Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development of high performance PIN-silicon detector and its application in radioactive beam physical experiment

Chen Cui-Hong Li Zhan-Kui Wang Xiu-Hua Li Rong-Hua Fang Fang Wang Zhu-Sheng Li Hai-Xia

Citation:

Development of high performance PIN-silicon detector and its application in radioactive beam physical experiment

Chen Cui-Hong, Li Zhan-Kui, Wang Xiu-Hua, Li Rong-Hua, Fang Fang, Wang Zhu-Sheng, Li Hai-Xia
PDF
HTML
Get Citation
  • In view of the great demand for large-area silicon detectors in domestic nuclear physics experiments, a type of 300-μm-thick high-performance square silicon detector with a large active area of 50 mm×50 mm by using overprinting technology is developed in the Institute of Modern Physics of the Chinese Academy of Sciences. Based on this technology, SiO2 contamination caused by the photolithography and corrosion processes is effectively reduced. The detector has an excellent performance with a yield of up to 80%. Under –45 V (depletion voltage) bias, the leakage current of the detector is less than 40 nA. The detector is tested with a three-component α radioactive source. The energy resolution (σ) is about 45 keV for 5-MeV α particles. Used as an energy deposition(ΔE) detector, the detector performance is also tested for measuring reaction products of 250 MeV/u 11C radioactive beams impinging on a carbon target. The results show that the charge number resolution of a single silicon detector is 0.17 for the carbon isotope, which is similar to that measured with the same type of detectors available from the market. With the average deposition energy of three silicon detectors used, the charge number resolution for carbon isotope reaches a better value of 0.11. With this resolution, C and B isotopes are clearly distinguished, meeting the requirements for particle identification in intermediate- and high-energy radioactive beam experiments.
      Corresponding author: Li Hai-Xia, lihaixia@impcas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775283, 12005267, 12275330)
    [1]

    Tanihata I 2016 Eur. Phys. J. Plus 131 90Google Scholar

    [2]

    Nakamura T, Sakurai H, Watanabe H 2017 Prog. Part. Nucl. Phys. 97 53Google Scholar

    [3]

    崔保群, 唐兵, 马鹰俊, 马瑞刚, 陈立华, 黄青华, 马燮 2019 原子能科学技术 53 1572Google Scholar

    Cui B Q, Tang B, Ma Y J, Ma R G, Chen L H, Huang Q H, Ma X 2019 Atom. Ener. Sci. Tech. 53 1572Google Scholar

    [4]

    曾晟, 柳卫平, 叶沿林, 北京ISOL团队 2019 原子能科学技术 53 2321Google Scholar

    Zeng S, Liu W P, Ye Y L, Bei Jing ISOL team 2019 Atom. Ener. Sci. Tech. 53 2321Google Scholar

    [5]

    Sun Z, Zhan W L, Guo Z Y, Xiao G, Li J X 2003 Nucl. Instrum. Meth. A 503 496Google Scholar

    [6]

    Zhan W L, Xu H S, Xiao G Q, Xia J W, Yuan Y J, HIRFL-CSR Group 2010 Nucl. Phys. A 834 694cGoogle Scholar

    [7]

    方芳, 唐述文, 王世陶, 章学恒, 孙志宇, 余玉洪, 阎铎, 金树亚, 赵亦轩, 马少波, 张永杰 2022 原子核物理评论 39 65Google Scholar

    Fang F, Tang S W, Wang S T, Zhang X H, Sun Z Y, Yu Y H, Yan D, Jin S Y, Zhao Y X, Ma S B, Zhang Y J 2022 Nucl. Phys. Rev. 39 65Google Scholar

    [8]

    Ahn D S, Amano J, Baba H, Fukuda N, Geissel H, Inabe N, Ishikawa S, Iwasa N, Komatsubara T, Kubo T, Kusaka K, Morrissey D J, Nakamura T, Ohtake M, Otsu H, Sakakibara T, Sato H, Sherrill B M, Shimizu Y, Sumikama T, Suzuki H, Takeda H, Tarasov O B, Ueno H, Yanagisawa Y, Yoshida K 2022 Phys. Rev. Lett. 129 212502Google Scholar

    [9]

    Li R, Wang X, Li H, Chen C, Zu K, Hu R, Zhao C, Li Z 2019 JINST 14 C05020Google Scholar

    [10]

    邹鸿, 陈鸿飞, 邹积清, 宁宝俊, 施伟红, 田大宇, 张录 2007 核电子学与探测技术 27 170Google Scholar

    Zou H, Chen H F, Zou J Q, Ning B J, Shi W H, Tian D Y, Zhang L 2007 Nucl. Elec. and Det. Tech. 27 170Google Scholar

    [11]

    Bao P F, Lin C J, Yang F, Guo Z Q, Guo T S, Yang L, Sun L J, Jia H M, Xu X X, Ma N R, Zhang H Q, Liu Z H 2014 Chin. Phys. C 38 126001Google Scholar

    [12]

    孟祥承 2003 核电子学与探测技术 23 4Google Scholar

    Meng X C 2003 Nucl. Elec. and Det. Tech. 23 4Google Scholar

    [13]

    谢一冈, 陈昌, 王曼, 吕军光, 孟祥承, 王锋, 顾树棣, 过雅南 2003粒子探测器与数据获取 (北京: 科学出版社) 第230页

    Xie Y G, Chen C, Wang M, Lv J G, Meng X C, Wang F, Gu S D, Guo Y N 2003 Particle Detector and Data Acquisition (Beijing: Science Press) p230 (in Chinese)

    [14]

    丁洪林 2010 核辐射探测器 (哈尔滨: 哈尔滨工程大学出版社) 第168页

    Ding H L 2010 Nuclear Radiation Detector (Harbin: Harbin Engineering University Press) p168 (in Chinese)

    [15]

    Casse G, Affolder A, Allport P P, Brown H, Mcleod I, Wormald M 2011 Nucl. Instrum. Meth. A 636 S56Google Scholar

    [16]

    卢希庭, 江栋兴, 叶沿林 2000 原子核物理 (北京: 原子能出版社) 第82页

    Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Beijing: Atomic Energy Press) p82 (in Chinese)

    [17]

    Zhang X H, Tang S W, Ma P, Lu C G, Yang H R, Wang S T, Yu Y H, Yue K, Fang F, Yan D, Zhou Y, Wang Z M, Sun Y, Sun Z Y, Duan L M, Sun B H 2015 Nucl. Instrum. Meth. A 795 389Google Scholar

    [18]

    李朋杰, 李智焕, 陈志强, 吴鸿毅, 田正阳, 蒋伟, 李晶, 冯骏, 臧宏亮, 刘强, 牛晨阳, 杨彪, 陶龙春, 张允, 孙晓慧, 王翔, 刘洋, 李奇特, 楼建玲, 李湘庆, 华辉, 江栋兴, 叶沿林 2017 原子核物理评论 34 177Google Scholar

    Li P J, Li Z H, Chen Z Q, Wu H Y, Tian Z Y, Jiang W, Li J, Feng J, Zang H L, Liu Q, Niu C Y, Yang B, Tao L C, Zhang Y, Sun X H, Wang X, Liu Y, Li Q T, Lou J L, Li X Q, Hua H, Jiang D X, Ye Y L 2017 Nucl. Phys. Rev. 34 177Google Scholar

    [19]

    Yamaguchi T, Fukuda M, Fukuda S, Fan G W, Hachiuma I, Kanazawa M, Kitagawa A, Kuboki T, Lantz M, Mihara M, Nagashima M, Namihira K, Nishimura D, Okuma Y, Ohtsubo T, Sato S, Suzuki T, Takechi M, Xu W 2010 Phys. Rev. C 82 014609Google Scholar

    [20]

    Zhao J W, Sun B H, He L C, Li G S, Lin W J, Liu C Y, Liu Z, Lu C G, Shen D P, Sun Y Z, Sun Z Y, Tanihata I, Terashima S, Tran D T, Wang F, Wang J, Wang S T, Wei X L, Xu X D, Zhu L H, Zhang J C, Zhang X H, Zhang Y, Zhou Z T 2019 Nucl. Instrum. Meth. A 930 95Google Scholar

    [21]

    于民, 董显山, 田大宇, 金玉丰 2012 中国专利 CN201110452444.5

    Yu M, Dong X S, Tian D Y, Jin Y F 2012 Chinese Patent CN201110452444.5 (in Chinese)

    [22]

    杨昉东, 郝晓勇, 赵江滨, 张向阳, 何高魁 2019 中国专利 CN201811621988.8

    Yang F D, Hao X Y, Zhao J B, Zhang X Y, He G K 2019 Chinese Patent CN201811621988.8 (in Chinese)

  • 图 1  (a)探测器p+-n-n+结构示意图; (b)封装好的探测器实物图

    Figure 1.  (a) Schematic diagram of p+-n-n+ structure of detector; (b) picture of silicon detector assembled in a readout board.

    图 2  (a)显微镜下SiO2沾污照片; (b)补刻版示意图

    Figure 2.  (a) Photos of SiO2 contamination under microscope; (b) schematic diagram of supplementary photomask.

    图 3  探测器的C-V特性曲线(a)和I-V特性曲线(b)

    Figure 3.  (a) C-V characteristic curves and (b) I-V characteristic curves of detector.

    图 4  α源测试原理框图

    Figure 4.  Test principle structure diagram with α source.

    图 5  在束测试实验探测器布局图

    Figure 5.  Layout of the detector setup in the beam test experiment.

    图 6  Si1—Si3探测器的三组分α源测试能谱

    Figure 6.  Energy spectra for Si1–Si3 detectors measuring three component α source.

    图 7  (a)—(c)分别为250 MeV/u的 11C打靶后在Si1—Si3探测器上的沉积能量分布; (d)为Si1—Si3沉积能量加和求平均后的分布(所有能谱已标定)

    Figure 7.  (a)–(c) Spectra for the energy deposition on Si1–Si3 detectors for 250 MeV/u 11C reaction products after the target; (d) spectrum for the average energy deposition on Si1–Si3 detectors for 250 MeV/u 11C reaction products after the target (the above spectra are already calibrated).

    图 8  有靶(蓝色)和空靶(红色)情况下250 MeV/u的11C 在Si1—Si3探测器上沉积能量加和平均后的分布

    Figure 8.  Spectrum for the average energy deposition on Si1–Si3 detectors for 250 MeV/u 11C with target (blue) and without target (red).

    图 9  250 MeV/u的11C打靶后在Si1—Si3探测器沉积能量的二维关联图

    Figure 9.  Two-dimensional correlation spectrum for the energy deposition on Si1–Si3 detectors for 250 MeV/u 11C with target.

    图 10  (a)—(c)基于250 MeV/u的11C打靶后在Si1—Si3探测器沉积的能量得到的粒子电荷数Z的分布; (d) Si1—Si3探测器沉积能量加和平均后得到的粒子电荷数Z的分布图(已刻度)

    Figure 10.  (a)–(c) Distribution of atomic number Z deduced from the energy deposition on Si1–Si3 detectors for 250 MeV/u 11C reaction products after target; (d) distribution of atomic number Z deduced from the average value of the energy deposition on Si1–Si3 detectors (calibrated)

    图 11  有靶(蓝色)和空靶(红色)情况下250 MeV/u的11C 在Si1—Si3探测器上的Z鉴别图

    Figure 11.  Distribution of atomic number Z for 250 MeV/u 11C on Si1–Si3 detectors with target (blue) and empty target (red).

  • [1]

    Tanihata I 2016 Eur. Phys. J. Plus 131 90Google Scholar

    [2]

    Nakamura T, Sakurai H, Watanabe H 2017 Prog. Part. Nucl. Phys. 97 53Google Scholar

    [3]

    崔保群, 唐兵, 马鹰俊, 马瑞刚, 陈立华, 黄青华, 马燮 2019 原子能科学技术 53 1572Google Scholar

    Cui B Q, Tang B, Ma Y J, Ma R G, Chen L H, Huang Q H, Ma X 2019 Atom. Ener. Sci. Tech. 53 1572Google Scholar

    [4]

    曾晟, 柳卫平, 叶沿林, 北京ISOL团队 2019 原子能科学技术 53 2321Google Scholar

    Zeng S, Liu W P, Ye Y L, Bei Jing ISOL team 2019 Atom. Ener. Sci. Tech. 53 2321Google Scholar

    [5]

    Sun Z, Zhan W L, Guo Z Y, Xiao G, Li J X 2003 Nucl. Instrum. Meth. A 503 496Google Scholar

    [6]

    Zhan W L, Xu H S, Xiao G Q, Xia J W, Yuan Y J, HIRFL-CSR Group 2010 Nucl. Phys. A 834 694cGoogle Scholar

    [7]

    方芳, 唐述文, 王世陶, 章学恒, 孙志宇, 余玉洪, 阎铎, 金树亚, 赵亦轩, 马少波, 张永杰 2022 原子核物理评论 39 65Google Scholar

    Fang F, Tang S W, Wang S T, Zhang X H, Sun Z Y, Yu Y H, Yan D, Jin S Y, Zhao Y X, Ma S B, Zhang Y J 2022 Nucl. Phys. Rev. 39 65Google Scholar

    [8]

    Ahn D S, Amano J, Baba H, Fukuda N, Geissel H, Inabe N, Ishikawa S, Iwasa N, Komatsubara T, Kubo T, Kusaka K, Morrissey D J, Nakamura T, Ohtake M, Otsu H, Sakakibara T, Sato H, Sherrill B M, Shimizu Y, Sumikama T, Suzuki H, Takeda H, Tarasov O B, Ueno H, Yanagisawa Y, Yoshida K 2022 Phys. Rev. Lett. 129 212502Google Scholar

    [9]

    Li R, Wang X, Li H, Chen C, Zu K, Hu R, Zhao C, Li Z 2019 JINST 14 C05020Google Scholar

    [10]

    邹鸿, 陈鸿飞, 邹积清, 宁宝俊, 施伟红, 田大宇, 张录 2007 核电子学与探测技术 27 170Google Scholar

    Zou H, Chen H F, Zou J Q, Ning B J, Shi W H, Tian D Y, Zhang L 2007 Nucl. Elec. and Det. Tech. 27 170Google Scholar

    [11]

    Bao P F, Lin C J, Yang F, Guo Z Q, Guo T S, Yang L, Sun L J, Jia H M, Xu X X, Ma N R, Zhang H Q, Liu Z H 2014 Chin. Phys. C 38 126001Google Scholar

    [12]

    孟祥承 2003 核电子学与探测技术 23 4Google Scholar

    Meng X C 2003 Nucl. Elec. and Det. Tech. 23 4Google Scholar

    [13]

    谢一冈, 陈昌, 王曼, 吕军光, 孟祥承, 王锋, 顾树棣, 过雅南 2003粒子探测器与数据获取 (北京: 科学出版社) 第230页

    Xie Y G, Chen C, Wang M, Lv J G, Meng X C, Wang F, Gu S D, Guo Y N 2003 Particle Detector and Data Acquisition (Beijing: Science Press) p230 (in Chinese)

    [14]

    丁洪林 2010 核辐射探测器 (哈尔滨: 哈尔滨工程大学出版社) 第168页

    Ding H L 2010 Nuclear Radiation Detector (Harbin: Harbin Engineering University Press) p168 (in Chinese)

    [15]

    Casse G, Affolder A, Allport P P, Brown H, Mcleod I, Wormald M 2011 Nucl. Instrum. Meth. A 636 S56Google Scholar

    [16]

    卢希庭, 江栋兴, 叶沿林 2000 原子核物理 (北京: 原子能出版社) 第82页

    Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Beijing: Atomic Energy Press) p82 (in Chinese)

    [17]

    Zhang X H, Tang S W, Ma P, Lu C G, Yang H R, Wang S T, Yu Y H, Yue K, Fang F, Yan D, Zhou Y, Wang Z M, Sun Y, Sun Z Y, Duan L M, Sun B H 2015 Nucl. Instrum. Meth. A 795 389Google Scholar

    [18]

    李朋杰, 李智焕, 陈志强, 吴鸿毅, 田正阳, 蒋伟, 李晶, 冯骏, 臧宏亮, 刘强, 牛晨阳, 杨彪, 陶龙春, 张允, 孙晓慧, 王翔, 刘洋, 李奇特, 楼建玲, 李湘庆, 华辉, 江栋兴, 叶沿林 2017 原子核物理评论 34 177Google Scholar

    Li P J, Li Z H, Chen Z Q, Wu H Y, Tian Z Y, Jiang W, Li J, Feng J, Zang H L, Liu Q, Niu C Y, Yang B, Tao L C, Zhang Y, Sun X H, Wang X, Liu Y, Li Q T, Lou J L, Li X Q, Hua H, Jiang D X, Ye Y L 2017 Nucl. Phys. Rev. 34 177Google Scholar

    [19]

    Yamaguchi T, Fukuda M, Fukuda S, Fan G W, Hachiuma I, Kanazawa M, Kitagawa A, Kuboki T, Lantz M, Mihara M, Nagashima M, Namihira K, Nishimura D, Okuma Y, Ohtsubo T, Sato S, Suzuki T, Takechi M, Xu W 2010 Phys. Rev. C 82 014609Google Scholar

    [20]

    Zhao J W, Sun B H, He L C, Li G S, Lin W J, Liu C Y, Liu Z, Lu C G, Shen D P, Sun Y Z, Sun Z Y, Tanihata I, Terashima S, Tran D T, Wang F, Wang J, Wang S T, Wei X L, Xu X D, Zhu L H, Zhang J C, Zhang X H, Zhang Y, Zhou Z T 2019 Nucl. Instrum. Meth. A 930 95Google Scholar

    [21]

    于民, 董显山, 田大宇, 金玉丰 2012 中国专利 CN201110452444.5

    Yu M, Dong X S, Tian D Y, Jin Y F 2012 Chinese Patent CN201110452444.5 (in Chinese)

    [22]

    杨昉东, 郝晓勇, 赵江滨, 张向阳, 何高魁 2019 中国专利 CN201811621988.8

    Yang F D, Hao X Y, Zhao J B, Zhang X Y, He G K 2019 Chinese Patent CN201811621988.8 (in Chinese)

  • [1] Liu Dong-Ji, Ma Yuan-Yuan, He Jin-Bai, Wang Hao, Zhou Yuan-Xiang, Sun Guan-Yue, Zhao Hong-Feng. ZnO varistors with low leakage current and high stability arrester with Ga doping. Acta Physica Sinica, 2023, 72(6): 067301. doi: 10.7498/aps.72.20222233
    [2] Song Wen-Gang, Zhang Li-Jun, Zhang Jing, Wang Guan-Ying. Research on digital pulse processing techniques for silicon drift detector. Acta Physica Sinica, 2022, 71(1): 012903. doi: 10.7498/aps.71.20211062
    [3] Liu Cheng, Li Ming, Wen Zhang, Gu Zhao-Yuan, Yang Ming-Chao, Liu Wei-Hua, Han Chuan-Yu, Zhang Yong, Geng Li, Hao Yue. Establishment of composite leakage model and design of GaN Schottky barrier diode with stepped field plate. Acta Physica Sinica, 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [4] Research on digital pulse processing techniques for silicon drift detector. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211062
    [5] She Yan-Chao, Zhang Wei-Xi, Wang Ying, Luo Kai-Wu, Jiang Xiao-Wei. Effect of oxygen vacancy defect on leakage current of PbTiO3 ferroelectric thin film. Acta Physica Sinica, 2018, 67(18): 187701. doi: 10.7498/aps.67.20181130
    [6] Ren Jian, Yan Da-Wei, Gu Xiao-Feng. Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [7] Zhou Chun-Yu, Zhang He-Ming, Hu Hui-Yong, Zhuang Yi-Qi, Lü Yi, Wang Bin, Li Yu-Chen. Analytical modeling for drain current of strained Si NMOSFET. Acta Physica Sinica, 2013, 62(23): 237103. doi: 10.7498/aps.62.237103
    [8] Wen Juan-Hui, Yang Qiong, Cao Jue-Xian, Zhou Yi-Chun. Strain control of the leakage current of the ferroelectric thin films. Acta Physica Sinica, 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [9] Chen Guo-Yun, Xin Yong, Huang Fu-Cheng, Wei Zhi-Yong, Lei Sheng-Jie, Huang San-Bo, Zhu Li, Zhao Jing-Wu, Ma Jia-Yi. Performances of a boron-lined ionization chamber used in neutron/-ray mixed field of reactors. Acta Physica Sinica, 2012, 61(8): 082901. doi: 10.7498/aps.61.082901
    [10] Zhang Shuang, Zhao De-Gang, Liu Zong-Shun, Zhu Jian-Jun, Zhang Shu-Ming, Wang Yu-Tian, Duan Li-Hong, Liu Wen-Bao, Jiang De-Sheng, Yang Hui. Influence of penetrating V-pits on leakage current of GaN based p-i-n UV detector. Acta Physica Sinica, 2009, 58(11): 7952-7957. doi: 10.7498/aps.58.7952
    [11] Zhou Mei, Chang Qing-Ying, Zhao De-Gang. A new method to reduce the dark current of GaN based Schottky barrier ultraviolet photodetector. Acta Physica Sinica, 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [12] Xiong Da-Yuan, Li Ning, Xu Wen-Lan, Zhen Hong-Lou, Li Zhi-Feng, Lu Wei. Study of the dark current in very long wavelength quantum well infrared photodetectors. Acta Physica Sinica, 2007, 56(9): 5424-5428. doi: 10.7498/aps.56.5424
    [13] Wang Xiu-Zhang, Liu Hong-Ri. Enhanced ferroelectricity of Pb(Zr0.5Ti0.5)O3 film by the introduction of La0.3Sr0.7TiO3 template layer. Acta Physica Sinica, 2007, 56(3): 1735-1740. doi: 10.7498/aps.56.1735
    [14] Lu Xiao, Wu Chuan-Gui, Zhang Wan-Li, Li Yan-Rong. Dielectric breakdown of BST thin films prepared by RF sputtering. Acta Physica Sinica, 2006, 55(5): 2513-2517. doi: 10.7498/aps.55.2513
    [15] Jia Jian-Feng, Huang Kai, Pan Qing-Tao, Li Shi-Guo, He De-Yan. Dielectric properties and leakage current of MgO/(Ba0.8Sr0.2)TiO3 heterostructured films prepared by sol-gel technique. Acta Physica Sinica, 2006, 55(4): 2069-2072. doi: 10.7498/aps.55.2069
    [16] Liu Hong-Xia, Zheng Xue-Feng, Hao Yue. Generation mechanism of stress induced leakage current in flash memory cell. Acta Physica Sinica, 2005, 54(12): 5867-5871. doi: 10.7498/aps.54.5867
    [17] Sun Tao, Chen Xing-Guo, Hu Xiao-Ning, Li Yan-Jin. Analysis of surface leakage and 1/f noise on long-wavelength infrared HgCdTe photodiodes. Acta Physica Sinica, 2005, 54(7): 3357-3362. doi: 10.7498/aps.54.3357
    [18] Yuan Xian-Zhang, Lu Wei, Li Ning, Chen Xiao-Shuang, Shen Xue-Chu, Zi Jian. Photocurrent spectra of very long wavelength GaAs/AlGaAs quantum well infrared photodetector. Acta Physica Sinica, 2003, 52(2): 503-507. doi: 10.7498/aps.52.503
    [19] Oyangxiaoping, Li Zhen-Fu, Zhang Guo-Guang, Huo Yu-Kun, Zhang Qian-Mei, Zhang Xian-Peng, Song Xian-Cai, Jia Huan-Yi, Lei Jian-Hua, Sun Yuan-Cheng. . Acta Physica Sinica, 2002, 51(7): 1502-1505. doi: 10.7498/aps.51.1502
    [20] SUN JING-WEN. PULSE CALIBRATION TECHNIQUE OF X-RAY DETECTOR. Acta Physica Sinica, 1986, 35(7): 864-873. doi: 10.7498/aps.35.864
Metrics
  • Abstract views:  1912
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  15 February 2023
  • Accepted Date:  18 April 2023
  • Available Online:  26 April 2023
  • Published Online:  20 June 2023

/

返回文章
返回