搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米结构表面上部分润湿液滴合并诱导弹跳的理论研究

刘天庆 孙玮 李香琴 孙相彧 艾宏儒

纳米结构表面上部分润湿液滴合并诱导弹跳的理论研究

刘天庆, 孙玮, 李香琴, 孙相彧, 艾宏儒
PDF
导出引用
  • 部分润湿液滴是适宜纳米结构表面上滴状冷凝传热的主要载体,研究纳米结构参数与部分润湿液滴合并弹跳之间的关系有重要意义. 本文依据冷凝液滴生长过程中能量增加最小的原理来判断其是否为部分润湿状态,并根据液滴合并前后的体积和界面自由能守恒,确定了合并液滴的初始形状,进而对合并液滴变形过程的动力学方程进行了求解. 结果表明:部分润湿冷凝液滴仅在纳米柱具有一定高度、直径间距比较大的表面上形成,而当纳米柱高度过低、直径间距比小于0.1时则形成完全润湿的冷凝液滴;液滴合并后能否弹跳与纳米结构参数紧密相关,仅在纳米柱较高、直径间距比适宜的表面上,部分润湿液滴合并后才能诱发弹跳;液滴尺度及待合并液滴间的尺度比对合并弹跳也有重要影响;多个部分润湿液滴合并后由于具有更多的过剩界面自由能而比两个液滴合并更容易诱发弹跳. 本模型对纳米结构表面上冷凝液滴是否合并诱发弹跳的计算结果与绝大部分实测结果相一致,准确率达到95%.
    • 基金项目: 国家自然科学基金(批准号:50876015)资助的课题.
    [1]

    Miljkovic N, Wang E N 2013 MRS Bull. 38 397

    [2]
    [3]

    Miljkovic N, Enright R, Nam Y, Lopez K, Dou N, Sack J, Wang E N 2013 Nano Lett. 13 179

    [4]
    [5]

    Rykaczewski K, Paxson A T, Anand S, Chen X M, Wang Z K, Varanasi K K 2013 Langmuir 29 881

    [6]

    Wisdom K M, Watson J A, Qu X P, Liu F J, Watson G S, Chen C H 2013 Proc. Natl. Acad. Sci. USA 110 7992

    [7]
    [8]

    Enright R, Miljkovic N, Al-Obeidi A, Thompson C V, Wang E N 2012 Langmuir 28 14424

    [9]
    [10]
    [11]

    Miljkovic N, Enright R, Wang E N 2012 ACS Nano 6 1776

    [12]

    Chen X M, Wu J, Ma R Y, Hua M, Koratkar N, Yao S H, Wang Z K 2011 Adv. Funct. Mater. 21 4617

    [13]
    [14]
    [15]

    Boreyko J B, Chen C H 2009 Phys. Rev. Lett. 103 184501

    [16]

    Boreyko J B, Chen C H 2010 Phys. Fluids 22 091110

    [17]
    [18]
    [19]

    Feng J, Pang Y C, Qin Z Q, Ma R Y, Yao S H 2012 ACS Appl. Mater. Interfaces 4 6618

    [20]
    [21]

    Boreyko J B, Collier C P 2013 ACS Nano 7 1618

    [22]
    [23]

    Zhang Q L, He M, Chen J, Wang J J, Song Y L, Jiang L 2013 Chem. Commun. 49 4516

    [24]

    He M, Zhou X, Zeng X P, Cui D P, Zhang Q L, Chen J, Li H L, Wang J J, Cao Z X, Song Y L, Jiang L 2012 Soft Matter 8 6680

    [25]
    [26]
    [27]

    Boreyko J B, Chen C H 2013 Int. J. Heat. Mass. Trans. 61 409

    [28]
    [29]

    Boreyko J B, Zhao Y J, Chen C H 2011 Appl. Phys. Lett. 99 234105

    [30]
    [31]

    Feng J, Qin Z Q, Yao S H 2012 Langmuir 28 6067

    [32]

    Yang Z, Wu Y Z, Ye Y F 2012 Chin. Phys. B 21 126801

    [33]
    [34]

    Gong M G, Xu X L, Yang Z Liu Y S, Liu L 2010 Chin. Phys. B 19 56701

    [35]
    [36]
    [37]

    Yu J, Wang H J, Shao W J, Xu X L 2014 Chin. Phys. B 23 16803

    [38]
    [39]

    Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese) [顾春元, 狄勤丰, 施利毅, 吴非, 王文昌, 余祖斌 2008 物理学报 57 3071]

    [40]

    Liang L X, Deng Y, Wang Y 2013 Chin. Phys. Lett. 30 108104

    [41]
    [42]

    Wang B, Nian J Y, Tie L, Zhang Y B, Guo Z G 2013 Acta Phys. Sin. 62 146801 (in Chinese) [王奔, 念敬妍, 铁璐, 张亚斌, 郭志光 2013 物理学报 62 146801]

    [43]
    [44]

    Rykaczewski K, Osborn W A, Chinn J, Walker M L, Scott J H J, Jones W, Hao C L, Yao S H, Wang Z K 2012 Soft Matter 8 8786

    [45]
    [46]
    [47]

    Rykaczewski K 2012 Langmuir 28 7720

    [48]
    [49]

    Rykaczewski K, Scott J H J 2011 ACS Nano 5 5962

    [50]

    Liu T Q, Sun W, Li X Q, Sun X Y, Ai H R 2013 Acta Phys. Chim. Sin. 29 1762 (in Chinese) [刘天庆, 孙玮, 李香琴, 孙相彧, 艾宏儒 2013 物理化学学报 29 1762]

    [51]
    [52]
    [53]

    Narhe R D, Beysens D A 2006 Europhys. Lett. 75 98

    [54]
    [55]

    Narhe R D, Beysens D A 2007 Langmuir 23 6486

    [56]
    [57]

    Narhe R D, Beysens D A 2004 Phys. Rev. Lett. 93 76103

    [58]
    [59]

    Wier K A, Mccarthy T J 2006 Langmuir 22 2433

    [60]

    Jung Y C, Bhushan B 2008 J. Microsc. Oxford 229 127

    [61]
    [62]
    [63]

    Lafuma A, Quere D 2003 Nature Mater. 2 457

    [64]

    Narhe R D, Gonzalez-Vinas W, Beysens D A 2010 Appl. Surf. Sci. 256 4930

    [65]
    [66]
    [67]

    Chen X L, Lu T 2009 Sci. China Series G: Phys. Mech. Astron. 52 233

    [68]

    Xiao X C, Cheng Y T, Sheldon B W, Rankin J 2008 J. Mater. Res. 23 2174

    [69]
    [70]
    [71]

    Furuta T, Sakai M, Isobe T, Nakajima A 2010 Langmuir 26 13305

    [72]

    Dietz C, Rykaczewski K, Fedorov A, Joshi Y 2010 J. Heat Transfer 132 080904

    [73]
    [74]

    Kulinich S A, Farhadi S, Nose K, Du X W 2011 Langmuir 27 25

    [75]
    [76]
    [77]

    Liu T Q, Sun W, Sun X Y, Ai H R 2012 Colloid Surface A 414 366

    [78]
    [79]

    Liu T Q, Sun W, Sun X Y, Ai H R 2012 Acta Phys. Chim. Sin. 28 1206 (in Chinese) [刘天庆, 孙玮, 孙相彧, 艾宏儒 2012 物理化学学报 28 1206]

    [80]
    [81]

    Wang F C, Yang F Q, Zhao Y P 2011 Appl. Phys. Lett. 98 053112

    [82]

    Peng B L, Wang S F, Lan Z, Xu W, Wen R F, Ma X H 2013 Appl. Phys. Lett. 102 151601

    [83]
    [84]
    [85]

    Harris J W, Stocker H 1998 Handbook of Mathematics and Computational Science (New York: Springer-Verlag) p107

    [86]
    [87]

    Dorrer C, Ruehe J 2008 Adv. Mater. 20 159

    [88]
    [89]

    Cheng J T, Vandadi A, Chen C L 2012 Appl. Phys. Lett. 101 131909

    [90]
    [91]

    Torresin D, Tiwari M K, Del Col D, Poulikakos D 2013 Langmuir 29 840

  • [1]

    Miljkovic N, Wang E N 2013 MRS Bull. 38 397

    [2]
    [3]

    Miljkovic N, Enright R, Nam Y, Lopez K, Dou N, Sack J, Wang E N 2013 Nano Lett. 13 179

    [4]
    [5]

    Rykaczewski K, Paxson A T, Anand S, Chen X M, Wang Z K, Varanasi K K 2013 Langmuir 29 881

    [6]

    Wisdom K M, Watson J A, Qu X P, Liu F J, Watson G S, Chen C H 2013 Proc. Natl. Acad. Sci. USA 110 7992

    [7]
    [8]

    Enright R, Miljkovic N, Al-Obeidi A, Thompson C V, Wang E N 2012 Langmuir 28 14424

    [9]
    [10]
    [11]

    Miljkovic N, Enright R, Wang E N 2012 ACS Nano 6 1776

    [12]

    Chen X M, Wu J, Ma R Y, Hua M, Koratkar N, Yao S H, Wang Z K 2011 Adv. Funct. Mater. 21 4617

    [13]
    [14]
    [15]

    Boreyko J B, Chen C H 2009 Phys. Rev. Lett. 103 184501

    [16]

    Boreyko J B, Chen C H 2010 Phys. Fluids 22 091110

    [17]
    [18]
    [19]

    Feng J, Pang Y C, Qin Z Q, Ma R Y, Yao S H 2012 ACS Appl. Mater. Interfaces 4 6618

    [20]
    [21]

    Boreyko J B, Collier C P 2013 ACS Nano 7 1618

    [22]
    [23]

    Zhang Q L, He M, Chen J, Wang J J, Song Y L, Jiang L 2013 Chem. Commun. 49 4516

    [24]

    He M, Zhou X, Zeng X P, Cui D P, Zhang Q L, Chen J, Li H L, Wang J J, Cao Z X, Song Y L, Jiang L 2012 Soft Matter 8 6680

    [25]
    [26]
    [27]

    Boreyko J B, Chen C H 2013 Int. J. Heat. Mass. Trans. 61 409

    [28]
    [29]

    Boreyko J B, Zhao Y J, Chen C H 2011 Appl. Phys. Lett. 99 234105

    [30]
    [31]

    Feng J, Qin Z Q, Yao S H 2012 Langmuir 28 6067

    [32]

    Yang Z, Wu Y Z, Ye Y F 2012 Chin. Phys. B 21 126801

    [33]
    [34]

    Gong M G, Xu X L, Yang Z Liu Y S, Liu L 2010 Chin. Phys. B 19 56701

    [35]
    [36]
    [37]

    Yu J, Wang H J, Shao W J, Xu X L 2014 Chin. Phys. B 23 16803

    [38]
    [39]

    Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese) [顾春元, 狄勤丰, 施利毅, 吴非, 王文昌, 余祖斌 2008 物理学报 57 3071]

    [40]

    Liang L X, Deng Y, Wang Y 2013 Chin. Phys. Lett. 30 108104

    [41]
    [42]

    Wang B, Nian J Y, Tie L, Zhang Y B, Guo Z G 2013 Acta Phys. Sin. 62 146801 (in Chinese) [王奔, 念敬妍, 铁璐, 张亚斌, 郭志光 2013 物理学报 62 146801]

    [43]
    [44]

    Rykaczewski K, Osborn W A, Chinn J, Walker M L, Scott J H J, Jones W, Hao C L, Yao S H, Wang Z K 2012 Soft Matter 8 8786

    [45]
    [46]
    [47]

    Rykaczewski K 2012 Langmuir 28 7720

    [48]
    [49]

    Rykaczewski K, Scott J H J 2011 ACS Nano 5 5962

    [50]

    Liu T Q, Sun W, Li X Q, Sun X Y, Ai H R 2013 Acta Phys. Chim. Sin. 29 1762 (in Chinese) [刘天庆, 孙玮, 李香琴, 孙相彧, 艾宏儒 2013 物理化学学报 29 1762]

    [51]
    [52]
    [53]

    Narhe R D, Beysens D A 2006 Europhys. Lett. 75 98

    [54]
    [55]

    Narhe R D, Beysens D A 2007 Langmuir 23 6486

    [56]
    [57]

    Narhe R D, Beysens D A 2004 Phys. Rev. Lett. 93 76103

    [58]
    [59]

    Wier K A, Mccarthy T J 2006 Langmuir 22 2433

    [60]

    Jung Y C, Bhushan B 2008 J. Microsc. Oxford 229 127

    [61]
    [62]
    [63]

    Lafuma A, Quere D 2003 Nature Mater. 2 457

    [64]

    Narhe R D, Gonzalez-Vinas W, Beysens D A 2010 Appl. Surf. Sci. 256 4930

    [65]
    [66]
    [67]

    Chen X L, Lu T 2009 Sci. China Series G: Phys. Mech. Astron. 52 233

    [68]

    Xiao X C, Cheng Y T, Sheldon B W, Rankin J 2008 J. Mater. Res. 23 2174

    [69]
    [70]
    [71]

    Furuta T, Sakai M, Isobe T, Nakajima A 2010 Langmuir 26 13305

    [72]

    Dietz C, Rykaczewski K, Fedorov A, Joshi Y 2010 J. Heat Transfer 132 080904

    [73]
    [74]

    Kulinich S A, Farhadi S, Nose K, Du X W 2011 Langmuir 27 25

    [75]
    [76]
    [77]

    Liu T Q, Sun W, Sun X Y, Ai H R 2012 Colloid Surface A 414 366

    [78]
    [79]

    Liu T Q, Sun W, Sun X Y, Ai H R 2012 Acta Phys. Chim. Sin. 28 1206 (in Chinese) [刘天庆, 孙玮, 孙相彧, 艾宏儒 2012 物理化学学报 28 1206]

    [80]
    [81]

    Wang F C, Yang F Q, Zhao Y P 2011 Appl. Phys. Lett. 98 053112

    [82]

    Peng B L, Wang S F, Lan Z, Xu W, Wen R F, Ma X H 2013 Appl. Phys. Lett. 102 151601

    [83]
    [84]
    [85]

    Harris J W, Stocker H 1998 Handbook of Mathematics and Computational Science (New York: Springer-Verlag) p107

    [86]
    [87]

    Dorrer C, Ruehe J 2008 Adv. Mater. 20 159

    [88]
    [89]

    Cheng J T, Vandadi A, Chen C L 2012 Appl. Phys. Lett. 101 131909

    [90]
    [91]

    Torresin D, Tiwari M K, Del Col D, Poulikakos D 2013 Langmuir 29 840

  • [1] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [2] 范增华, 荣伟彬, 刘紫潇, 高军, 田业冰. 单指式微执行器端面冷凝液滴的迁移特性. 物理学报, 2020, 69(18): 186801. doi: 10.7498/aps.69.20200463
    [3] 徐威, 兰忠, 彭本利, 温荣福, 马学虎. 微液滴在不同能量表面上润湿状态的分子动力学模拟. 物理学报, 2015, 64(21): 216801. doi: 10.7498/aps.64.216801
    [4] 赵博文, 尚海龙, 陈凡, 石恺成, 李荣斌, 李戈扬. 溅射Al对AlN的润湿与钎焊. 物理学报, 2016, 65(8): 086801. doi: 10.7498/aps.65.086801
    [5] 李爱华, 张凯旺, 孟利军, 李 俊, 刘文亮, 钟建新. 基于graphene条带的硅纳米结构. 物理学报, 2008, 57(7): 4356-4363. doi: 10.7498/aps.57.4356
    [6] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征. 物理学报, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [7] 华钰超, 曹炳阳. 多约束纳米结构的声子热导率模型研究. 物理学报, 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [8] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [9] 杨红官, 施毅, 闾锦, 濮林, 张荣, 郑有. 锗/硅异质纳米结构中空穴存储特性研究. 物理学报, 2004, 53(4): 1211-1216. doi: 10.7498/aps.53.1211
    [10] 程笃庆, 关庆丰, 朱健, 邱东华, 程秀围, 王雪涛. 强流脉冲电子束诱发纯镍表层纳米结构的形成机制. 物理学报, 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [11] 武祥, 蔡伟, 曲凤玉. ZnO一维纳米结构的形貌调控与亲疏水性研究. 物理学报, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [12] 韩玉岩, 曹亮, 徐法强, 陈铁锌, 郑志远, 万力, 刘凌云. 苝四甲酸二酐有机单晶纳米结构的制备及形成机理的研究. 物理学报, 2012, 61(7): 078103. doi: 10.7498/aps.61.078103
    [13] 高翔, 陈晓波, 黎军, 李家明. 价键优选法及其在纳米结构预测与物性研究中的应用. 物理学报, 2013, 62(9): 093601. doi: 10.7498/aps.62.093601
    [14] 陈修国, 袁奎, 杜卫超, 陈军, 江浩, 张传维, 刘世元. 基于Mueller矩阵成像椭偏仪的纳米结构几何参数大面积测量. 物理学报, 2016, 65(7): 070703. doi: 10.7498/aps.65.070703
    [15] 王丹, 贺永宁, 叶鸣, 崔万照. 金纳米结构表面二次电子发射特性. 物理学报, 2018, 67(8): 087902. doi: 10.7498/aps.67.20180079
    [16] 张洪涛, 徐重阳, 邹雪城, 王长安, 赵伯芳, 周雪梅, 曾祥斌. 4H-SiC纳米薄膜的微结构及其光电性质研究. 物理学报, 2002, 51(2): 304-309. doi: 10.7498/aps.51.304
    [17] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响. 物理学报, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [18] 刘仕锋, 秦国刚, 尤力平, 张纪才, 傅竹西, 戴 伦. 在双热舟化学气相沉积系统中通过掺In技术生长GaN纳米线和纳米锥. 物理学报, 2005, 54(9): 4329-4333. doi: 10.7498/aps.54.4329
    [19] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应. 物理学报, 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [20] 贾曦, 刘爱萍, 刘洋溢, 唐为华, 王君伟. SnO2微纳米材料的合成及其生长机理研究. 物理学报, 2009, 58(4): 2572-2577. doi: 10.7498/aps.58.2572
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1551
  • PDF下载量:  653
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-05
  • 修回日期:  2014-01-10
  • 刊出日期:  2014-04-05

纳米结构表面上部分润湿液滴合并诱导弹跳的理论研究

  • 1. 大连理工大学化工学院, 大连 116024
    基金项目: 

    国家自然科学基金(批准号:50876015)资助的课题.

摘要: 部分润湿液滴是适宜纳米结构表面上滴状冷凝传热的主要载体,研究纳米结构参数与部分润湿液滴合并弹跳之间的关系有重要意义. 本文依据冷凝液滴生长过程中能量增加最小的原理来判断其是否为部分润湿状态,并根据液滴合并前后的体积和界面自由能守恒,确定了合并液滴的初始形状,进而对合并液滴变形过程的动力学方程进行了求解. 结果表明:部分润湿冷凝液滴仅在纳米柱具有一定高度、直径间距比较大的表面上形成,而当纳米柱高度过低、直径间距比小于0.1时则形成完全润湿的冷凝液滴;液滴合并后能否弹跳与纳米结构参数紧密相关,仅在纳米柱较高、直径间距比适宜的表面上,部分润湿液滴合并后才能诱发弹跳;液滴尺度及待合并液滴间的尺度比对合并弹跳也有重要影响;多个部分润湿液滴合并后由于具有更多的过剩界面自由能而比两个液滴合并更容易诱发弹跳. 本模型对纳米结构表面上冷凝液滴是否合并诱发弹跳的计算结果与绝大部分实测结果相一致,准确率达到95%.

English Abstract

参考文献 (91)

目录

    /

    返回文章
    返回