Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of medium-energy proton flux

Zhang Yan-Wen Guo Gang Xiao Shu-Yan Yin Qian Yang Xin-Yu

Citation:

Measurement of medium-energy proton flux

Zhang Yan-Wen, Guo Gang, Xiao Shu-Yan, Yin Qian, Yang Xin-Yu
PDF
HTML
Get Citation
  • Proton is the main particle component in the space radiation environment. The proton single event effect cannot be ignored with the continuous development of semiconductor technology. Accelerator simulation is the most important method to evaluate the single event effect caused by proton radiation, and the accurate measurement of proton flux is the most critical aspect in the device evaluation process. The research is based on the 100 MeV proton single-event irradiation device of the Atomic Energy Institute, which breaks through the wide-range mid-energy proton fluence rate measurement technology. The detection tools are developed such as Faraday cup, plastic scintillator detectors and secondary electron emission monitors, which can be used for measuring the proton beam current in a wide range. Faraday cup and plastic scintillator detector can be used for measuring the high flux proton and the low flux proton, respectively. Secondary electron emission monitor can be used for conducting the online real-time measurement. The proton fluxes in a range of 106– 107 p·cm–2·s–1 are measured by using two separate detectors.The analysis of the fluence rate uncertainty is carried out. The uncertainty of measurement results mainly include three aspects: measurement method, measuring instrument and equipment, and repeatability of multiple measurement results. Here in this work, the Faraday cup is taken for example to analyze the uncertainty sources in the proton flux measurement. The measurement methods include the calculation of the collection efficiency of the Faraday cup (collection efficiency + escape rate = 1) and the calculation method of flux (flux = current/collection area). For the measuring instruments and equipment, mainly including 6517A and other electronic devices, their errors are determined by the accuracies of the instruments themselves. Repeatability of multiple measurement results mainly from the error caused by the instability of the accelerator beam output, the error caused by randomness of multiple measurement results, and the error given by the statistical method. The analysis shows that the uncertainty of flux measurement by Faraday cup is 7.26%, and the uncertainty of flux measurement by plastic scintillator detector is 1.64%.The flux measurement of the proton fluence rate has reached the level of similar devices in the world, filling the gap in this field in China. It has a certain reference and guiding significance for the follow-up study of medium- and high-energy proton beam measurement in China. The mid-energy proton flux measurement system and uncertainty analysis method established in this study lay the foundation for accurately evaluating the component radiation effects.
      Corresponding author: Zhang Yan-Wen, zhangyanwen415@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11805281).
    [1]

    Sawyer D M, Vette J I 1976 National Space Science Data Center Report NSSDC/WDC-A-R&S 76-06, NASA-GSFC TMS-72605

    [2]

    Heidel D F, Rodbell K P, Oldiges P, Gordon M S, Tang H H K, Cannon E H Plettner C 2006 IEEE Trans. Nucl. Sci. 53 3512Google Scholar

    [3]

    Bendel W L, Petersen E L 1983 IEEE Trans. Nucl. Sci. 30 4481Google Scholar

    [4]

    Ikeda N, Kuboyama S, Matsuda S, Handa T 2005 IEEE Trans. Nucl. Sci. 52 2200Google Scholar

    [5]

    Caron P, Inguimbert C, Artola L, Ecoffet R, Bezerra F 2019 IEEE Trans. Nucl. Sci. 66 1404Google Scholar

    [6]

    Von Przewoski B, Rinckel T, Manwaring W, Broxton G 2004 Radiation Effects Data Workshop 851 145

    [7]

    Hajdas W, Adams L, Nickson B, Zehnder A 1996 Nucl. Instrum. Methods B 113 54Google Scholar

    [8]

    Blackmore E 2000 IEEE Radiation Effects Data Workshop Rec. Reno, Nevada, USA, 2000 p1

    [9]

    罗尹虹, 张 凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞 2016 物理学报 65 068501Google Scholar

    Luo Y H, Zhang F Q, Wang Y P, Wang Y M, Guo X Q, Guo H X 2016 Acta Phys. Sin. 65 068501Google Scholar

    [10]

    何安林, 郭 刚, 陈力, 沈东军, 任义, 刘建成, 张志超, 蔡莉, 史淑廷, 王惠, 范辉, 高丽娟, 孔福全 2014 原子能科学技术 48 2364Google Scholar

    He A L, Guo G, Chen L, Shen D J, Ren Y, Liu J C, Zhang ZC, Cai L, Shi S T, Wang H, Fan H, Gao L J, Kong F Q 2014 Atom. Energ. Sci. Technol. 48 2364Google Scholar

    [11]

    杨海亮, 李国政, 李原春, 姜景和, 贺朝会, 唐本奇 2001 原子能科学技术 35 490Google Scholar

    Yang H L, Li G Z, Li Y C, Jiang J H, He C H, Tang B Q 2001 Atom. Energ. Sci. Technol. 35 490Google Scholar

    [12]

    韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文 2019 物理学报 68 054104Google Scholar

    Han J H, Guo G, Liu J C, Sui L, Kong F Q, Xiao S Y, Qin Y C, Zhang Y W 2019 Acta Phys. Sin. 68 054104Google Scholar

    [13]

    韩金华, 覃英参, 郭刚, 张艳文, 2020 物理学报 69 033401Google Scholar

    Han J H, Qin Y C, Guo G, Zhang Y W 2020 Acta Phys. Sin. 69 033401Google Scholar

    [14]

    Strehl P 2006 Beam Instrumentation and Diagnostics (Heidelberg: Springer-Verlag) pp1−438

    [15]

    Pages L, Bertel E, Joffre H, Sklavenitis L 1927 At. Data Nucl. Data Tables 4 1

    [16]

    郭忠言, 肖国青, 詹文龙, 徐瑚珊, 孙志宇, 李加兴, 王猛, 陈志强, 毛瑞士, 王武生, 白洁, 胡正国, 陈立新, 李琛 2003 高能物理与核物理 27 158Google Scholar

    Guo Z Y, Xiao G Q, Zhan W L, Xu H S, Sun Z Y, Li J X, Wang M, Chen Z Q, Mao R, S, Wang W S, Bai J, Hu Z G, Chen L X, Li C 2003 High Energy Phys. Nucl. 27 158Google Scholar

    [17]

    Johnson M B, McMahan M A, Gimpel T L, Tiffany W S 2006 Proceedings of the 2006 IEEE Radiation Effects Data Workshop Ponte Verdra Beach, Florida, USA 2006 p183

    [18]

    Murray K M, Stapor W J, Casteneda C 1989 Nucl. Instrum. Methods A 281 616Google Scholar

    [19]

    Castaneda C M 2001 Proceedings of the 2001 IEEE Radiation Effects Data Workshop Vancouver, Canada 2001 p77

    [20]

    Blackmore E W 2003 Proceedings of the 2003 IEEE Radiation Effects Data Workshop Monterey, California, USA 2003 p149

    [21]

    Przewoski B V, Rinckel T, Manwaring W, Broxton G, Chipara M, Ellis T, Hall E R, Kinser A 2004 Proceedings of the 2004 IEEE Radiation Effects Data Workshop Atlanta, Georiga, USA 2004 p145

  • 图 1  SRIM计算中能质子在不同材料中的射程

    Figure 1.  Range of 30–90 MeV protons in C, Al, Fe and Cu calculated by SRIM.

    图 2  不同径深比情况下二次电子的溢出

    Figure 2.  Overflow of secondary electrons with different diameter-depth ratios.

    图 3  30—90 MeV的质子在塑料闪烁体中的射程分布及能量沉积

    Figure 3.  Range distribution and energy deposition of protons from 30 MeV to 90 MeV in plastic scintillators.

    图 4  法拉第筒、塑料闪烁体探测器和二次电子发射监督器束流测量系统示意图

    Figure 4.  Schematic diagram of beam current measurement system for faraday cup, plastic scintillator detector and secondary electron emission monitor.

    图 5  法拉第筒对不同注量率质子束流测量

    Figure 5.  Faraday cup measurement of proton beams with different flux.

    图 6  塑料闪烁体探测器的饱和偏压测试结果

    Figure 6.  Saturation bias test results of plastic scintillator detector.

    图 7  相同注量率下法拉第筒与塑料闪烁体探测器测量结果比较

    Figure 7.  Comparison of measurement results between faraday cup and plastic scintillator detector at the same flux.

    图 8  不同束流强度下二次电子发射监督器与法拉第筒测量值比例关系

    Figure 8.  Scale ratio of secondary electron emission monitors and Faraday cup measurements at different beam intensities.

  • [1]

    Sawyer D M, Vette J I 1976 National Space Science Data Center Report NSSDC/WDC-A-R&S 76-06, NASA-GSFC TMS-72605

    [2]

    Heidel D F, Rodbell K P, Oldiges P, Gordon M S, Tang H H K, Cannon E H Plettner C 2006 IEEE Trans. Nucl. Sci. 53 3512Google Scholar

    [3]

    Bendel W L, Petersen E L 1983 IEEE Trans. Nucl. Sci. 30 4481Google Scholar

    [4]

    Ikeda N, Kuboyama S, Matsuda S, Handa T 2005 IEEE Trans. Nucl. Sci. 52 2200Google Scholar

    [5]

    Caron P, Inguimbert C, Artola L, Ecoffet R, Bezerra F 2019 IEEE Trans. Nucl. Sci. 66 1404Google Scholar

    [6]

    Von Przewoski B, Rinckel T, Manwaring W, Broxton G 2004 Radiation Effects Data Workshop 851 145

    [7]

    Hajdas W, Adams L, Nickson B, Zehnder A 1996 Nucl. Instrum. Methods B 113 54Google Scholar

    [8]

    Blackmore E 2000 IEEE Radiation Effects Data Workshop Rec. Reno, Nevada, USA, 2000 p1

    [9]

    罗尹虹, 张 凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞 2016 物理学报 65 068501Google Scholar

    Luo Y H, Zhang F Q, Wang Y P, Wang Y M, Guo X Q, Guo H X 2016 Acta Phys. Sin. 65 068501Google Scholar

    [10]

    何安林, 郭 刚, 陈力, 沈东军, 任义, 刘建成, 张志超, 蔡莉, 史淑廷, 王惠, 范辉, 高丽娟, 孔福全 2014 原子能科学技术 48 2364Google Scholar

    He A L, Guo G, Chen L, Shen D J, Ren Y, Liu J C, Zhang ZC, Cai L, Shi S T, Wang H, Fan H, Gao L J, Kong F Q 2014 Atom. Energ. Sci. Technol. 48 2364Google Scholar

    [11]

    杨海亮, 李国政, 李原春, 姜景和, 贺朝会, 唐本奇 2001 原子能科学技术 35 490Google Scholar

    Yang H L, Li G Z, Li Y C, Jiang J H, He C H, Tang B Q 2001 Atom. Energ. Sci. Technol. 35 490Google Scholar

    [12]

    韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文 2019 物理学报 68 054104Google Scholar

    Han J H, Guo G, Liu J C, Sui L, Kong F Q, Xiao S Y, Qin Y C, Zhang Y W 2019 Acta Phys. Sin. 68 054104Google Scholar

    [13]

    韩金华, 覃英参, 郭刚, 张艳文, 2020 物理学报 69 033401Google Scholar

    Han J H, Qin Y C, Guo G, Zhang Y W 2020 Acta Phys. Sin. 69 033401Google Scholar

    [14]

    Strehl P 2006 Beam Instrumentation and Diagnostics (Heidelberg: Springer-Verlag) pp1−438

    [15]

    Pages L, Bertel E, Joffre H, Sklavenitis L 1927 At. Data Nucl. Data Tables 4 1

    [16]

    郭忠言, 肖国青, 詹文龙, 徐瑚珊, 孙志宇, 李加兴, 王猛, 陈志强, 毛瑞士, 王武生, 白洁, 胡正国, 陈立新, 李琛 2003 高能物理与核物理 27 158Google Scholar

    Guo Z Y, Xiao G Q, Zhan W L, Xu H S, Sun Z Y, Li J X, Wang M, Chen Z Q, Mao R, S, Wang W S, Bai J, Hu Z G, Chen L X, Li C 2003 High Energy Phys. Nucl. 27 158Google Scholar

    [17]

    Johnson M B, McMahan M A, Gimpel T L, Tiffany W S 2006 Proceedings of the 2006 IEEE Radiation Effects Data Workshop Ponte Verdra Beach, Florida, USA 2006 p183

    [18]

    Murray K M, Stapor W J, Casteneda C 1989 Nucl. Instrum. Methods A 281 616Google Scholar

    [19]

    Castaneda C M 2001 Proceedings of the 2001 IEEE Radiation Effects Data Workshop Vancouver, Canada 2001 p77

    [20]

    Blackmore E W 2003 Proceedings of the 2003 IEEE Radiation Effects Data Workshop Monterey, California, USA 2003 p149

    [21]

    Przewoski B V, Rinckel T, Manwaring W, Broxton G, Chipara M, Ellis T, Hall E R, Kinser A 2004 Proceedings of the 2004 IEEE Radiation Effects Data Workshop Atlanta, Georiga, USA 2004 p145

  • [1] Chen Cui-Hong, Li Zhan-Kui, Wang Xiu-Hua, Li Rong-Hua, Fang Fang, Wang Zhu-Sheng, Li Hai-Xia. Development of high performance PIN-silicon detector and its application in radioactive beam physical experiment. Acta Physica Sinica, 2023, 72(12): 122902. doi: 10.7498/aps.72.20230213
    [2] Fan Jia-Kun, Wang Jie, Gao Yong, You Zhi-Ming, Wang Sheng, Zhang Jing, Hu Yao-Cheng, Xu Zhang-Lian, Wang Bin. Thermal-structural coupling analysis of beam screen in super proton-proton collider. Acta Physica Sinica, 2021, 70(1): 012901. doi: 10.7498/aps.70.20200830
    [3] Su Zhao-Feng, Lai Ding-Guo, Qiu Meng-Tong, Xu Qi-Fu, Ren Shu-Qing. Energy fluence measurement for pulse hard X-ray. Acta Physica Sinica, 2020, 69(14): 145202. doi: 10.7498/aps.69.20191700
    [4] Zhao Lei, Xu Miao-Hua, Zhang Yi-Hang, Zhang Zhe, Zhu Bao-Jun, Jiang Wei-Man, Zhang Xiao-Peng, Zhao Xu, Tong Bo-Wei, He Shu-Kai, Lu Feng, Wu Yu-Chi, Zhou Wei-Min, Zhang Fa-Qiang, Zhou Kai-Nan, Xie Na, Huang Zheng, Zhong Jia-Yong, Gu Yu-Qiu, Li Yu-Tong, Li Ying-Jun. Laser fast neutron measured by bubble detector. Acta Physica Sinica, 2018, 67(22): 222101. doi: 10.7498/aps.67.20181035
    [5] Yan Bing, Huang Si-Xun, Feng Jing. Retrieval and uncertainty analysis of stochastic parameter in atmospheric boundary layer model. Acta Physica Sinica, 2018, 67(19): 199201. doi: 10.7498/aps.67.20181014
    [6] Li Shi-Yu,  Tian Jian-Feng,  Yang Chen,  Zuo Guan-Hua,  Zhang Yu-Chi,  Zhang Tian-Cai. Effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer. Acta Physica Sinica, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [7] Zhang Wei, Zhang He, Chen Yong, Zhang Xiang-Jin, Xu Xiao-Bin. Angle measurement uncertainty statistical distribution of pulsed laser quadrant photodetector. Acta Physica Sinica, 2017, 66(1): 012901. doi: 10.7498/aps.66.012901
    [8] Deng Jia-Chuan, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Peng Hai-Bo, Wang Yu-Yu, Lei Yu, Liu Shi-Dong, Sun Yuan-Bo, Ren Jie-Ru, Xiao Jia-Hao, Ma Li-Dong, Xiao Guo-Qing, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. Investigation on the energy loss in low energy protons interacting with hydrogen plasma. Acta Physica Sinica, 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [9] Shang Wan-Li, Zhu Tuo, Kuang Long-Yu, Zhang Wen-Hai, Zhao Yang, Xiong Gang, Yi Rong-Qing, Li San-Wei, Yang Jia-Min. Uncertainty analysis of the measured spectrum obtained using transmission grating spectrometer. Acta Physica Sinica, 2013, 62(17): 170602. doi: 10.7498/aps.62.170602
    [10] Zhang Wei-Hong, Niu Zhong-Ming, Wang Feng, Gong Xiao-Bo, Sun Bao-Hua. Uncertainties of nucleo-chronometers from nuclear physics inputs. Acta Physica Sinica, 2012, 61(11): 112601. doi: 10.7498/aps.61.112601
    [11] Zhou Lin, Jiang Shi-Lun, Qi Jian-Min, Wang Li-Zong. Study of magnetic proton recoil technology for measurement of deuterium-tritium neutron spectrum. Acta Physica Sinica, 2012, 61(7): 072902. doi: 10.7498/aps.61.072902
    [12] Li San-Wei, Song Tian-Ming, Yi Rong-Qing, Cui Yan-Li, Jiang Xiao-Hua, Wang Zhe-Bin, Yang Jia-Min, Jiang Shao-En. Quantitative study of radiation temperature for gold hohlraum on SG-Ⅱ laser facility. Acta Physica Sinica, 2011, 60(5): 055207. doi: 10.7498/aps.60.055207
    [13] Xia Hai-Hong, Zhang Zhong-Bing, Liu Lin-Yue, Ouyang Xiao-Ping, Chen Liang, Wang Qun-Shu, Wang Lan, Ma Yan-Liang, Pan Hong-Bo. Accurate measurements of high energy proton beam by secondary electron compensation. Acta Physica Sinica, 2010, 59(8): 5369-5373. doi: 10.7498/aps.59.5369
    [14] Duan Xiao-Jiao, Tan Zhi-Xin, Lan Xiao-Fei, Huang Yong-Sheng, Guo Shi-Lun, Yang Da-Wei, Tang Xiu-Zhang, Wang Nai-Yan. Calibration of solid state nuclear track detector CR-39 with monoenergetic protons. Acta Physica Sinica, 2010, 59(5): 3147-3153. doi: 10.7498/aps.59.3147
    [15] Hou Li-Fei, Li Fang, Yuan Yong-Teng, Yang Guo-Hong, Liu Shen-Ye. Chemical vapor deposited diamond detectors for soft X-ray power measurement. Acta Physica Sinica, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [16] Chen Bo-Lun, Yang Zheng-Hua, Cao Zhu-Rong, Dong Jian-Jun, Hou Li-Fei, Cui Yan-Li, Jiang Shao-En, Yi Rong-Qing, Li San-Wei, Liu Shen-Ye, Yang Jia-Min. Reflectivity uncertainty analysis of planar mirror calibration in BSRF. Acta Physica Sinica, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [17] Zhong Guo-Qiang, Hu Li-Qun, Zhu Yu-Bao, Lin Shi-Yao, Chen Jue-Quan, Xu Ping, Duan Yan-Min, Lu Hong-Wei. Neutron flux measurement and analysis in the HT-7 deuterium plasma. Acta Physica Sinica, 2009, 58(5): 3262-3267. doi: 10.7498/aps.58.3262
    [18] Li Yuan, Li Gang, Zhang Yu-Chi, Wang Xiao-Yong, Wang Jun-Min, Zhang Tian-Cai. The effect of counting rate and time resolution on the measured photon statistical properties—— Experimental study of direct measurement via SPCM. Acta Physica Sinica, 2006, 55(11): 5779-5783. doi: 10.7498/aps.55.5779
    [19] Lei JiaRong, Yuan Yong Gang, Zhao Lin, Zhao Min Zhi, Cui Gao Xian. Investigations of the photon fluences in various n+γ\=mixed fields in the fast neutron reactor. Acta Physica Sinica, 2003, 52(1): 53-57. doi: 10.7498/aps.52.53
    [20] CHEN JI-SHU. THEORY OF THIN PYROELECTRIC FILM DETECTORS. Acta Physica Sinica, 1974, 23(6): 51-58. doi: 10.7498/aps.23.51
Metrics
  • Abstract views:  3931
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  24 August 2021
  • Accepted Date:  01 September 2021
  • Available Online:  10 September 2021
  • Published Online:  05 January 2022

/

返回文章
返回