搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟

张金平 张洋洋 李慧 高景霞 程新路

纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟

张金平, 张洋洋, 李慧, 高景霞, 程新路
PDF
导出引用
导出核心图
  • 利用分子动力学模拟方法和反应力场势函数研究了Al/SiO2层状纳米体系的铝热反应,模拟了在不同初始温度下(600,700,800,900,1000和1100 K)绝热反应的结构变化和能量性质. 发现Al/SiO2体系的铝热反应是自加热的氧化还原反应. 当初始温度为900和1000 K时,Al经历了熔化前的一个临界状态,与SiO2的铝热反应比较活跃,系统温度随着反应时间的增加不断升高. 当初始温度为600,700,800和1100 K时,初始温度越高,在Al和SiO2界面形成的Al-O层越薄,系统发生铝热反应达到的最终绝热温度越高,所用的时间(有效反应时间)越短,即界面扩散阻挡层的厚度对铝热反应的自加热速率产生了影响. 初始温度为600,700,800,1100 K时的自加热速率分别为3.4,3.5,4.7 和5.4 K/ps. Al/SiO2体系的铝热反应析出了Si单质,与实验结果相符合.
    • 基金项目: 国家自然科学基金(批准号:11176020)、河南省教育厅科学技术重点项目(批准号:13B140986,13B430985)和郑州市科技局(批准号:121PPTGG359-3,121PYFZX178)资助的课题.
    [1]

    Xue Y, Ren X M, Xie R Z, Zhang R, Shi C H 2009 Initiators Pyrotechnics 6 17 (in Chinese) [薛艳, 任小明, 解瑞珍, 张蕊, 史春红 2009 火工品 6 17]

    [2]
    [3]

    An T, Zhao F Q, Pei Q, Xiao L B, Xu S Y, Gao H X, Xing X L 2011 Chin. J. Inorg. Chem. 27 231 (in Chinese) [安亭, 赵凤起, 裴庆, 肖立柏, 徐司雨, 高红旭, 邢晓玲 2011 无机化学学报 27 231]

    [4]

    Xu D, Yang Y, Cheng H, Li Y Y, Zhang K 2012 Combust. Flame 159 2202

    [5]
    [6]
    [7]

    Yang Y, Xu D, Zhang K 2012 J. Mater. Sci. 47 1296

    [8]

    Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Redner P, Kapoor D, Nicolich S, Balas W 2008 Propell. Explos. Pyrot. 33 122

    [9]
    [10]
    [11]

    Cheng J L, Hng H H, Ng H Y, Soon P C, Lee Y W 2010 J. Phys. Chem. Solids 71 90

    [12]

    Cheng J L, Hng H H, Lee Y W, Du S W, Thadhani N N 2010 Combust. Flame 157 2241

    [13]
    [14]

    Grishin Yu M, Kozlov N P, Skryabin A S, Vadchenko S G, Sachkova N V, Sytschev A E 2011 Int. J. Self-Propag High-Temp. Synth. 20 181

    [15]
    [16]
    [17]

    Ermoline A, Stamatis D, Dreizin E L 2012 Thermochim. Acta 527 52

    [18]
    [19]

    Wen J Z, Ringuette S, Bohlouli-Zanjani G, Hu A, Nguyen N H, Persic J, Petre C F, Zhou Y N 2013 Nanoscale Res. Lett. 8 184

    [20]
    [21]

    Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 物理学报 61 246501]

    [22]
    [23]

    Song H J, Huang F L 2011 Chin. Phys. Lett. 28 096103

    [24]
    [25]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

    [26]
    [27]

    Tomar V, Zhou M 2006 Phys. Rev. B 73 174116

    [28]
    [29]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2008 Phys. Rev. E 77 066103

    [30]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2009 Appl. Phys. Lett. 95 043114

    [31]
    [32]
    [33]

    Song W X, Zhao S J 2012 Chin. J. Energy. Mater. 20 571 (in Chinese) [宋文雄, 赵世金 2012 含能材料 20 571]

    [34]

    Zhou T T, Zybin S V, Liu Y, Huang F L, Goddard W A 2012 J. Appl. Phys. 111 124904

    [35]
    [36]
    [37]

    Liu H, Li Q K, He Y H 2013 Acta Phys. Sin. 62 208202 (in Chinese) [刘海, 李启楷, 何远航 2013 物理学报 62 208202]

    [38]

    van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396

    [39]
    [40]

    Narayanan B, van Duin A C T, Kappes B B, Reimanis I E, Ciobanu C V 2012 Model. Simul. Mater. Sci. Eng. 20 015002

    [41]
    [42]
    [43]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [44]
    [45]

    Tang F L, Chen G B, Xie Y, Lu W J 2011 Acta Phys. Sin. 60 066801 (in Chinese) [汤富领, 陈功宝, 谢勇, 路文江 2011 物理学报 60 066801]

    [46]

    Zhao S, Germann T C, Strachan A 2006 J. Chem. Phys. 125 164707

    [47]
  • [1]

    Xue Y, Ren X M, Xie R Z, Zhang R, Shi C H 2009 Initiators Pyrotechnics 6 17 (in Chinese) [薛艳, 任小明, 解瑞珍, 张蕊, 史春红 2009 火工品 6 17]

    [2]
    [3]

    An T, Zhao F Q, Pei Q, Xiao L B, Xu S Y, Gao H X, Xing X L 2011 Chin. J. Inorg. Chem. 27 231 (in Chinese) [安亭, 赵凤起, 裴庆, 肖立柏, 徐司雨, 高红旭, 邢晓玲 2011 无机化学学报 27 231]

    [4]

    Xu D, Yang Y, Cheng H, Li Y Y, Zhang K 2012 Combust. Flame 159 2202

    [5]
    [6]
    [7]

    Yang Y, Xu D, Zhang K 2012 J. Mater. Sci. 47 1296

    [8]

    Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Redner P, Kapoor D, Nicolich S, Balas W 2008 Propell. Explos. Pyrot. 33 122

    [9]
    [10]
    [11]

    Cheng J L, Hng H H, Ng H Y, Soon P C, Lee Y W 2010 J. Phys. Chem. Solids 71 90

    [12]

    Cheng J L, Hng H H, Lee Y W, Du S W, Thadhani N N 2010 Combust. Flame 157 2241

    [13]
    [14]

    Grishin Yu M, Kozlov N P, Skryabin A S, Vadchenko S G, Sachkova N V, Sytschev A E 2011 Int. J. Self-Propag High-Temp. Synth. 20 181

    [15]
    [16]
    [17]

    Ermoline A, Stamatis D, Dreizin E L 2012 Thermochim. Acta 527 52

    [18]
    [19]

    Wen J Z, Ringuette S, Bohlouli-Zanjani G, Hu A, Nguyen N H, Persic J, Petre C F, Zhou Y N 2013 Nanoscale Res. Lett. 8 184

    [20]
    [21]

    Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 物理学报 61 246501]

    [22]
    [23]

    Song H J, Huang F L 2011 Chin. Phys. Lett. 28 096103

    [24]
    [25]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

    [26]
    [27]

    Tomar V, Zhou M 2006 Phys. Rev. B 73 174116

    [28]
    [29]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2008 Phys. Rev. E 77 066103

    [30]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2009 Appl. Phys. Lett. 95 043114

    [31]
    [32]
    [33]

    Song W X, Zhao S J 2012 Chin. J. Energy. Mater. 20 571 (in Chinese) [宋文雄, 赵世金 2012 含能材料 20 571]

    [34]

    Zhou T T, Zybin S V, Liu Y, Huang F L, Goddard W A 2012 J. Appl. Phys. 111 124904

    [35]
    [36]
    [37]

    Liu H, Li Q K, He Y H 2013 Acta Phys. Sin. 62 208202 (in Chinese) [刘海, 李启楷, 何远航 2013 物理学报 62 208202]

    [38]

    van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396

    [39]
    [40]

    Narayanan B, van Duin A C T, Kappes B B, Reimanis I E, Ciobanu C V 2012 Model. Simul. Mater. Sci. Eng. 20 015002

    [41]
    [42]
    [43]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [44]
    [45]

    Tang F L, Chen G B, Xie Y, Lu W J 2011 Acta Phys. Sin. 60 066801 (in Chinese) [汤富领, 陈功宝, 谢勇, 路文江 2011 物理学报 60 066801]

    [46]

    Zhao S, Germann T C, Strachan A 2006 J. Chem. Phys. 125 164707

    [47]
  • [1] 刘海, 李启楷, 何远航. CL20-TNT共晶高温热解的ReaxFF/lg反应力场分子动力学模拟. 物理学报, 2013, 62(20): 208202. doi: 10.7498/aps.62.208202
    [2] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究. 物理学报, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [3] 刘华敏, 范永胜, 田时海, 周维, 陈旭. 分子动力学模拟压水反应堆中氢气对水的影响. 物理学报, 2012, 61(6): 062801. doi: 10.7498/aps.61.062801
    [4] 刘建廷, 段海明. 不同势下铱团簇结构和熔化行为的分子动力学模拟. 物理学报, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [5] 周耐根, 胡秋发, 许文祥, 李克, 周浪. 硅熔化特性的分子动力学模拟–-不同势函数的对比研究 . 物理学报, 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [6] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究. 物理学报, 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [7] 马颖, 孙玲玲, 周益春. BaTiO3铁电体中辐射位移效应的分子动力学模拟. 物理学报, 2011, 60(4): 046105. doi: 10.7498/aps.60.046105
    [8] 范永胜, 陈旭, 周维, 史顺平, 李勇. 分子动力学模拟压水反应堆中联氨对水的影响. 物理学报, 2011, 60(3): 032802. doi: 10.7498/aps.60.032802
    [9] 韩甫田, 刘平安, 唐振方, 施其宏, 郭立平. 半结晶聚酯(PET)的二相共存结构的表征. 物理学报, 2001, 50(6): 1132-1138. doi: 10.7498/aps.50.1132
    [10] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [11] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [12] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [13] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [14] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [15] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
    [16] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [17] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [18] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究. 物理学报, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
  • 引用本文:
    Citation:
计量
  • 文章访问数:  871
  • PDF下载量:  1055
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-10
  • 修回日期:  2014-01-08
  • 刊出日期:  2014-04-20

纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟

  • 1. 黄河科技学院信息工程学院, 郑州 450006;
  • 2. 四川大学原子与分子物理研究所, 成都 610065
    基金项目: 

    国家自然科学基金(批准号:11176020)、河南省教育厅科学技术重点项目(批准号:13B140986,13B430985)和郑州市科技局(批准号:121PPTGG359-3,121PYFZX178)资助的课题.

摘要: 利用分子动力学模拟方法和反应力场势函数研究了Al/SiO2层状纳米体系的铝热反应,模拟了在不同初始温度下(600,700,800,900,1000和1100 K)绝热反应的结构变化和能量性质. 发现Al/SiO2体系的铝热反应是自加热的氧化还原反应. 当初始温度为900和1000 K时,Al经历了熔化前的一个临界状态,与SiO2的铝热反应比较活跃,系统温度随着反应时间的增加不断升高. 当初始温度为600,700,800和1100 K时,初始温度越高,在Al和SiO2界面形成的Al-O层越薄,系统发生铝热反应达到的最终绝热温度越高,所用的时间(有效反应时间)越短,即界面扩散阻挡层的厚度对铝热反应的自加热速率产生了影响. 初始温度为600,700,800,1100 K时的自加热速率分别为3.4,3.5,4.7 和5.4 K/ps. Al/SiO2体系的铝热反应析出了Si单质,与实验结果相符合.

English Abstract

参考文献 (47)

目录

    /

    返回文章
    返回