Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of base angle and wettability of nanostructures on droplet wetting behaviors

Li Wen Ma Xiao-Jing Xu Jin-Liang Wang Yan Lei Jun-Peng

Citation:

Effects of base angle and wettability of nanostructures on droplet wetting behaviors

Li Wen, Ma Xiao-Jing, Xu Jin-Liang, Wang Yan, Lei Jun-Peng
PDF
HTML
Get Citation
  • The wetting modes of droplet on nanostructure surface including Cassie, Partial Wenzel, and Wenzel are of great importance in enhancing the condensation heat transfer, surface self-cleaning and oil-water separation. Previous studies focused mainly on the behaviors of droplets on the surface of nano-pillar structures. In this work, the wetting behaviors of argon nanodroplet on platinum surface is investigated by the molecular dynamics simulations. The effects of nanostructure geometry parameters and characteristic contact angle θe on the wetting mode and the transition between different modes are investigated. The three-dimensional simulation box includes a bottom wall containing trapezoid wires (TWs) with different geometry parameters and other five surfaces. The TWs are populated on the wall based on the array arrangement. The periodic boundary conditions are imposed on the four side surfaces of the simulation box. The base angles of the side surface of TW with respect to horizontal plane are chosen as 60° (inverted TW), 90° (rectangular pin fin) and 120° (TW), respectively. For all the three base angles, the nanostructure surface can be completely wetted by liquid, behaving as the Wenzel mode when θe < 118°, under which the gaps of nanostructures are filled with liquid. However, when the characteristic contact angle θe is in a range of 118°–145°, the base angles of nanostructures have different effects on wetting modes. The surface with inverted TWs (60° base angle) is conducive to keeping droplet in Cassie mode, in which the liquid does not penetrate into any gap of nanostructures. The surface with rectangular pin fins behaves as either Partial Wenzel mode or Cassie mode. The transition between the two modes takes place at θe ~130°. The surface with TWs (120° base angle) keeps the droplet in Partial Wenzel mode, in which the gaps of nanostructures are partially wetted by liquid. For θe larger than 145°, the dewetting process takes place on the surface of the nanostructure, in which the droplet leaves the solid surface. We conclude that the wetting modes on nanostructured surface satisfy the minimum surface energy principle. Our work discloses a new finding that the surface with inverted TWs is easy to maintain Cassie mode, which is good for dropwise condensation applications.
      Corresponding author: Ma Xiao-Jing, mxj@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51821004) and the National Key R&D Program of China (Grant No. 2017YFB0601801)
    [1]

    强伟丽 2018 硕士学位论文 (大连: 大连理工大学)

    Qiang W L 2018 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)

    [2]

    Wen R F, Zhong L, Peng B L, Xu W, Ma X H 2015 Appl. Therm. Eng. 88 265Google Scholar

    [3]

    Birbarah P, Miljkovic N 2017 Int. J. Heat Mass Transfer 114 1025Google Scholar

    [4]

    Neinhuis C, Barthlott W 1997 Ann. Bot. 79 667Google Scholar

    [5]

    Lin F, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L, Zhu D B 2002 Adv. Mater. 14 24Google Scholar

    [6]

    Blossey R 2003 Nat. Mater. 2 301Google Scholar

    [7]

    Xie J, Xu J L, Shang W, Zhang K 2018 Int. J. Heat Mass Transfer 127 1170Google Scholar

    [8]

    Wenzel R N 1936 J. Ind. Eng. Chem. 28 988Google Scholar

    [9]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546Google Scholar

    [10]

    Zhuang Y X, Hansen O, Knieling T, Wang C, Rombach P, Lang W, Benecke W, Kehlenbeck M, Koblitz J 2007 J. Microelectromech. Syst. 16 1451Google Scholar

    [11]

    Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y 1999 Langmuir 15 4321Google Scholar

    [12]

    Li Y S, Quéré D, Lv C J, Zheng Q S 2017 Mono Super Mater. 114 3387Google Scholar

    [13]

    Fu T, Wu N N, Lu C, Wang J B, Wang Q L 2019 Mol. Simulat. 45 35Google Scholar

    [14]

    Shahraz A, Borhan A, Fichthorn K A 2013 Langmuir 29 11632Google Scholar

    [15]

    Chen S, Wang J, Chen D 2014 J. Phys. Chem. C 118 18529Google Scholar

    [16]

    Wang J J, Li T, Li Y F, Duan Y R, Jiang Y Y, Arandiyan H, Li H 2018 Molecules 23 2407Google Scholar

    [17]

    Mao Y, Chen C L, Zhang Y 2013 Appl. Phys. A 111 747Google Scholar

    [18]

    Saha J K, Matin M A, Jang J, Jang J 2013 Bull. Korean Chem. Soc. 34 1047Google Scholar

    [19]

    Li Q, Wang B, Chen Y, Zhao Z 2016 Chem. Phys. Lett. 662 73Google Scholar

    [20]

    Wang J, Chen S, Chen D 2015 Phys. Chem. Chem. Phys. 17 30533Google Scholar

    [21]

    Marmur A 2004 Langmuir 20 3517Google Scholar

    [22]

    He B, Patankar N A, Lee J 2003 Langmuir 19 4999Google Scholar

    [23]

    Bico J, Uwe T, Quéré D 2002 Colloids Surf., A 206 41Google Scholar

    [24]

    Shi B, Dhir V K 2009 J. Chem. Phys. 130 204715Google Scholar

    [25]

    Yong X, Zhang L T 2009 Langmuir 25 5045Google Scholar

    [26]

    Savoy E S, Escobedo F A 2012 Langmuir 28 16080Google Scholar

    [27]

    Wang Z, Lin K, Zhao Y 2019 Colloid Interface Sci. 552 563Google Scholar

    [28]

    Zhu C Q, Gao Y R, Huang Y Y, Li H, Meng S, Francisco J S, Zeng X C 2017 Nanoscale 9 18240Google Scholar

    [29]

    章佳健 2020 博士学位论文 (合肥: 中国科学技术大学)

    Zhang J J 2020 Ph. D. Dissertation (Anhui: University of Science and Technology of China) (in Chinese)

    [30]

    Niu Z X, Huang T, Chen Y 2018 Front. Phys.-Beijng 13 137804Google Scholar

    [31]

    Nagayama G, Kawagoe M, Tokunaga A, Tsuruta T 2010 Int. J. Therm. Sci. 49 59Google Scholar

    [32]

    Chen J X, Chen W Y, Xie Y J, Wang Z G, Qin J B 2017 Appl. Surf. Sci. 396 1058Google Scholar

    [33]

    王文辉 2018 硕士学位论文 (哈尔滨: 哈尔滨工程大学)

    Wang W H 2018 M. S. Thesis (Haerbin: Harbin Engineering University) (in Chinese)

    [34]

    Li W, Amirfazli A 2005 J. Colloid Interface Sci. 292 195Google Scholar

    [35]

    Shahraz A, Borhan A, Fichthorn A K A 2012 Langmuir 28 14227Google Scholar

  • 图 1  (a)初始状态下的模拟系统图; (b)系统俯视图; (c) 纳米结构示意图

    Figure 1.  (a) Diagram of a simulated system in initial state; (b) top view of system; (c) schematic diagram of nanostructure.

    图 2  (a) Cassie, (b) Partial Wenzel, (c) Wenzel润湿状态的示意图; (d)粗糙度因子r及相面积分数f确定的示意图

    Figure 2.  Sketches for (a) Cassie, (b) Partial Wenzel and (c) Wenzel wetting states; (d) schematic diagram for determining roughness factor r and phase area fraction f.

    图 3  (a)无量纲势能随粒子间距的变化曲线; (b)本征接触角随表面浸润性的变化曲线

    Figure 3.  (a) Variation curves of dimensionless potential energy with particle spacing; (b) change curves of intrinsic contact angle with surface wettability.

    图 4  液滴在粗糙表面上三种润湿模式下的(a)—(c)密度云图及(d)—(f)接触角

    Figure 4.  (a)–(c) Density nephograms and (d)–(f) contact angles of droplets in three wetting modes on rough surfaces.

    图 5  (a)—(c)当φ = 60°, 90°, 120°时, 不同θe的平衡状态位型图; (d) 当φ = 60°, 90°, 120°时, 渗透率随表面浸润性的变化曲线

    Figure 5.  (a)–(c) Bitmaps of equilibrium states for different θe with φ = 60°, 90°, 120°; (d) permeability curves with surface wettability with φ = 60°, 90°, 120°.

    图 6  (a)当φ = 60°, 90°, 120°时, 表观接触角随θe的变化曲线; (b)液体润湿凹槽数目随θe的变化曲线, 其中, φ = 90°和120°时的曲线完全重合; (c)液体原子渗入到凹槽的数量随θe的变化曲线; (d)液滴基底圆半径随θe的变化曲线

    Figure 6.  (a) Curves of apparent contact angle with θe when φ = 60°, 90°, 120°; (b) change curves of the number of liquid wetting grooves with θe, where the curves at φ = 90° and 120° are completely coincident; (c) amount of liquid atoms entering the groove varies with θe; (d) change curves of the droplet base circle radius with θe.

    图 7  (a)—(c)不同φθe下的理论自由能值; (d)—(f)不同φθe下接触角的变化

    Figure 7.  (a)–(c) Theoretical free energy values under different φ and θe; (d)–(f) change of contact angle under different φ and θe.

    图 8  不同φθe下的润湿模式分区图

    Figure 8.  Wetting mode partition diagram under different φ and θe.

    表 1  三种粗糙表面对应的结构参数

    Table 1.  Structural parameters corresponding to three rough surfaces.

    φ/(°)w /σ s /σh /σrf
    606.94.64.0251.7580.283
    906.94.64.0251.6600.283
    1206.94.64.0251.5090.283
    DownLoad: CSV
  • [1]

    强伟丽 2018 硕士学位论文 (大连: 大连理工大学)

    Qiang W L 2018 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)

    [2]

    Wen R F, Zhong L, Peng B L, Xu W, Ma X H 2015 Appl. Therm. Eng. 88 265Google Scholar

    [3]

    Birbarah P, Miljkovic N 2017 Int. J. Heat Mass Transfer 114 1025Google Scholar

    [4]

    Neinhuis C, Barthlott W 1997 Ann. Bot. 79 667Google Scholar

    [5]

    Lin F, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L, Zhu D B 2002 Adv. Mater. 14 24Google Scholar

    [6]

    Blossey R 2003 Nat. Mater. 2 301Google Scholar

    [7]

    Xie J, Xu J L, Shang W, Zhang K 2018 Int. J. Heat Mass Transfer 127 1170Google Scholar

    [8]

    Wenzel R N 1936 J. Ind. Eng. Chem. 28 988Google Scholar

    [9]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546Google Scholar

    [10]

    Zhuang Y X, Hansen O, Knieling T, Wang C, Rombach P, Lang W, Benecke W, Kehlenbeck M, Koblitz J 2007 J. Microelectromech. Syst. 16 1451Google Scholar

    [11]

    Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y 1999 Langmuir 15 4321Google Scholar

    [12]

    Li Y S, Quéré D, Lv C J, Zheng Q S 2017 Mono Super Mater. 114 3387Google Scholar

    [13]

    Fu T, Wu N N, Lu C, Wang J B, Wang Q L 2019 Mol. Simulat. 45 35Google Scholar

    [14]

    Shahraz A, Borhan A, Fichthorn K A 2013 Langmuir 29 11632Google Scholar

    [15]

    Chen S, Wang J, Chen D 2014 J. Phys. Chem. C 118 18529Google Scholar

    [16]

    Wang J J, Li T, Li Y F, Duan Y R, Jiang Y Y, Arandiyan H, Li H 2018 Molecules 23 2407Google Scholar

    [17]

    Mao Y, Chen C L, Zhang Y 2013 Appl. Phys. A 111 747Google Scholar

    [18]

    Saha J K, Matin M A, Jang J, Jang J 2013 Bull. Korean Chem. Soc. 34 1047Google Scholar

    [19]

    Li Q, Wang B, Chen Y, Zhao Z 2016 Chem. Phys. Lett. 662 73Google Scholar

    [20]

    Wang J, Chen S, Chen D 2015 Phys. Chem. Chem. Phys. 17 30533Google Scholar

    [21]

    Marmur A 2004 Langmuir 20 3517Google Scholar

    [22]

    He B, Patankar N A, Lee J 2003 Langmuir 19 4999Google Scholar

    [23]

    Bico J, Uwe T, Quéré D 2002 Colloids Surf., A 206 41Google Scholar

    [24]

    Shi B, Dhir V K 2009 J. Chem. Phys. 130 204715Google Scholar

    [25]

    Yong X, Zhang L T 2009 Langmuir 25 5045Google Scholar

    [26]

    Savoy E S, Escobedo F A 2012 Langmuir 28 16080Google Scholar

    [27]

    Wang Z, Lin K, Zhao Y 2019 Colloid Interface Sci. 552 563Google Scholar

    [28]

    Zhu C Q, Gao Y R, Huang Y Y, Li H, Meng S, Francisco J S, Zeng X C 2017 Nanoscale 9 18240Google Scholar

    [29]

    章佳健 2020 博士学位论文 (合肥: 中国科学技术大学)

    Zhang J J 2020 Ph. D. Dissertation (Anhui: University of Science and Technology of China) (in Chinese)

    [30]

    Niu Z X, Huang T, Chen Y 2018 Front. Phys.-Beijng 13 137804Google Scholar

    [31]

    Nagayama G, Kawagoe M, Tokunaga A, Tsuruta T 2010 Int. J. Therm. Sci. 49 59Google Scholar

    [32]

    Chen J X, Chen W Y, Xie Y J, Wang Z G, Qin J B 2017 Appl. Surf. Sci. 396 1058Google Scholar

    [33]

    王文辉 2018 硕士学位论文 (哈尔滨: 哈尔滨工程大学)

    Wang W H 2018 M. S. Thesis (Haerbin: Harbin Engineering University) (in Chinese)

    [34]

    Li W, Amirfazli A 2005 J. Colloid Interface Sci. 292 195Google Scholar

    [35]

    Shahraz A, Borhan A, Fichthorn A K A 2012 Langmuir 28 14227Google Scholar

  • [1] Bai Pu, Wang Deng-Jia, Liu Yan-Feng. Molecular dynamics study on effect of wettability on boiling heat transfer of thin liquid films. Acta Physica Sinica, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [2] Feng Shan-Qing, Gong Lu-Yuan, Quan Sheng-Lin, Guo Ya-Li, Shen Sheng-Qiang. Molecular dynamics simulation of nanodroplet impacting on high-temperature plate wall. Acta Physica Sinica, 2024, 73(10): 103105. doi: 10.7498/aps.73.20240034
    [3] Zhang Chao, Bu Long-Xiang, Zhang Zhi-Chao, Fan Zhao-Xia, Fan Feng-Xian. Molecular dynamics study on the surface tension of succinic acid-water nano-aerosol droplets. Acta Physica Sinica, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [4] Li Chun-Xi, Ma Cheng, Ye Xue-Min. Thermocapillary migration of thin droplet on wettability-confined track. Acta Physica Sinica, 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [5] Qin Wei-Guang, Wang Jin, Ji Wen-Jie, Zhao Wen-Jing, Chen Cong, Lan Ding, Wang Yu-Ren. Spreading dynamics of liquid-liquid driving. Acta Physica Sinica, 2022, 71(6): 064701. doi: 10.7498/aps.71.20211682
    [6] Yang Ya-Jing, Mei Chen-Xi, Zhang Xu-Dong, Wei Yan-Ju, Liu Sheng-Hua. Kinematics and passing modes of a droplet impacting on a soap film. Acta Physica Sinica, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [7] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [8] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Thermocapillary migration characteristics of self-rewetting drop. Acta Physica Sinica, 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [9] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Dynamics of evaporating drop on heated surfaces with different wettabilities. Acta Physica Sinica, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [10] Liang Hong, Chai Zhen-Hua, Shi Bao-Chang. Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel. Acta Physica Sinica, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [11] Lin Lin, Yuan Ru-Qiang, Zhang Xin-Xin, Wang Xiao-Dong. Spreading dynamics of liquid droplet on gradient micro-structured surfaces. Acta Physica Sinica, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [12] Liu Tian-Qing, Sun Wei, Li Xiang-Qin, Sun Xiang-Yu, Ai Hong-Ru. A theoretical study on coalescence-induced jumping of partially wetted condensed droplets on nano-textured surfaces. Acta Physica Sinica, 2014, 63(8): 086801. doi: 10.7498/aps.63.086801
    [13] Su Tie-Xiong, Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong. A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [14] Qiu Feng, Wang Meng, Zhou Hua-Guang, Zheng Xuan, Lin Xin, Huang Wei-Dong. Molecular dynamics simulation of the wetting behavior of Pb droplet on Ni substrate. Acta Physica Sinica, 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [15] Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong, Liu Han-Tao. Numerical simulation of droplet impact onto liquid films with smoothed particle hydrodynamics. Acta Physica Sinica, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [16] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [17] Wang Xiao-Liang, Chen Shuo. Simulation of vapor-liquid coexistence using dissipative particle dynamics. Acta Physica Sinica, 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
    [18] Shi Zi-Yuan, Hu Guo-Hui, Zhou Zhe-Wei. Lattice Boltzmann simulation of droplet motion driven by gradient of wettability. Acta Physica Sinica, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [19] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  5342
  • PDF Downloads:  189
  • Cited By: 0
Publishing process
  • Received Date:  23 September 2020
  • Accepted Date:  20 February 2021
  • Available Online:  04 June 2021
  • Published Online:  20 June 2021

/

返回文章
返回