G, Sanchez D S, Belopolski I, Lee C C, Huang S M, Zhang X 2016 ACS Nano 10 1378Google Scholar

    [305]

    Ma E Y, Calvo M R, Wang J, Lian B, Mühlbauer M, Brüne C, Cui Y T, Lai K, Kundhikanjana W, Yang Y 2015 Nat. Commun. 6 7252

    [306]

    Li H, Liu H, Jiang H, Xie X 2020 Phys. Rev. Lett. 125 036602Google Scholar

    [307]

    Zhang C, Narayan A, Lu S, Zhang J, Zhang H, Ni Z, Yuan X, Liu Y, Park J H, Zhang E 2017 Nat. Commun. 8 1272

    [308]

    Lin B C, Wang S, Wiedmann S, Lu J M, Zheng W Z, Yu D, Liao Z M 2019 Phys. Rev. Lett. 122 036602Google Scholar

    [309]

    Halperin B I 1987 Jpn. J. Appl. Phys. 26 1913Google Scholar

    [310]

    Tang F, Ren Y, Wang P, Zhong R, Schneeloch J, Yang S A, Yang K, Lee P A, Gu G, Qiao Z 2019 Nature 569 537Google Scholar

    [311]

    Song Z, Fang Z, Dai X 2017 Phys. Rev. B 96 235104Google Scholar

    [312]

    Pan Z, Shindou R 2019 Phys. Rev. B 100 165124Google Scholar

    [313]

    Roy B, Sau J D, Sarma S D 2014 Phys. Rev. B 89 165119Google Scholar

    [314]

    Grüner G 1988 Rev. Mod. Phys. 60 1129Google Scholar

    [315]

    Aji V 2012 Phys. Rev. B 85 241101Google Scholar

    [316]

    Ominato Y, Koshino M 2014 Phys. Rev. B 89 054202Google Scholar

    [317]

    Song J C, Refael G, Lee P A 2015 Phys. Rev. B 92 180204Google Scholar

    [318]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [319]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [320]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar

    [321]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L 2013 Science 340 167Google Scholar

    [322]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [323]

    Akhmerov A, Nilsson J, Beenakker C 2009 Phys. Rev. Lett. 102 216404Google Scholar

    [324]

    Belopolski I, Xu S Y, Koirala N, Liu C, Bian G, Strocov V N, Chang G, Neupane M, Alidoust N, Sanchez D 2017 Sci. Adv. 3 e1501692Google Scholar

    [325]

    Chiu C K, Bian G, Zheng H, Yin J X, Zhang S S, Sanchez D, Belopolski I, Xu S Y, Hasan M Z 2018 EPL 123 47005Google Scholar

    [326]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [327]

    Büttner B, Liu C, Tkachov G, Novik E, Brüne C, Buhmann H, Hankiewicz E, Recher P, Trauzettel B, Zhang S 2011 Nat. Phys. 7 418Google Scholar

    [328]

    Mani A, Benjamin C 2017 Sci. Rep. 7 6954

    [329]

    Weng H, Dai X, Fang Z 2014 Phys. Rev. X 4 011002

    [330]

    Liu Y, Yuan X, Zhang C, Jin Z, Narayan A, Luo C, Chen Z, Yang L, Zou J, Wu X 2016 Nat. Commun. 7 12516

    [331]

    Zhang W, Yu R, Feng W, Yao Y, Weng H, Dai X, Fang Z 2011 Phys. Rev. Lett. 106 156808Google Scholar

    [332]

    Sebastian S E, Harrison N, Palm E, Murphy T, Mielke C, Liang R, Bonn D, Hardy W, Lonzarich G 2008 Nature 454 200Google Scholar

    [333]

    Li L, Checkelsky J G, Hor Y S, Uher C, Hebard A F, Cava R J, Ong N 2008 Science 321 547Google Scholar

    [334]

    Zhang Z, Wei W, Yang F, Zhu Z, Guo M, Feng Y, Yu D, Yao M, Harrison N, McDonald R 2015 Phys. Rev. B 92 235402Google Scholar

    [335]

    Mikitik G, Sharlai Y V 2004 Phys. Rev. Lett. 93 106403Google Scholar

    [336]

    Mikitik G, Sharlai Y V 1996 Low Temp. Phys. 22 585

    [337]

    Mikitik G, Sharlai Y V 2016 Phys. Rev. B 94 195123Google Scholar

    [338]

    Moll P J, Potter A C, Nair N L, Ramshaw B, Modic K A, Riggs S, Zeng B, Ghimire N J, Bauer E D, Kealhofer R 2016 Nat. Commun. 7 12492

    [339]

    Koshino M, Hizbullah I F 2016 Phys. Rev. B 93 045201Google Scholar

    [340]

    Chen Z G, Chen R, Zhong R, Schneeloch J, Zhang C, Huang Y, Qu F, Yu R, Li Q, Gu G 2017 Proc. Natl. Acad. Sci. 114 816Google Scholar

    [341]

    Chen R, Zhang S, Schneeloch J, Zhang C, Li Q, Gu G, Wang N 2015 Phys. Rev. B 92 075107Google Scholar

    [342]

    Wu R, Ma J Z, Nie S M, Zhao L X, Huang X, Yin J X, Fu B B, Richard P, Chen G F, Fang Z 2016 Phys. Rev. X 6 021017

    [343]

    Li X B, Huang W K, Lv Y Y, Zhang K W, Yang C L, Zhang B B, Chen Y, Yao S H, Zhou J, Lu M H 2016 Phys. Rev. Lett. 116 176803Google Scholar

    [344]

    Xiong H, Sobota J, Yang S L, Soifer H, Gauthier A, Lu M H, Lv Y Y, Yao S H, Lu D, Hashimoto M 2017 Phys. Rev. B 95 195119Google Scholar

    [345]

    Manzoni G, Gragnaniello L, Autès G, Kuhn T, Sterzi A, Cilento F, Zacchigna M, Enenkel V, Vobornik I, Barba L 2016 Phys. Rev. Lett. 117 237601Google Scholar

    [346]

    Xu B, Zhao L, Marsik P, Sheveleva E, Lyzwa F, Dai Y, Chen G, Qiu X, Bernhard C 2018 Phys. Rev. Lett. 121 187401Google Scholar

    [347]

    Zhang J, Guo C, Zhu X, Ma L, Zheng G, Wang Y, Pi L, Chen Y, Yuan H, Tian M 2017 Phys. Rev. Lett. 118 206601Google Scholar

    [348]

    Jones T, Fuller W, Wieting T, Levy F 1982 Solid State Commun. 42 793Google Scholar

    [349]

    Behnia K, Aubin H 2016 Rep. Prog. Phys. 79 046502Google Scholar

    [350]

    Gooth J, Niemann A C, Meng T, Grushin A G, Landsteiner K, Gotsmann B, Menges F, Schmidt M, Shekhar C, Süß V 2017 Nature 547 324Google Scholar

    [351]

    Behnia K, Méasson M A, Kopelevich Y 2007 Phys. Rev. Lett. 98 166602Google Scholar

    [352]

    Fauqué B, Zhu Z, Murphy T, Behnia K 2011 Phys. Rev. Lett. 106 246405Google Scholar

    [353]

    Fauqué B, Butch N P, Syers P, Paglione J, Wiedmann S, Collaudin A, Grena B, Zeitler U, Behnia K 2013 Phys. Rev. B 87 035133Google Scholar

    [354]

    Liang T, Gibson Q, Xiong J, Hirschberger M, Koduvayur S P, Cava R J, Ong N P 2013 Nat. Commun. 4 1

    [355]

    Zhu Z, Lin X, Liu J, Fauqué B, Tao Q, Yang C, Shi Y, Behnia K 2015 Phys. Rev. Lett. 114 176601Google Scholar

    [356]

    Jia Z, Li C, Li X, Shi J, Liao Z, Yu D, Wu X 2016 Nat. Commun. 7 13013

    [357]

    Liang T, Lin J, Gibson Q, Gao T, Hirschberger M, Liu M, Cava R J, Ong N P 2017 Phys. Rev. Lett. 118 136601Google Scholar

    [358]

    Matusiak M, Cooper J, Kaczorowski D 2017 Nat. Commun. 8 15219

    [359]

    Watzman S J, McCormick T M, Shekhar C, Wu S C, Sun Y, Prakash A, Felser C, Trivedi N, Heremans J P 2018 Phys. Rev. B 97 161404Google Scholar

    [360]

    Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J, Nie S, Sun X, Zhang Y, Shen B, et al. 2017 Nat. Commun. 8 15512Google Scholar

    [361]

    Stockert U, Dos Reis R, Ajeesh M, Watzman S, Schmidt M, Shekhar C, Heremans J, Felser C, Baenitz M, Nicklas M 2017 J. Phys.-Condes. Matter 29 325701Google Scholar

    [362]

    Wang J, Niu J, Yan B, Li X, Bi R, Yao Y, Yu D, Wu X 2018 Proc. Natl. Acad. Sci. 115 9145Google Scholar

    [363]

    Skinner B, Fu L 2018 Sci. Adv. 4 eaat2621Google Scholar

    [364]

    Raikh M, Shahbazyan T 1993 Phys. Rev. B 47 1522Google Scholar

    [365]

    Pesin D, Mishchenko E, Levchenko A 2015 Phys. Rev. B 92 174202Google Scholar

    [366]

    Wang H W, Fu B, Shen S Q 2018 Phys. Rev. B 98 081202Google Scholar

    [367]

    Alexandradinata A, Glazman L 2017 Phys. Rev. Lett. 119 256601Google Scholar

    [368]

    Alexandradinata A, Wang C, Duan W, Glazman L 2018 Phys. Rev. X 8 011027

    [369]

    Hoeller J, Alexandradinata A 2018 Phys. Rev. B 98 024310Google Scholar

    [370]

    O’Brien T, Diez M, Beenakker C 2016 Phys. Rev. Lett. 116 236401Google Scholar

    [371]

    Fei F, Bo X, Wang R, Wu B, Jiang J, Fu D, Gao M, Zheng H, Chen Y, Wang X 2017 Phys. Rev. B 96 041201Google Scholar

    [372]

    Yang H, Moessner R, Lim L K 2018 Phys. Rev. B 97 165118Google Scholar

    [373]

    Oroszlány L, Dóra B, Cserti J, Cortijo A 2018 Phys. Rev. B 97 205107Google Scholar

    [374]

    Zhang Y, Bulmash D, Hosur P, Potter A C, Vishwanath A 2016 Sci. Rep. 6 23741Google Scholar

    [375]

    Wang H, Liu H, Li Y, Liu Y, Wang J, Liu J, Dai J Y, Wang Y, Li L, Yan J 2018 Sci. Adv. 4 eaau5096Google Scholar

    [376]

    Wang H, Liu Y, Liu Y, Xi C, Wang J, Liu J, Wang Y, Li L, Lau S P, Tian M 2019 Natl. Sci. Rev. 6 914Google Scholar

    [377]

    Zhang P, Zhai H 2018 Front. Phys. 13 137204Google Scholar

    [378]

    Liu H, Jiang H, Wang Z, Joynt R, Xie X 2018 arXiv: 1807.02459 [cond-mat]

    [379]

    Weng H, Fang C, Fang Z, Dai X 2016 Phys. Rev. B 93 241202Google Scholar

    [380]

    Weng H, Fang C, Fang Z, Dai X 2016 Phys. Rev. B 94 165201Google Scholar

    [381]

    Bradlyn B, Cano J, Wang Z, Vergniory M, Felser C, Cava R, Bernevig B A 2016 Science 353Google Scholar

    [382]

    Chang G, Xu S Y, Huang S M, Sanchez D S, Hsu C H, Bian G, Yu Z M, Belopolski I, Alidoust N, Zheng H 2017 Sci. Rep. 7 1688

    [383]

    Lv B, Feng Z L, Xu Q N, Gao X, Ma J Z, Kong L Y, Richard P, Huang Y B, Strocov V, Fang C 2017 Nature 546 627Google Scholar

    [384]

    Ma J Z, He J B, Xu Y F, Lv B, Chen D, Zhu W L, Zhang S, Kong L Y, Gao X, Rong L Y 2018 Nat. Phys. 14 349Google Scholar

    [385]

    He J, Chen D, Zhu W, Zhang S, Zhao L, Ren Z, Chen G 2017 Phys. Rev. B 95 195165Google Scholar

    [386]

    Zhu W, He J, Zhang S, Chen D, Shan L, Ren Z, Chen G 2017 arXiv: 1707.00942 [cond-mat]

    [387]

    Kumar N, Sun Y, Nicklas M, Watzman S J, Young O, Leermakers I, Hornung J, Klotz J, Gooth J, Manna K 2019 Nat. Commun. 10 2475

    [388]

    Felser C, Yan B 2016 Nat. Mater. 15 1149Google Scholar

    [389]

    Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kübler J 2016 Sci. Adv. 2 e1501870Google Scholar

    [390]

    Wang Z, Vergniory M, Kushwaha S, Hirschberger M, Chulkov E, Ernst A, Ong N P, Cava R J, Bernevig B A 2016 Phys. Rev. Lett. 117 236401Google Scholar

    [391]

    Chang G, Xu S Y, Zheng H, Singh B, Hsu C H, Bian G, Alidoust N, Belopolski I, Sanchez D S, Zhang S 2016 Sci. Rep. 6 38839

    [392]

    Nie S, Xu G, Prinz F B, Zhang S C 2017 Proc. Natl. Acad. Sci. 114 10596Google Scholar

    [393]

    Yang H, Sun Y, Zhang Y, Shi W J, Parkin S S, Yan B 2017 New J. Phys. 19 015008Google Scholar

    [394]

    Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q 2018 Nat. Phys. 14 1125Google Scholar

    [395]

    Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S, Lei H 2018 Nat. Commun. 9 3681

    [396]

    Guin S N, Manna K, Noky J, Watzman S J, Fu C, Kumar N, Schnelle W, Shekhar C, Sun Y, Gooth J 2019 NPG Asia Mater. 11 1Google Scholar

    [397]

    Chang G, Singh B, Xu S Y, Bian G, Huang S M, Hsu C H, Belopolski I, Alidoust N, Sanchez D S, Zheng H 2018 Phys. Rev. B 97 041104Google Scholar

    [398]

    Yin J X, Zhang S S, Li H, Jiang K, Chang G, Zhang B, Lian B, Xiang C, Belopolski I, Zheng H 2018 Nature 562 91Google Scholar

    [399]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [400]

    Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z 2016 Nat. Phys. 12 1105Google Scholar

    [401]

    Jiang J, Liu Z, Sun Y, Yang H, Rajamathi C, Qi Y, Yang L, Chen C, Peng H, Hwang C 2017 Nat. Commun. 8 13973

    [402]

    Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z 2016 Nat. Commun. 7 13142

    [403]

    Zhang E, Chen R, Huang C, Yu J, Zhang K, Wang W, Liu S, Ling J, Wan X, Lu H Z 2017 Nano Lett. 17 878Google Scholar

    [404]

    Chen D, Zhao L, He J, Liang H, Zhang S, Li C, Shan L, Wang S, Ren Z, Ren C 2016 Phys. Rev. B 94 174411Google Scholar

    [405]

    Khim S, Koepernik K, Efremov D V, Klotz J, Förster T, Wosnitza J, Sturza M I, Wurmehl S, Hess C, van den Brink J 2016 Phys. Rev. B 94 165145Google Scholar

    [406]

    Xu S Y, Alidoust N, Chang G, Lu H, Singh B, Belopolski I, Sanchez D S, Zhang X, Bian G, Zheng H 2017 Sci. Adv. 3 e1603266Google Scholar

    [407]

    Belopolski I, Sanchez D S, Ishida Y, Pan X, Yu P, Xu S Y, Chang G, Chang T R, Zheng H, Alidoust N 2016 Nat. Commun. 7 13643

    [408]

    Chang G, Xu S Y, Sanchez D S, Huang S M, Lee C C, Chang T R, Bian G, Zheng H, Belopolski I, Alidoust N 2016 Sci. Adv. 2 e1600295Google Scholar

    [409]

    Zhong C, Chen Y, Yu Z M, Xie Y, Wang H, Yang S A, Zhang S 2017 Nat. Commun. 8 15641Google Scholar

    [410]

    Chen W, Lu H Z, Hou J M 2017 Phys. Rev. B 96 041102Google Scholar

    [411]

    Yan Z, Bi R, Shen H, Lu L, Zhang S C, Wang Z 2017 Phys. Rev. B 96 041103Google Scholar

    [412]

    Ezawa M 2017 Phys. Rev. B 96 041202Google Scholar

    [413]

    Wang C, Lu H Z, Xie X 2020 Phys. Rev. B 102 041204Google Scholar

    [414]

    Hu Y, Liu H, Jiang H, Xie X 2017 Phys. Rev. B 96 134201Google Scholar

    [415]

    Wang L X, Li C Z, Yu D P, Liao Z M 2016 Nat. Commun. 7 10769Google Scholar

    [416]

    Zheng H, Bian G, Chang G, Lu H, Xu S Y, Wang G, Chang T R, Zhang S, Belopolski I, Alidoust N 2016 Phys. Rev. Lett. 117 266804Google Scholar

    [417]

    Zheng H, Zahid Hasan M 2018 Adv. Phys. X 3 1466661

    [418]

    Zheng H, Chang G, Huang S M, Guo C, Zhang X, Zhang S, Yin J, Xu S Y, Belopolski I, Alidoust N 2017 Phys. Rev. Lett. 119 196403Google Scholar

    [419]

    Chang G, Xu S Y, Zheng H, Lee C C, Huang S M, Belopolski I, Sanchez D S, Bian G, Alidoust N, Chang T R 2016 Phys. Rev. Lett. 116 066601Google Scholar

    [420]

    Wang S, Lin B C, Zheng W Z, Yu D, Liao Z M 2018 Phys. Rev. Lett. 120 257701Google Scholar

  • [1] Jin Zhe-Jun-Yu, Zeng Zhao-Zhuo, Cao Yun-Shan, Yan Peng. Magnon Hall effect. Acta Physica Sinica, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [2] Chu Chun-Guang, Wang An-Qi, Liao Zhi-Min. Josephson effect in topological semimetal-superconductor heterojunctions. Acta Physica Sinica, 2023, 72(8): 087401. doi: 10.7498/aps.72.20230397
    [3] Gu Kai-Yuan, Luo Tian-Chuang, Ge Jun, Wang Jian. Superconductivity in topological materials. Acta Physica Sinica, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [4] Ding Ming-Song, Fu Yang-Ao-Xiao, Gao Tie-Suo, Dong Wei-Zhong, Jiang Tao, Liu Qing-Zong. Influence of Hall effect on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [5] Jiang Cong-Ying, Sun Fei, Feng Zi-Li, Liu Shi-Bing, Shi You-Guo, Zhao Ji-Min. Time-resolved ultrafast dynamics in triple degenerate topological semimetal molybdenum phosphide. Acta Physica Sinica, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [6] He Bin, He Xiong, Liu Guo-Qiang, Zhu Can, Wang Jia-Fu, Sun Zhi-Gang. Memristive and magnetoresistance effects of SnSe2. Acta Physica Sinica, 2020, 69(11): 117301. doi: 10.7498/aps.69.20200160
    [7] Deng Tao, Yang Hai-Feng, Zhang Jing, Li Yi-Wei, Yang Le-Xian, Liu Zhong-Kai, Chen Yu-Lin. Progress of ARPES study on topological semimetals. Acta Physica Sinica, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [8] Wei Bo-Yuan, Bu Hai-Jun, Zhang Shuai, Song Feng-Qi. Observation of planar Hall effect in topological semimetal ZrSiSe device. Acta Physica Sinica, 2019, 68(22): 227203. doi: 10.7498/aps.68.20191501
    [9] Yi Chang-Jiang, Wang Le, Feng Zi-Li, Yang Meng, Yan Da-Yu, Wang Cui-Xiang, Shi You-Guo. Research progress of single crystal growth for topological semimetals. Acta Physica Sinica, 2018, 67(12): 128102. doi: 10.7498/aps.67.20180796
    [10] Li Kai, Liu Jun, Liu Wei-Qiang. Numerical solution procedure for Hall electric field of the hypersonic magnetohydrodynamic heat shield system. Acta Physica Sinica, 2017, 66(8): 084702. doi: 10.7498/aps.66.084702
    [11] Li Kai, Liu Jun, Liu Wei-Qiang. Investigation of Hall effect on the performance of magnetohydrodynamic heat shield system based on variable uniform Hall parameter model. Acta Physica Sinica, 2017, 66(5): 054701. doi: 10.7498/aps.66.054701
    [12] Su Qing-Feng, Liu Chang-Zhu, Wang Lin-Jun, Xia Yi-Ben. Hall effect of different textured CVD diamond films. Acta Physica Sinica, 2015, 64(11): 117301. doi: 10.7498/aps.64.117301
    [13] Wei Pang, Li Kang, Feng Xiao, Ou Yun-Bo, Zhang Li-Guo, Wang Li-Li, He Ke, Ma Xu-Cun, Xue Qi-Kun. Growth of micro-devices of topological insulator thin films by molecular beam epitaxy on substrates pre-patterned with photolithography. Acta Physica Sinica, 2014, 63(2): 027303. doi: 10.7498/aps.63.027303
    [14] Wei Lai-Ming, Zhou Yuan-Ming, Yu Guo-Lin, Gao Kuang-Hong, Liu Xin-Zhi, Lin Tie, Guo Shao-Ling, Dai Ning, Chu Jun-Hao, Austing David Guy. Effective g-factor in high-mobility InGaAs/InP Quantum well. Acta Physica Sinica, 2012, 61(12): 127102. doi: 10.7498/aps.61.127102
    [15] Hou Bi-Hui, Liu Feng-Yan, Jiao Bin, Yue Ming. Study of electron density of nanostructure metal Tm. Acta Physica Sinica, 2012, 61(7): 077302. doi: 10.7498/aps.61.077302
    [16] Wang Jing-Ping, Meng Jian. Tunneling magnetoresistance of Fe3O4 compacts prepared in magnetic field. Acta Physica Sinica, 2008, 57(2): 1197-1201. doi: 10.7498/aps.57.1197
    [17] Zhu Bo, Gui Yong-Sheng, Zhou Wen-Zheng, Shang Li-Yan, Guo Shao-Ling, Chu Jun-Hao, Lü Jie, Tang Ning, Shen Bo, Zhang Fu-Jia. The weak antilocalization and localization phenomenon in AlGaN/GaN two-dimensional electron gas. Acta Physica Sinica, 2006, 55(5): 2498-2503. doi: 10.7498/aps.55.2498
    [18] Chen Wei-Ping, Feng Shang-Shen, Jiao Zheng-Kuan. Spin polarized dependent Hall effect in metallic granular film Fe15.16Ag84.84. Acta Physica Sinica, 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [19] LI HUI-LING, RUAN KE-QING, LI SHI-YAN, MO WEI-QIN, FAN RONG, LUO XI-GANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE RESISTIVITY AND HALL EFFECT OF MgB2 AND Mg0.93Li0.07B2. Acta Physica Sinica, 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
    [20] GUO ZHONG-CHENG, ZHENG PING, WANG NAN-LIN, CHEN ZHAO-JIA, Y. MAENO, Z. Q. MAO. THE c-AXIS MAGNETORESISTANCE STUDY IN THE NORMAL-STATE Sr2RuO4. Acta Physica Sinica, 2001, 50(9): 1824-1828. doi: 10.7498/aps.50.1824
Metrics
  • Abstract views:  13744
  • PDF Downloads:  1074
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2020
  • Accepted Date:  29 July 2020
  • Available Online:  15 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回