引用本文: |
Citation: |
计量
- 文章访问数: 3094
- PDF下载量: 1005
- 被引次数: 0
引用本文: |
Citation: |
Abstract: Based on analysis of the physical process of hole tunneling, the time characteristics of the writing/erasing and retention in p-channel Ge/Si hetero-nanocrystal-based metal-oxide-semiconductor field-effect transistor(MOSFET) memory have been simulated numerically. Owing to the advantages of a compound potential well and a higher band offset in the valence band, the retention time is increased up to the orders of over 108 and 105, compared with the conventional Si-nanocrystal-based MOSFET memory and the n-channel Ge/Si hetero-nanocrystal-based MOSFET memory, respectively. Moreover, the present device keeps on having high-speed writing/erasing in the direct-tunneling ultrathin oxide regime. It would be expected to solve the contradictory problem between high-speed programming and long retention, therefore, the performance would be substantially improved.