Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells

Cao Yu Jiang Jia-Hao Liu Chao-Ying Ling Tong Meng Dan Zhou Jing Liu Huan Wang Jun-Yao

Citation:

Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells

Cao Yu, Jiang Jia-Hao, Liu Chao-Ying, Ling Tong, Meng Dan, Zhou Jing, Liu Huan, Wang Jun-Yao
PDF
HTML
Get Citation
  • Sb2(S,Se)3 thin film solar cells have been developed rapidly in recent years due to their abundant raw materials, simple preparation method, stable performance, etc. In this study, based on the characteristic of tunable band gap of Sb2(S,Se)3 light absorption layer, wx-AMPS software is used to simulate and design the Sb2(S,Se)3 solar cell with narrowing band gap structure, and compared with the Sb2(S,Se)3 solar cell with constant band gap (50% selenium content). The results show that the additional electric field formed by the narrowing band gap can promote the holes’ transport and inhibit the carrier’s recombination. Compared with the constant band gap structure, the narrowing band gap structure can increase the short-circuit current density of Sb2(S,Se)3 solar cells from 19.34 to 22.94 mA·cm–2, the filling factor from 64.34% to 77.04%, and the photoelectric conversion efficiency from 12.03% to 14.42%. Then, the effect of electron mobility on the performance of Sb2(S,Se)3 solar cells with narrowing band gap is studied. It is found that when the hole mobility is 0.1 cm2·V–1·s–1, the advantage of narrowing band gap can gradually appear after the electron mobility is higher than 0.25 cm2·V–1·s–1. The performance of Sb2(S,Se)3 solar cell is enhanced with the electron mobility further increasing. However, when the electron mobility is higher than 5 cm2·V–1·s–1, the device performance is saturated. Moreover, we demonstrate that the degradation caused by thick or high defect state of Sb2(S,Se)3 solar cell can be effectively alleviated by applying the narrowing band gap due to the suppression of the carrier recombination. When the thickness is 1.5 μm and the defect density is 1016 cm–3, the photoelectric conversion efficiency of Sb2(S,Se)3 solar cell with narrowing band gap is 6.34% higher than that of the constant bandgap. Our results demonstrate that the band gap engineering of the light absorption layer is one of the effective technical routes to optimizing the performance of Sb2(S,Se)3 solar cells. Since the photo-absorption material such as amorphous/microcrystalline silicon germanium, Copper indium gallium selenide and perovskite have the characteristic of tunable band gap. The design of the gradient band gap structure can also be applied to the optimization of the above alloy or compound solar cells.
      Corresponding author: Zhou Jing, zhoujing@neepu.edu.cn ; Wang Jun-Yao, junyao_0001@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51772049), the ‘Thirteenth Five-Year’ Scientific and Technological Research Project of the Education Department of Jilin Province, China (Grant Nos. JJKH20200105KJ, JJKH20190705KJ), and the Project of Jilin Provincial Development and Reform Commission, China (Grant No. 2019C042)
    [1]

    Giraldo S, Jehl Z, Placidi M, Izquierdo-Roca V, Perez-Rodriguez A, Saucedo E 2019 Adv. Mater. 31 1806692Google Scholar

    [2]

    Ramanujam J, Bishop D M, Todorov T K, Gunawan O, Rath J, Nekovei R, Artegiani E, Romeo A 2020 Mater. Sci. 110 100619Google Scholar

    [3]

    Lei H W, Chen J J, Tan Z J, Fang G J 2019 Solar RRL 3 1900026Google Scholar

    [4]

    Liang G X, Luo Y D, Chen S, Tang R, Zheng Z H, Li X J, Liu X S, Liu Y K, Li Y F, Chen X Y, Su Z H, Zhang X H, Ma H L, Fan P 2020 Nano Energy 73 104806Google Scholar

    [5]

    薛丁江, 石杭杰, 唐江 2015 物理学报 64 038406Google Scholar

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar

    [6]

    Tang R, Zheng Z H, Su Z H, Li X J, Wei Y D, Zhang X H, Fu Y Q, Luo J T, Fan P, Liang G X 2019 Nano Energy 64 103929Google Scholar

    [7]

    Kondrotas R, Chen C, Tang J 2018 Joule 2 857Google Scholar

    [8]

    Mavlonov A, Razykov T, Raziq F, Gan J, Chantana J, Kawano Y, Nishimura T, Wei H, Zakutayev A, Minemoto T, Zu X, Li S, Qiao L 2020 Sol. Energy 201 227Google Scholar

    [9]

    Luo Y D, Tang R, Chen S, Hu J G, Liu Y K, Li Y F, Liu X S, Zheng Z H, Su Z H, Ma X F, Fan P, Zhang X H, Ma H L, Chen Z G, Liang G X 2020 Chem. Eng. J. 293 124599Google Scholar

    [10]

    Maximilian A, Silvana B, Miguel A L M, Thomas J L, Stefan G 2015 Phys. Rev. B 92 14101Google Scholar

    [11]

    Yang B, Qin S, Xue D J, Chen C, He Y S, Niu D M, Huang H, Tang J 2017 Prog. Photovoltaics Res. Appl. 25 113Google Scholar

    [12]

    Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G H, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy 5 587Google Scholar

    [13]

    Li K H, Lu Y, Ke X X, Li S, Lu S C, Wang C, Wang S Y, Chen C, Tang J 2020 Solar RRL 4 2000220Google Scholar

    [14]

    Pham D P, Kim S, Park J, Le A T, Cho J, Jung J, Iftiquar S M, Yi J 2016 Mater. Sci. Semicond. Process. 56 183Google Scholar

    [15]

    陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖 2019 物理学报 68 028101Google Scholar

    Chen J F, Ren H Z, Hou F H, Zhou Z X, Ren Q S, Zhang D K, Wei C C, Zhang X D, Hou G H, Zhao Y 2019 Acta Phys. Sin. 68 028101Google Scholar

    [16]

    Mattheis J, Rostan P J, Rau U, Werner J H 2007 Sol. Energy Mater. Sol. Cells 91 689Google Scholar

    [17]

    Fan Q H, Chen C Y, Liao X B, Xiang X B, Zhang S B, Ingler W, Adiga N, Hu Z H, Cao X M, Du W H, Deng X M 2010 Sol. Energy Mater. Sol. Cells 94 1300Google Scholar

    [18]

    Liu Y T, Chen Y H, Lin C C, Fan C M, Liu J C, Tung Y L, Tsai S Y 2017 Mater. Res. Express 4 075505Google Scholar

    [19]

    Choi Y C, Lee Y H, Im S H, Noh J H, Mandal T N, Yang W S, Seok S 2014 Adv. Energy Mater. 4 1301680Google Scholar

    [20]

    Zhang Y, Li J M, Jiang G S, Liu W F, Yang S F, Zhu C F, Chen T 2017 Solar RRL 1 1700017Google Scholar

    [21]

    Zhu H, Kalkan A K, Hou J, Fonash S J 1999 Proceedings of NCPV 15 th Program Review Meeting Denver, Colorado, USA, September 9−11 1998 p309

    [22]

    Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124Google Scholar

    [23]

    Wang X M, Tang R F, Wu C Y, Zhu C F, Chen T 2018 J. Energy Chem. 27 713Google Scholar

    [24]

    曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar

    Cao Y, Zhu X X, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [25]

    Teimouri R, Heydari Z, Ghaziani M P, Madani M, Abdy H, Kolahdouz M, Asl-Soleimani E 2020 Superlattices Microstruct. 145 106627Google Scholar

    [26]

    Islam M T, Thakur A K 2020 Sol. Energy 202 304Google Scholar

    [27]

    Li Z Q, Ni M, Feng X D 2020 Mater. Res. Express 7 016416Google Scholar

    [28]

    Cai Z H, Dai C M, Chen S Y 2020 Solar RRL 4 1900503Google Scholar

    [29]

    Chen S, Qiao X, Wang F, Luo Q, Zhang X, Wan X, Xu Y, Fan X 2016 Nanoscale 8 2277Google Scholar

    [30]

    Lee C T, Lu K F, Tseng C Y 2015 Sol. Energy 114 1Google Scholar

    [31]

    曹宇, 薛磊, 周静, 王义军, 倪牮, 张建军 2016 物理学报 65 146801Google Scholar

    Cao Y, Xue L, Zhou J, Wang Y J, Ni J, Zhang J J 2016 Acta Phys. Sin. 65 146801Google Scholar

    [32]

    Deng H, Yuan S J, Yang X K, Zhang J, Khan J, Zhao Y, Isaq M, Ye W, Cheng Y B, Song H S, Tang J 2018 Prog. Photovoltaics Res. Appl. 26 281Google Scholar

    [33]

    Bernhard N, Bauer G H, Bloss W H 1995 Prog. Photovoltaics Res. Appl. 3 149Google Scholar

    [34]

    Cao Y, Zhou J, Wang Y J, Ni J, Zhang J J 2015 J. Alloy. Compd. 632 456Google Scholar

    [35]

    Wang X M, Tang R F, Jiang C H, Lian W T, Ju H X, Jiang G S, Li Z Q, Zhu C F, Chen T 2020 Adv. Energy Mater. 10 2002341Google Scholar

    [36]

    Cao Y, Zhu X Y, Jiang J H, Liu C Y, Zhou J, Ni J, Zhang J J, Pang J B 2020 Sol. Energy Mater. Sol. Cells 206 110279Google Scholar

    [37]

    Chen C, Tang J 2020 ACS Energy Lett. 5 2294Google Scholar

    [38]

    Zhou J, Chen H B, Zhang X T, Chi K L, Cai Y M, Cao Y, Pang J B 2021 J. Alloys Compd. 862 158703Google Scholar

    [39]

    Cao Y, Liu C Y, Jiang J H, Zhu X Y, Zhou J, Ni J, Zhang J J, Pang J B, Rummeli M H, Zhou W J, Liu H, Cuniberti G 2021 Solar RRL 5 2000800Google Scholar

  • 图 1  Sb2(S,Se)3太阳电池的结构示意图

    Figure 1.  Schematic diagram of the Sb2(S,Se)3 solar cell structure.

    图 2  递减能隙与恒定能隙的Sb2(S,Se)3太阳电池 (a) J-V曲线 ; (b) 能带图; (c) 恒定能隙Sb2(S,Se)3太阳电池能带结构示意图; (d)递减能隙Sb2(S,Se)3太阳电池能带结构示意图

    Figure 2.  Sb2(S,Se)3 solar cells with narrowing and constant band gap structure: (a) J-V curves; (b) energy band diagram; (c) energy band scheme of constant band gap Sb2(S,Se)3 solar cell; (d) energy band scheme of narrowing band gap Sb2(S,Se)3 solar cell.

    图 3  不同μe的递减能隙结构Sb2(S,Se)3太阳电池 (a) 自由电子浓度分布; (b) 载流子复合率分布; (c) J-V曲线; (d) 量子效率曲线

    Figure 3.  Narrowing band gap structure Sb2(S,Se)3 solar cells with different μe: (a) Free electron concentration distribution; (b) recombination rate distribution; (c) J-V curves; (d) quantum efficiency curves.

    图 4  不同导带位置递减能隙的Sb2(S,Se)3太阳电池 (a) J-V曲线 ; (b) 能带图; (c) 费米能级对齐示意图

    Figure 4.  Narrowing band gap Sb2(S,Se)3 solar cells with different conduction band positions: (a) J-V curves; (b) energy band diagram; (c) energy band scheme of Fermi level alignment.

    图 5  不同缺陷态分布递减能隙的Sb2(S,Se)3太阳电池的PCE随μe的变化

    Figure 5.  Narrowing band gap Sb2(S,Se)3 solar cells with different defect state distributions as a function of μe.

    图 6  (a) 恒定能隙与递减能隙Sb2(S,Se)3太阳电池的相对效率随厚度的变化, 此处相对效率指的是以厚度为0.25 μm Sb2(S,Se)3太阳电池效率为基准计算出的效率比值; (b) 恒定能隙与递减能隙Sb2(S,Se)3太阳电池的载流子复合率分布随厚度的变化; (c) 恒定能隙与递减能隙Sb2(S,Se)3太阳电池的相对效率随缺陷态密度的变化, 此处相对效率指的是以缺陷态密度为1014 cm–3 Sb2(S,Se)3太阳电池效率为基准计算出的效率比值; (d) 恒定能隙与递减能隙Sb2(S,Se)3太阳电池的载流子复合率分布随缺陷态密度的变化

    Figure 6.  (a) Relative PCE of constant band gap and narrowing band gap Sb2(S,Se)3 solar cells with different thicknesses. Here, the relative PCE refers to the PCE ratio calculated by applying the PCE of Sb2(S,Se)3 solar cell with 0.25 μm thick as the denominator; (b) the carrier recombination rate distribution of constant band gap and narrowing band gap Sb2(S,Se)3 solar cells with different thicknesses; (c) the relative PCE of constant band gap and narrowing band gap Sb2(S,Se)3 solar cells with different defect densities. Here, the relative PCE refers to the PCE ratio calculated by applying the PCE of Sb2(S,Se)3 solar cell with the defect density of 1014 cm–3 as the denominator; (d) the carrier recombination rate distribution of constant band gap and narrowing band gap Sb2(S,Se)3 solar cells with different defect densities.

    图 7  不同厚度与缺陷态下恒定能隙与递减能隙Sb2(S,Se)3太阳电池效率之差的等高线图

    Figure 7.  Contour map of the PCE difference between the constant band gap and narrowing band gap structure Sb2(S,Se)3 solar cells with different thicknesses and defect densities.

    表 1  Sb2(S,Se)3 太阳电池材料参数

    Table 1.  Material parameters of the Sb2(S,Se)3 solar cells.

    参数CdSSb2(S,Se)3Spiro-OMeTAD
    介电常数1010—193
    电子亲和
    势/eV
    3.7—3.873.7—4.041.99—2.41
    电子迁移率
    (cm2·V–1·s–1)
    10040.0001
    空穴迁移率/
    (cm2·V–1·s–1)
    250.10.0001
    施主掺杂
    浓度/cm–3
    1 × 101900
    受主掺杂
    浓度/cm–3
    01 × 10133 × 1018
    禁带宽度/eV2.41.2—1.72.91
    导带有效
    态密/cm–3
    2.2 × 10182.2 × 10182.2 × 1018
    价带有效
    态密/cm–3
    1.8 × 10191.8 × 10191.8 × 1019
    缺陷态密
    度/cm–3
    1 × 10173 × 10161 × 1016
    DownLoad: CSV

    表 2  不同μe的Sb2(S,Se)3递减能隙结构太阳电池的性能参数

    Table 2.  Photovoltaic performance of the narrowing band gap structure Sb2(S,Se)3 solar cell with different μe.

    μe/(cm2·V–1·s–1)Voc/VJsc/(mA·cm–2)FF/%PCE/%
    0.10.9320.0052.509.74
    0.250.8721.7763.3912.05
    10.8322.7773.4413.89
    50.8222.9577.1814.46
    100.8122.9577.7214.51
    DownLoad: CSV
  • [1]

    Giraldo S, Jehl Z, Placidi M, Izquierdo-Roca V, Perez-Rodriguez A, Saucedo E 2019 Adv. Mater. 31 1806692Google Scholar

    [2]

    Ramanujam J, Bishop D M, Todorov T K, Gunawan O, Rath J, Nekovei R, Artegiani E, Romeo A 2020 Mater. Sci. 110 100619Google Scholar

    [3]

    Lei H W, Chen J J, Tan Z J, Fang G J 2019 Solar RRL 3 1900026Google Scholar

    [4]

    Liang G X, Luo Y D, Chen S, Tang R, Zheng Z H, Li X J, Liu X S, Liu Y K, Li Y F, Chen X Y, Su Z H, Zhang X H, Ma H L, Fan P 2020 Nano Energy 73 104806Google Scholar

    [5]

    薛丁江, 石杭杰, 唐江 2015 物理学报 64 038406Google Scholar

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar

    [6]

    Tang R, Zheng Z H, Su Z H, Li X J, Wei Y D, Zhang X H, Fu Y Q, Luo J T, Fan P, Liang G X 2019 Nano Energy 64 103929Google Scholar

    [7]

    Kondrotas R, Chen C, Tang J 2018 Joule 2 857Google Scholar

    [8]

    Mavlonov A, Razykov T, Raziq F, Gan J, Chantana J, Kawano Y, Nishimura T, Wei H, Zakutayev A, Minemoto T, Zu X, Li S, Qiao L 2020 Sol. Energy 201 227Google Scholar

    [9]

    Luo Y D, Tang R, Chen S, Hu J G, Liu Y K, Li Y F, Liu X S, Zheng Z H, Su Z H, Ma X F, Fan P, Zhang X H, Ma H L, Chen Z G, Liang G X 2020 Chem. Eng. J. 293 124599Google Scholar

    [10]

    Maximilian A, Silvana B, Miguel A L M, Thomas J L, Stefan G 2015 Phys. Rev. B 92 14101Google Scholar

    [11]

    Yang B, Qin S, Xue D J, Chen C, He Y S, Niu D M, Huang H, Tang J 2017 Prog. Photovoltaics Res. Appl. 25 113Google Scholar

    [12]

    Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G H, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy 5 587Google Scholar

    [13]

    Li K H, Lu Y, Ke X X, Li S, Lu S C, Wang C, Wang S Y, Chen C, Tang J 2020 Solar RRL 4 2000220Google Scholar

    [14]

    Pham D P, Kim S, Park J, Le A T, Cho J, Jung J, Iftiquar S M, Yi J 2016 Mater. Sci. Semicond. Process. 56 183Google Scholar

    [15]

    陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖 2019 物理学报 68 028101Google Scholar

    Chen J F, Ren H Z, Hou F H, Zhou Z X, Ren Q S, Zhang D K, Wei C C, Zhang X D, Hou G H, Zhao Y 2019 Acta Phys. Sin. 68 028101Google Scholar

    [16]

    Mattheis J, Rostan P J, Rau U, Werner J H 2007 Sol. Energy Mater. Sol. Cells 91 689Google Scholar

    [17]

    Fan Q H, Chen C Y, Liao X B, Xiang X B, Zhang S B, Ingler W, Adiga N, Hu Z H, Cao X M, Du W H, Deng X M 2010 Sol. Energy Mater. Sol. Cells 94 1300Google Scholar

    [18]

    Liu Y T, Chen Y H, Lin C C, Fan C M, Liu J C, Tung Y L, Tsai S Y 2017 Mater. Res. Express 4 075505Google Scholar

    [19]

    Choi Y C, Lee Y H, Im S H, Noh J H, Mandal T N, Yang W S, Seok S 2014 Adv. Energy Mater. 4 1301680Google Scholar

    [20]

    Zhang Y, Li J M, Jiang G S, Liu W F, Yang S F, Zhu C F, Chen T 2017 Solar RRL 1 1700017Google Scholar

    [21]

    Zhu H, Kalkan A K, Hou J, Fonash S J 1999 Proceedings of NCPV 15 th Program Review Meeting Denver, Colorado, USA, September 9−11 1998 p309

    [22]

    Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124Google Scholar

    [23]

    Wang X M, Tang R F, Wu C Y, Zhu C F, Chen T 2018 J. Energy Chem. 27 713Google Scholar

    [24]

    曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar

    Cao Y, Zhu X X, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [25]

    Teimouri R, Heydari Z, Ghaziani M P, Madani M, Abdy H, Kolahdouz M, Asl-Soleimani E 2020 Superlattices Microstruct. 145 106627Google Scholar

    [26]

    Islam M T, Thakur A K 2020 Sol. Energy 202 304Google Scholar

    [27]

    Li Z Q, Ni M, Feng X D 2020 Mater. Res. Express 7 016416Google Scholar

    [28]

    Cai Z H, Dai C M, Chen S Y 2020 Solar RRL 4 1900503Google Scholar

    [29]

    Chen S, Qiao X, Wang F, Luo Q, Zhang X, Wan X, Xu Y, Fan X 2016 Nanoscale 8 2277Google Scholar

    [30]

    Lee C T, Lu K F, Tseng C Y 2015 Sol. Energy 114 1Google Scholar

    [31]

    曹宇, 薛磊, 周静, 王义军, 倪牮, 张建军 2016 物理学报 65 146801Google Scholar

    Cao Y, Xue L, Zhou J, Wang Y J, Ni J, Zhang J J 2016 Acta Phys. Sin. 65 146801Google Scholar

    [32]

    Deng H, Yuan S J, Yang X K, Zhang J, Khan J, Zhao Y, Isaq M, Ye W, Cheng Y B, Song H S, Tang J 2018 Prog. Photovoltaics Res. Appl. 26 281Google Scholar

    [33]

    Bernhard N, Bauer G H, Bloss W H 1995 Prog. Photovoltaics Res. Appl. 3 149Google Scholar

    [34]

    Cao Y, Zhou J, Wang Y J, Ni J, Zhang J J 2015 J. Alloy. Compd. 632 456Google Scholar

    [35]

    Wang X M, Tang R F, Jiang C H, Lian W T, Ju H X, Jiang G S, Li Z Q, Zhu C F, Chen T 2020 Adv. Energy Mater. 10 2002341Google Scholar

    [36]

    Cao Y, Zhu X Y, Jiang J H, Liu C Y, Zhou J, Ni J, Zhang J J, Pang J B 2020 Sol. Energy Mater. Sol. Cells 206 110279Google Scholar

    [37]

    Chen C, Tang J 2020 ACS Energy Lett. 5 2294Google Scholar

    [38]

    Zhou J, Chen H B, Zhang X T, Chi K L, Cai Y M, Cao Y, Pang J B 2021 J. Alloys Compd. 862 158703Google Scholar

    [39]

    Cao Y, Liu C Y, Jiang J H, Zhu X Y, Zhou J, Ni J, Zhang J J, Pang J B, Rummeli M H, Zhou W J, Liu H, Cuniberti G 2021 Solar RRL 5 2000800Google Scholar

  • [1] Xiao You-Peng, Wang Huai-Ping, Feng Lin. Numerical simulation of germanium selenide heterojunction solar cell. Acta Physica Sinica, 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [2] Cao Yu, Liu Chao-Ying, Zhao Yao, Na Yan-Ling, Jiang Chong-Xu, Wang Chang-Gang, Zhou Jing, Yu Hao. Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure. Acta Physica Sinica, 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [3] Liang Xiao-Juan, Cao Yu, Cai Hong-Kun, Su Jian, Ni Jian, Li Juan, Zhang Jian-Jun. Simulation and architectural design for Schottky structure perovskite solar cells. Acta Physica Sinica, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [4] Cao Yu,  Zhu Xin-Yun,  Chen Han-Bo,  Wang Chang-Gang,  Zhang Xin-Tong,  Hou Bing-Dong,  Shen Ming-Ren,  Zhou Jing. Simulation and optimal design of antimony selenide thin film solar cells. Acta Physica Sinica, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [5] Liu Chang-Wen, Zhou Xun, Yue Wen-Jin, Wang Ming-Tai, Qiu Ze-Liang, Meng Wei-Li, Chen Jun-Wei, Qi Juan-Juan, Dong Chao. Hybrid polymer-based solar cells with metal oxides as the main electron acceptor and transporter. Acta Physica Sinica, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [6] Zeng Xiang-An, Ai Bin, Deng You-Jun, Shen Hui. Study on light-induced degradation of silicon wafers and solar cells. Acta Physica Sinica, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [7] Zhou Mei, Zhao De-Gang. Influence of structure parameters on the performance of p-i-n InGaN solar cell. Acta Physica Sinica, 2012, 61(16): 168402. doi: 10.7498/aps.61.168402
    [8] Liu Wei-Qing, Kou Dong-Xing, Hu Lin-Hua, Dai Song-Yuan. Effect of light path folding on the properties of electron transport in dyesensitized solar cell. Acta Physica Sinica, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [9] Wu Bao-Shan, Wang Lin-Lin, Wang Yong-Mei, Ma Ting-Li. Study of influencing factors for performance of large-scale dye-sensitized solar cells based on the semi-empirical model. Acta Physica Sinica, 2012, 61(7): 078801. doi: 10.7498/aps.61.078801
    [10] Xi Xiao-Wang, Hu Lin-Hua, Xu Wei-Wei, Dai Song-Yuan. Influence of TiCl4 nanoporous TiO2 films on the performance of dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [11] Chen Shuang-Hong, Weng Jian, Wang Li-Jun, Zhang Chang-Neng, Huang Yang, Jiang Nian-Quan, Dai Song-Yuan. The study of interface and photoelectric performance of dye-sensitized solar cells in the applied negative bias. Acta Physica Sinica, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [12] Kou Dong-Xing, Liu Wei-Qing, Hu Lin-Hua, Huang Yang, Dai Song-Yuan, Jiang Nian-Quan. The investigation on the mechanism of enhanced performance of dye-sensitized solar cells after anode modified. Acta Physica Sinica, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [13] Huang Yang, Dai Song-Yuan, Chen Shuang-Hong, Hu Lin-Hua, Kong Fan-Tai, Kou Dong-Xing, Jiang Nian-Quan. Model for series resistance photovoltaic performance of large-scale dye-sensitized solar cells. Acta Physica Sinica, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [14] Liang Lin-Yun, Dai Song-Yuan, Hu Lin-Hua, Dai Jun, Liu Wei-Qing. Effect of TiO2 particle size on the properties of electron transport and back-reaction in dye-sensitized solar cells. Acta Physica Sinica, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [15] Liang Lin-Yun, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua. Research on the electron transport and back-reaction kinetics in TiO2 films applied in dye-sensitized solar cells. Acta Physica Sinica, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [16] Weng Jian, Xiao Shang-Feng, Chen Shuang-Hong, Dai Song-Yuan. Research on the dye-sensitized solar cell module. Acta Physica Sinica, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [17] Hu Zhi-Hua, Liao Xian-Bo, Diao Hong-Wei, Xia Chao-Feng, Xu Ling, Zeng Xiang-Bo, Hao Hui-Ying, Kong Guang-Lin. AMPS modeling of light J-V characteristics of a-Si based solar cells. Acta Physica Sinica, 2005, 54(5): 2302-2306. doi: 10.7498/aps.54.2302
    [18] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [19] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Shi Cheng-Wu, Kong Fan-Tai, Hu Lin-Hua, Pan Xu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
Metrics
  • Abstract views:  4848
  • PDF Downloads:  126
  • Cited By: 0
Publishing process
  • Received Date:  29 November 2020
  • Accepted Date:  18 January 2021
  • Available Online:  26 April 2021
  • Published Online:  20 June 2021

/

返回文章
返回