Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

I L-shell X-rays from near Bohr-velocity I20+ ions impacting on various targets

Zhou Xian-Ming Wei Jing Cheng Rui Zhao Yong-Tao Zeng Li-Xia Mei Ce-Xiang Liang Chang-Hui Li Yao-Zong Zhang Xiao-An Xiao Guo-Qing

Citation:

I L-shell X-rays from near Bohr-velocity I20+ ions impacting on various targets

Zhou Xian-Ming, Wei Jing, Cheng Rui, Zhao Yong-Tao, Zeng Li-Xia, Mei Ce-Xiang, Liang Chang-Hui, Li Yao-Zong, Zhang Xiao-An, Xiao Guo-Qing
PDF
HTML
Get Citation
  • The L-shell X-ray emissions of iodine are investigated as a function of target atomic number for 4.5-MeV I20+ ions impacting on Fe, Co, Ni, Cu and Zn targets. Six distinct L-subshell X-rays are observed. The energy of the x-ray has a blue shift compared with the atomic data. The relative intensity ratio of Lβ1, 3, 4 and Lβ2, 15 to Lα1, 2 almost increase linearly with the target atomic number increasing. The ratio of I(Lι) to I(Lα1, 2) and I (Lγ2, 3, 4, 4') to I(Lγ1) are approximately proportional to the square of target atomic number. It is indicated that during the interaction of highly charged heavy ions with atom in the energy region near the Bohr velocity, the inner-shell process is mainly caused by the close-range collisions below the surface. There, the projectile not only has enough time to capture electrons from the target atom to be neutralized, but also has enough kinetic energy to ionize the inner-shell electron by coulomb interaction. At the balance between electron capture and ionization, the outer-shells of M, N, O etc. could be multiply ionized. The extent of multiple ionization increases with the target atomic number increasing. That leads to the energy shift, resulting in the change of the relative intensity ratio for the L-subshell X-ray. The smaller the atomic fluorescence, the larger the enhanced fluorescence caused by multiple ionization.
      Corresponding author: Zhang Xiao-An, zhangxiaoan2000@126.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. 11505248, 11775042, 11875096), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 20JK0975), and the Scientific Research Plan of Science and Technology Department of Shaanxi Province, China (Grant No. 2020JM-624)
    [1]

    Siddique N, Waheed S, Daud M, Markwitz A, Hopke P K 2012 J. Radioanal. Nucl. Chem. 293 351Google Scholar

    [2]

    Mitra D, Sarkar M, Bhattacharya D, Santra S, Mandal A C, Lapicki G 2010 Nucl. Instrum. Methods B 268 450Google Scholar

    [3]

    Reyes-Herrera J, Miranda J 2009 Nucl. Instrum. Methods B 267 1767

    [4]

    Beasley D, Gomez-Morilla I, Spyrou N 2008 J. Radioanal. Nucl. Chem. 276 101Google Scholar

    [5]

    Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Surf. Sci. Rep. 61 23

    [6]

    Zhou X M, Cheng R, Zhao Y T, Lei Y, Chen Y H, Chen X M, Wang Y Y, Ma X W, Xiao G Q 2018 Nucl. Instrum. Methods B 416 94

    [7]

    Whilhelm R A, Gruber E, Schwestka J, Kozubek R, Madeira T I, Marques J P, Kobus J, Krasheninnikov A V, Schleberger M, Aumayr F 2017 Phys. Rev. Lett. 119 103401

    [8]

    Guo Y P, Yang Z H, Hu B T, Wang X L, Song Z Y, Xu Q M, Zhang B L, Chen J, Yang B, Yang J 2016 Sci. Rep. 6 30644

    [9]

    Mohan H, Jain A K, Kaur M, Singh P S, Sharma S 2014 Nucl. Instrum. Methods B 332 103

    [10]

    Merlet C, Llovet X, Salvat F 2004 Phys. Rev. A 69 032708

    [11]

    柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷 2020 物理学报 69 043201Google Scholar

    Liu Y, Xu Z F, Wang X, Zeng L X, Liu T 2020 Acta Phys. Sin. 69 043201Google Scholar

    [12]

    梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青 2018 物理学报 67 243201Google Scholar

    Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar

    [13]

    梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 物理学报 66 143401Google Scholar

    Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar

    [14]

    张小安, 梅策香, 张颖, 赵永涛, 徐忠峰, 周贤明, 任洁茹, 程锐, 梁昌慧, 李耀宗, 曾丽霞, 杨治虎, 陈熙萌, 李福利, 肖国庆 2016 中国科学: 物理学 力学 天文学 46 073006

    Zhang X A, Mei C X, Zhang Y, Zhao Y T, Xu Z F, Zhou X M, Ren J R, Cheng R, Liang C H, Li Y Z, Zeng L X, Yang Z H, Chen X M, Li F L, Xiao G Q 2016 Sci. Sin.-Phys. Mech. Astron. 46 073006

    [15]

    何斌, 刘春雷, 颜君, 王建国, 宁烨 2005 物理学报 54 3075Google Scholar

    He B, Liu C L, Yan J, Wang J G, Ning Y 2005 Acta Phys. Sin. 54 3075Google Scholar

    [16]

    Briand J P, Billy L, Charles P, Essabaa S 1990 Phys. Rev. Lett. 65 159

    [17]

    Briand J P, de Billy L, Charles P, et al. 1991 Phys. Rev. A 43 565Google Scholar

    [18]

    Briand J P, Thuriez S, Giardino G, Borsoni G, Froment M, Eddrief M, Sébenne C 1996 Phys. Rev. Lett. 77 1452

    [19]

    Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar

    [20]

    Mcguire J H, Richards P 1973 Phys. Rev. A 8 1374

    [21]

    Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data tables 24 1

    [22]

    Lapicki G, Mcdaniel F D 1980 Phys. Rev. A 22 1896Google Scholar

    [23]

    Słabkowska K, Polasik M 2006 Radiat. Phys. Chem. 75 1471

    [24]

    Czarnota M, Pajek M, Banas D, Chmielewska D, Rzadkiewicz J, Sujkowski Z, Dousse J C, Berset M, Mauron O, Maillard Y P, Raboud P A, Hoszowska J, Polasik M, łabkowska K S 2003 Nucl. Instrum. Methods B 205 133

    [25]

    Clark M W, Schneider D, Dewitt D, McDonald J W, Bruch R, Schuch R 1993 Phys. Rev. A 47 3983Google Scholar

    [26]

    Zhao Y, Xiao G, Zhang X, Yang Z, Zhang Y, Zhan W, Chen X, Li F 2007 Nucl. Instrum. Methods B 258 121

    [27]

    Datz S, Moak C D, Appleton B R, Carlson T A 1971 Phys. Rev. Lett. 27 363

    [28]

    X-ray data book: http://xdb.lbl.gov/; Table of Isotopes: http://ie.lbl.gov/atom.htm

    [29]

    Krause M O 1979 J. Phys. Chem. Ref. Data. 8 307

    [30]

    Crawford J, Cohen D, Doherty G, Atanacio A 2011 Calculated K, L and M-shell X-ray Line Intensities for Light ion Impact on Selected Targets from Z = 6 to 100 (Sydney: Australian Nuclear Science and Technology Organization) pp29−44

  • 图 1  4.5 MeV I20+离子作用于不同靶材激发的L壳层X射线. 虚线为各分支谱线的拟合, 实线为总的实验谱线的拟合结果

    Figure 1.  I L-shell X-ray induced by 4.5 MeV I20+ ions impacting on various targets. The dotted line is the fitted results of sub-shell X ray. Line is the fitted results of the total experiment spectra.

    图 2  L壳层分支X射线跃迁图

    Figure 2.  Transitions of L-subshell X-rays.

    图 3  I的Lβ1, 3, 4与Lα1, 2 X射线相对强度比随靶原子序数的变化

    Figure 3.  Relative intensity ratios of I Lβ1, 3, 4 and Lα1, 2 x-ray as a function of target atomic number.

    图 6  I的Lγ2, 3, 4, 4' 与Lγ1X射线相对强度比随靶原子序数的变化

    Figure 6.  Relative intensity ratios of I Lγ2, 3, 4, 4' and Lγ1 X-ray as a function of target atomic number.

    图 4  I的Lβ2, 15与Lα1, 2 X射线相对强度比随靶原子序数的变化

    Figure 4.  Relative intensity ratios of I Lβ2, 15 and Lα1, 2 X-ray as a function of target atomic number.

    图 5  I的Lι与Lα1, 2 X射线相对强度比随靶原子序数的变化

    Figure 5.  Relative intensity ratios of I Lι and Lα1, 2 X-ray as a function of target atomic number.

    表 1  4.5 MeV I20+离子作用于不同靶材产生I的L壳层分支X射线能量, 作为对比, 第一行给出了单电离的原子数据, 实验误差主要来源于谱线的拟合误差

    Table 1.  The energies of I L-subshell X-ray produced by 4.5 MeV I20+ ions impacting on various targets.

    Lι/eV ± 3 eV1, 2/eV ± 3 eV1, 3, 4/eV ± 5 eV2, 15/eV ± 5 eV1/eV ± 7 eV2, 3, 4, 4' /eV ± 9 eV
    Atomic[28]348539374227450848025065
    Fe353239664293463148985192
    Co352939684293463049045196
    Ni353239674292462748965196
    Cu352939684297463149095200
    Zn352939694299463949075207
    Average353039684295463249025198
    DownLoad: CSV
  • [1]

    Siddique N, Waheed S, Daud M, Markwitz A, Hopke P K 2012 J. Radioanal. Nucl. Chem. 293 351Google Scholar

    [2]

    Mitra D, Sarkar M, Bhattacharya D, Santra S, Mandal A C, Lapicki G 2010 Nucl. Instrum. Methods B 268 450Google Scholar

    [3]

    Reyes-Herrera J, Miranda J 2009 Nucl. Instrum. Methods B 267 1767

    [4]

    Beasley D, Gomez-Morilla I, Spyrou N 2008 J. Radioanal. Nucl. Chem. 276 101Google Scholar

    [5]

    Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Surf. Sci. Rep. 61 23

    [6]

    Zhou X M, Cheng R, Zhao Y T, Lei Y, Chen Y H, Chen X M, Wang Y Y, Ma X W, Xiao G Q 2018 Nucl. Instrum. Methods B 416 94

    [7]

    Whilhelm R A, Gruber E, Schwestka J, Kozubek R, Madeira T I, Marques J P, Kobus J, Krasheninnikov A V, Schleberger M, Aumayr F 2017 Phys. Rev. Lett. 119 103401

    [8]

    Guo Y P, Yang Z H, Hu B T, Wang X L, Song Z Y, Xu Q M, Zhang B L, Chen J, Yang B, Yang J 2016 Sci. Rep. 6 30644

    [9]

    Mohan H, Jain A K, Kaur M, Singh P S, Sharma S 2014 Nucl. Instrum. Methods B 332 103

    [10]

    Merlet C, Llovet X, Salvat F 2004 Phys. Rev. A 69 032708

    [11]

    柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷 2020 物理学报 69 043201Google Scholar

    Liu Y, Xu Z F, Wang X, Zeng L X, Liu T 2020 Acta Phys. Sin. 69 043201Google Scholar

    [12]

    梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青 2018 物理学报 67 243201Google Scholar

    Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar

    [13]

    梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 物理学报 66 143401Google Scholar

    Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar

    [14]

    张小安, 梅策香, 张颖, 赵永涛, 徐忠峰, 周贤明, 任洁茹, 程锐, 梁昌慧, 李耀宗, 曾丽霞, 杨治虎, 陈熙萌, 李福利, 肖国庆 2016 中国科学: 物理学 力学 天文学 46 073006

    Zhang X A, Mei C X, Zhang Y, Zhao Y T, Xu Z F, Zhou X M, Ren J R, Cheng R, Liang C H, Li Y Z, Zeng L X, Yang Z H, Chen X M, Li F L, Xiao G Q 2016 Sci. Sin.-Phys. Mech. Astron. 46 073006

    [15]

    何斌, 刘春雷, 颜君, 王建国, 宁烨 2005 物理学报 54 3075Google Scholar

    He B, Liu C L, Yan J, Wang J G, Ning Y 2005 Acta Phys. Sin. 54 3075Google Scholar

    [16]

    Briand J P, Billy L, Charles P, Essabaa S 1990 Phys. Rev. Lett. 65 159

    [17]

    Briand J P, de Billy L, Charles P, et al. 1991 Phys. Rev. A 43 565Google Scholar

    [18]

    Briand J P, Thuriez S, Giardino G, Borsoni G, Froment M, Eddrief M, Sébenne C 1996 Phys. Rev. Lett. 77 1452

    [19]

    Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar

    [20]

    Mcguire J H, Richards P 1973 Phys. Rev. A 8 1374

    [21]

    Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data tables 24 1

    [22]

    Lapicki G, Mcdaniel F D 1980 Phys. Rev. A 22 1896Google Scholar

    [23]

    Słabkowska K, Polasik M 2006 Radiat. Phys. Chem. 75 1471

    [24]

    Czarnota M, Pajek M, Banas D, Chmielewska D, Rzadkiewicz J, Sujkowski Z, Dousse J C, Berset M, Mauron O, Maillard Y P, Raboud P A, Hoszowska J, Polasik M, łabkowska K S 2003 Nucl. Instrum. Methods B 205 133

    [25]

    Clark M W, Schneider D, Dewitt D, McDonald J W, Bruch R, Schuch R 1993 Phys. Rev. A 47 3983Google Scholar

    [26]

    Zhao Y, Xiao G, Zhang X, Yang Z, Zhang Y, Zhan W, Chen X, Li F 2007 Nucl. Instrum. Methods B 258 121

    [27]

    Datz S, Moak C D, Appleton B R, Carlson T A 1971 Phys. Rev. Lett. 27 363

    [28]

    X-ray data book: http://xdb.lbl.gov/; Table of Isotopes: http://ie.lbl.gov/atom.htm

    [29]

    Krause M O 1979 J. Phys. Chem. Ref. Data. 8 307

    [30]

    Crawford J, Cohen D, Doherty G, Atanacio A 2011 Calculated K, L and M-shell X-ray Line Intensities for Light ion Impact on Selected Targets from Z = 6 to 100 (Sydney: Australian Nuclear Science and Technology Organization) pp29−44

  • [1] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Liang Chang-Hui, Zeng Li-Xia, Zhang Yan-Ning, Du Shu-Bin, Guo Yi-Pan, Yang Zhi-Hu. K-X rays induced by helium-like C ions in thick target atoms of different metals. Acta Physica Sinica, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] Zhou Xian-Ming, Wei Jing, Cheng Rui, Liang Chang-Hui, Chen Yan-Hong, Zhao Yong-Tao, Zhang Xiao-An. K-shell X-ray of Al produced by collisions of ions with near Bohr velocities. Acta Physica Sinica, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] Zhou Xian-Ming, Wei Jing, Cheng Rui, Mei Ce-Xiang, Zeng Li-Xia, Wang Xing, Liang Chang-Hui, Zhao Yong-Tao, Zhang Xiao-An. W L-shell X-ray emission induced by C6+ ions with several hundred MeV/u. Acta Physica Sinica, 2022, 71(11): 113201. doi: 10.7498/aps.70.20212322
    [4] Zhou Xian-Ming,  Wei Jing,  Cheng Rui,  Mei Ce-Xiang,  Zeng Li-Xia,  Wang Xing,  Liang Chang-Hui,  Zhao Yong-Tao,  Zhang Xiao-An. W L-shell X-ray emission induced by C6+ions in the energy range of several hundred MeV/u. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212322
    [5] Zhang Bing-Zhang, Song Zhang-Yong, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Xu Jun-Kui, Feng Yong, Zhu Zhi-Chao, Guo Yan-Ling, Chen Lin, Sun Liang-Ting, Yang Zhi-Hu, Yu De-Yang. X-ray emission produced by interaction of slow highly charged ${\boldsymbol{ {\rm{O}}^{q+}}}$ ions with Al surfaces. Acta Physica Sinica, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [6] Li Yao, Su Tong, Lei Fan, Xu Neng, Sheng Li-Zhi, Zhao Bao-Sheng. X-ray transmission characteristics and potential communication application in plasma region. Acta Physica Sinica, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [7] Liang Chang-Hui,  Zhang Xiao-An,  Li Yao-Zong,  Zhao Yong-Tao,  Zhou Xian-Ming,  Wang Xing,  Mei Ce-Xiang,  Xiao Guo-Qing. Multiple ionization effect of Au induced by different ions. Acta Physica Sinica, 2018, 67(24): 243201. doi: 10.7498/aps.67.20181642
    [8] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Zhao Yong-Tao, Ren Jie-Ru, Wang Xing, Lei Yu, Sun Yuan-Bo, Cheng Rei, Xu Ge, Zeng Li-Xia. K-shell X-ray emission from high energy pulsed C6+ ion beam impacting on Ni target. Acta Physica Sinica, 2017, 66(14): 143401. doi: 10.7498/aps.66.143401
    [9] Zhou Xian-Ming, Zhao Yong-Tao, Cheng Rui, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Liu Shi-Dong, Mei Ce-Xiang, Chen Xi-Meng, Xiao Guo-Qing. Vanadium K-shell X-ray emission induced by xenon ions at near the Bohr velocity. Acta Physica Sinica, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [10] Zhou Xian-Ming, Zhao Yong-Tao, Cheng Rui, Wang Xing, Lei Yu, Sun Yuan-Bo, Wang Yu-Yu, Xu Ge, Ren Jie-Ru, Zhang Xiao-An, Liang Chang-Hui, Li Yao-Zong, Mei Ce-Xiang, Xiao Guo-Qing. Study of Si K-shell X-ray emission induced by H+ and Ar11+ ions. Acta Physica Sinica, 2013, 62(8): 083201. doi: 10.7498/aps.62.083201
    [11] Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Liang Chang-Hui, Cheng Rui, Zhou Xian-Ming, Wang Xing, Lei Yu, Sun Yuan-Bo, Xu Ge, Li Jin-Yu, Xiao Guo-Qing. Thresholds for kinetic and potential energies of Arq+ induced Au target atomic M-X rays emission. Acta Physica Sinica, 2012, 61(11): 113401. doi: 10.7498/aps.61.113401
    [12] Wang Xing, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Xu Ge, Sun Yuan-Bo, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Yu Yang, Li Yong-Feng, Zhang Xiao-An, Li Yao-Zong, Liang Chang-Hui, Xiao Guo-Qing. Multiple ionization effect of Ta induced by heavy ions. Acta Physica Sinica, 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [13] Zou Xian-Rong, Shao Jian-Xiong, Chen Xi-Meng, Cui Ying. Kβ/Kα ratios and energies of the K-shell X-ray of Ar17+ ion in the interaction with metals. Acta Physica Sinica, 2010, 59(9): 6064-6070. doi: 10.7498/aps.59.6064
    [14] Zhu Xiao-Long, Ma Xin-Wen, Li Bin, Feng Wen-Tian, Zhang Shao-Feng, Liu Hui-Ping, Qian Dong-Bin, Zhang Da-Cheng. Experimental investigation of transfer ionization mechanism in slow He2+-He collisions. Acta Physica Sinica, 2010, 59(1): 620-624. doi: 10.7498/aps.59.620
    [15] Zhang Bo-Li, Yang Zhi-Hu, Du Shu-Bin, Chang Hong-Wei, Xue Ying-Li, Song Zhang-Yong, Zhu Ke-Xin, Tian Ye. Study of the L-subshell X-ray production cross sections of Au by 20—50 MeV O5+ bombardments. Acta Physica Sinica, 2009, 58(9): 6113-6116. doi: 10.7498/aps.58.6113
    [16] Zhang Xiao-An, Yang Zhi-Hu, Wang Dang-Chao, Mei Ce-Xiang, Niu Chao-Ying, Wang Wei, Dai Bin, Xiao Guo-Qing. Cobalt-like-Xe-induced infrared light and x-ray emission at Ni surface. Acta Physica Sinica, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [17] Yang Zhi-Hu, Song Zhang-Yong, Cui Ying, Zhang Hong-Qiang, Ruan Fang-Fang, Shao Jian-Xiong, Du Juan, Liu Yu-Wen, Zhu Ke-Xin, Zhang Xiao-An, Shao Cao-Jie, Lu Rong-Chun, Yu De-Yang, Chen Xi-Meng, Cai Xiao-Hong. X-ray spectra produced by interaction of Ar16+ and Ar17+ with Zr. Acta Physica Sinica, 2008, 57(2): 803-807. doi: 10.7498/aps.57.803
    [18] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [19] Zhao Yong-Tao, Xiao Guo-Qing, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Li Fu-Li, Zhang Yan-Ping, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The x-ray spectra of hollow atoms. Acta Physica Sinica, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [20] YANG GUO-HONG, ZHANG JI-YAN, ZHANG BAO-HAN, ZHOU YU-QING, LI JUN. ANALYSIS OF FINE STRUCTURE OF X-RAY SPECTRA FROM LASER-IRRADIATED GOLD DOT. Acta Physica Sinica, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
Metrics
  • Abstract views:  3934
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  01 August 2020
  • Accepted Date:  03 September 2020
  • Available Online:  09 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回