Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method

Chen Jing-Jing Qiu Xiao-Lin Li Ke Zhou Dan Yuan Jun-Jun

Citation:

Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method

Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun
PDF
HTML
Get Citation
  • Physical property and material mechanical performance of nanocrystalline (single crystal, polycrystalline) CoNiCrFeMn alloy can be known well through an in-depth understanding of the micro-evaluation behaviour of micro dislocation, so that it can better be used in defense fields, such as nuclear reactor cladding tubes, aircraft engines, jet turbine blades and others. In this paper we propose to study the correlation between micro-structure evolution and mechanical properties for nanocrystalline CoNiCrFeMn high entropy alloy. The force driven material deformation behaviors and mechanical properties of nanocrystalline alloy and Ni material are studied by using the nanoindentation method, and effects of temperature on the mechanical properties and micro-structure evolution are compared as well. Research results show that the mechanical properties (maximum load, hardness, Young’s modulus and contact stiffness) of single crystal alloy are superior to those of single crystal Ni, which mainly stems from the fact that the single crystal high entropy alloy with a drum-shape structure is produced under loading period, and the slip and expansion of dislocations in the bulge structure are blocked. At a low temperature (5 K), the maximum load, hardness, Young's modulus and contact stiffness of polycrystalline Ni decrease by 28.9%, 20.27%, 32.61% and 36.4% respectively in comparison with those of single crystal Ni. The maximum load, hardness, Young's modulus and contact stiffness of polycrystalline CoNiCrFeMn material decrease by 21.74%, 23.61%, 23.79% and 22.90% respectively with respect to those of single CoNiCrFeMn high entropy alloy. In addition, the mechanical properties of polycrystalline alloy are more sensitive to temperature than those of single crystal high entropy alloy, whose mechanical properties decrease approximately linearly with temperature increasing. For polycrystalline CoNiCrFeMn and Ni material, the grain boundary is not merely the origin region of dislocation breeding, expansion and reproduction, but also the concentration region of defect initiation, crack expansion and failure. Its mechanical properties are weaker than those of single crystal materials due to micro-structure evolution of grain boundaries driven from stress concentration and defects existence.
      Corresponding author: Chen Jing-Jing, chenjingjingfzu@126.com
    • Funds: Project supported by the University-level Research Center of Friction and Wear and Protective Lubrication of Mechanical Table Interface, Nanchang Institute of Technology, China, the Science and Technology Research Project of Education Department of Jiangxi Province, China (Grant Nos. GJJ212101, GJJ219310), and the Nanchang Key Laboratory Construction Project of Jiangxi Province, China (Grant No. 2020-NCZDSY-005).
    [1]

    Fu W J, Huang Y J, Sun J F, Ngan A H W 2022 Int. J. Plast 154 103296Google Scholar

    [2]

    Tran N D, Saengdeejing A, Suzuki K, Miura H, Chen Y 2021 J. Phase Equilib. Diffus 42 606Google Scholar

    [3]

    Gorban V F, Andreev A A, Chikryzhov A M, Karpets M. V, Krapivka N A, Kovteba D V 2019 Powder Metall 58 58Google Scholar

    [4]

    Zheng T F, Lü J C, Wu Y 2021 Appl. Phys. Lett 119 201907Google Scholar

    [5]

    Tripathi P K, Chiu Y C, Bhowmick S 2021 J. Nanomater 11 2111Google Scholar

    [6]

    Li C, Xue Y, Hua M, Cao T Q, Ma L L, Wang L 2016 Mater. Des 90 601Google Scholar

    [7]

    Wang F J, Zhang Y, Chen G L 2009 J. Alloys Compd 478 321Google Scholar

    [8]

    Sun S J, Tian Y Z, Lin H R, Yang H J, Dong X G, Wang Y H, Zhang Z F 2018 Mater. Sci. Eng. , A 712 603Google Scholar

    [9]

    Juan C C, Tsai M H, Tsai C W, Hsu W L, Lin C M, Chen S K, Lin S J, Yeh J W 2016 Mater. Lett 184 200Google Scholar

    [10]

    Seol J B, Bae J W, Li Z, Han J C, Kim J G, Raabe D, Kim H S 2018 Acta Mater 151 366Google Scholar

    [11]

    Gou S Y, Li S C, Hu H L, Fang Y T, Liu J B, Dong W P, Wang H T 2021 Mater. Res. Lett 9 437Google Scholar

    [12]

    Li X Y, Sun S J, Zou Y 2022 Mater. Res. Lett 10 385Google Scholar

    [13]

    Zhao W R, Han J K, Kuzminova Y O 2021 Mater. Sci. Eng. , A 807 140898Google Scholar

    [14]

    Laplanche G, Kostka K, Horst O M, Eggeler G, George E P 2016 Acta Mater 118 152Google Scholar

    [15]

    Schuh B, Mendez-Martin F, Völker B, George E P, Clemens H, Pippan R 2015 Acta Mater 96 258Google Scholar

    [16]

    He J Y, Zhu C, Zhou D Q 2014 Intermetallics 55 9Google Scholar

    [17]

    Otto F, Dlouhy A, Somsen C, Bei H, Eggeler G, George E P 2013 Acta Mater 61 5743Google Scholar

    [18]

    Yu Y, Wang J, Li J S, Yang J, Kou H C, Liu W M 2016 J. Mater. Sci. Technol 32 470Google Scholar

    [19]

    Plimpton S 1995 J. Comput. Phys 117 1Google Scholar

    [20]

    Guo J, Chen J J, Wang Y Q 2020 Ceram. Int 46 12686Google Scholar

    [21]

    Xiang H G, Li H T, Fu T 2017 Acta Materialia 138 131Google Scholar

    [22]

    Xiang H G, Li H T, Fu T, Huang C, Peng X H 2017 Acta Mater. 138 131

    [23]

    Lee B J, Shim J H, Baskes M I 2003 Phys. Rev. B 68 144112Google Scholar

    [24]

    董斌, 王雪梅, 朱子亮 2020 原子与分子物理学报 37 591

    Dong B, Wang X M, Zhu Z L 2020 J. At. Mol. Phys. 37 591

    [25]

    Fang Q H, Chen Y, Li J 2019 Int. J. Plast 114 161Google Scholar

    [26]

    Foiles, S M, Baskes, M I, Daw M S 1988 Phys. Rev. B 33 7983

    [27]

    Qian Y, Shang F, Wan Q 2018 J. Phys. D 24 115102

    [28]

    Qian Y, Shang F, Wan Q 2018 Comput. Mater. Sci 149 230Google Scholar

    [29]

    Goel S, Luo X, Reuben R L 2012 Appl. Phys. Lett 100 231

    [30]

    Shimizu F, Ogata S, Li J 2007 Mater. Trans 48 2923Google Scholar

    [31]

    Oliver W C, Pharr G M 1992 J. Mater. Sci 7 1564

    [32]

    Fan X, Rui Z, Cao H, Fu R, Feng R 2019 Materials 12 770Google Scholar

    [33]

    Belak J, Boercker D B, Stowers I F 1993 MRS Bull 18 55

  • 图 1  纳米晶Ni和纳米晶CoNiCrFeMn高熵合金的四种待测样品物理模型 (a) 单晶Ni模型; (b) 单晶CoNiCrFeMn高熵合金模型; (c) 多晶Ni模型; (d) 多晶CoNiCrFeMn高熵合金模型; (e) CoNiCrFeMn高熵合金五种元素均匀分布

    Figure 1.  Atomic nanoindentation simulation of physical model for single crystal high entropy alloy CoNiCrFeMn and single crystal Ni: (a) Single crystal Ni; (b) single crystal CoNiCrFeMn high entropy alloy; (c) polycrystal Ni; (d) polycrystal CoNiCrFeMn high entropy alloy; (e) uniform distributions of five elements in CoNiCrFeMn high entropy alloy.

    图 2  四种待测样品载荷与位移曲线的温度响应 (a) 单晶Ni; (b) 多晶Ni; (c) 单晶CoNiCrFeMn高熵合金; (d) 多晶高熵合金

    Figure 2.  Temperature effects on curves of load versus indentation depth at nanoindentation simulation for four samples: (a) Single crystal Ni; (b) polycrystal Ni; (c) single crystal CoNiCrFeMn; (d) polycrystal CoNiCrFeMn.

    图 3  极端低温5 K的纳米晶CoNiCrFeMn高熵合金和纳米晶Ni上表面受载诱导的剪切变形 (a), (b) 加载过程; (c) 卸载过程

    Figure 3.  Atomic snapshoot of shear strain deformation induced by maximum loads at nanoindentation test ((a), (b) loading and (c) unloading process) during extremely low temperature 5 K for single crystal and polycrystal material (Ni and CoNiCrFeMn ) that can be seen from XY horizontal plane perspective view.

    图 4  纳米晶Ni、纳米晶CoNiCrFeMn高熵合金力学性能受温度影响的变化

    Figure 4.  Temperature response of the mechanical properties of nanocrystalline Ni and nanocrystalline CoNiCrFeMn high entropy alloys

    图 5  最大压深载荷时的纳米晶Ni(a), (b)、纳米晶CoNiCrFeMn高熵合金(c), (d)受极端高低温(5—1100 K)影响的表面形貌特征; 相应地接触面积 (e)纳米晶Ni; (f)纳米晶CoNiCrFeMn高熵合金

    Figure 5.  Surface topography snapshot of nanocrystalline nickel and nanocrystalline high entropy alloys at maximum loading moment for testing four specimen with ambient temperature (5 K~1100 K)variations as shown in Fig. 5(a)-(d), among then, the locked position of virtual indenter was indicated with black dotted line. In addition, whose corresponding contact area was statisticed and quantified at Fig. 5(e) and 5(f).

    图 6  纳米晶Ni (a), (b)和纳米晶CoNiCrFeMn高熵合金(c), (d)极端低温下的微结构演化特征

    Figure 6.  Micro-structure evolution characteristics of nanocrystalline nickel (a), (b) and nanocrystalline CoNiCrFeMn (c), (d) high Entropy alloy at extremely low temperature.

    图 7  纳米晶Ni(a)和纳米晶CoNiCrFeMn高熵合金(b)极端高低温下的微结构演化特征

    Figure 7.  Micro-structure evolution characteristics of nanocrystalline Ni (a) and nanocrystalline CoNiCrFeMn high entropy alloys (b) at extremely high and low temperatures.

    图 8  纳米晶Ni和纳米晶CoNiCrFeMn高熵合金材料内部的位错类型分布与量化统计 (a) 单晶Ni和CoNiCrFeMn; (b) 多晶Ni和CoNiCrFeMn

    Figure 8.  Distribution characteristics and data statistics of dislocation types in nanocrystalline Ni and nanocrystalline CoNiCrFeMn high entropy alloys: (a) Single crystal Ni and CoNiCrFeMn; (b) polycrystal Ni and CoNiCrFeMn.

    图 9  极端低温5 K下的纳米晶Ni和CoNiCrFeMn高熵合金的应力分布状态 (a) 加载下多晶Ni; (b) 加载下多晶CoNiCrFeMn; (c) 卸载后单晶Ni和CoNiCrFeMn; (d) 卸载后多晶Ni和CoNiCrFeMn

    Figure 9.  Atomic stress distribution of nanocrystalline Ni and nanocrystalline CoNiCrFeMn high entropy alloys under extremely low temperature with 5 K: (a) Polycrystal Ni under loading; (b) polycrystal CoNiCrFeMn under loading; (c) single crystal Ni and CoNiCrFeMn under unloading; (d) polycrystal Ni and CoNiCrFeMn under unloading.

    图 10  加载期的纳米晶Ni和纳米晶CoNiCrFeMn高熵合金的应力分布受温度响应的影响 (a) 单晶Ni; (b) 多晶Ni; (c) 单晶CoNiCrFeMn; (d) 多晶CoNiCrFeMn

    Figure 10.  Atomic stress distribution of nanocrystalline Ni and nanocrystalline CoNiCrFeMn high entropy alloys effected by temperature variations at loading process: (a) Single crystal Ni; (b) polycrystal Ni; (c) single crystal CoNiCrFeMn; (d) polycrystal CoNiCrFeMn.

  • [1]

    Fu W J, Huang Y J, Sun J F, Ngan A H W 2022 Int. J. Plast 154 103296Google Scholar

    [2]

    Tran N D, Saengdeejing A, Suzuki K, Miura H, Chen Y 2021 J. Phase Equilib. Diffus 42 606Google Scholar

    [3]

    Gorban V F, Andreev A A, Chikryzhov A M, Karpets M. V, Krapivka N A, Kovteba D V 2019 Powder Metall 58 58Google Scholar

    [4]

    Zheng T F, Lü J C, Wu Y 2021 Appl. Phys. Lett 119 201907Google Scholar

    [5]

    Tripathi P K, Chiu Y C, Bhowmick S 2021 J. Nanomater 11 2111Google Scholar

    [6]

    Li C, Xue Y, Hua M, Cao T Q, Ma L L, Wang L 2016 Mater. Des 90 601Google Scholar

    [7]

    Wang F J, Zhang Y, Chen G L 2009 J. Alloys Compd 478 321Google Scholar

    [8]

    Sun S J, Tian Y Z, Lin H R, Yang H J, Dong X G, Wang Y H, Zhang Z F 2018 Mater. Sci. Eng. , A 712 603Google Scholar

    [9]

    Juan C C, Tsai M H, Tsai C W, Hsu W L, Lin C M, Chen S K, Lin S J, Yeh J W 2016 Mater. Lett 184 200Google Scholar

    [10]

    Seol J B, Bae J W, Li Z, Han J C, Kim J G, Raabe D, Kim H S 2018 Acta Mater 151 366Google Scholar

    [11]

    Gou S Y, Li S C, Hu H L, Fang Y T, Liu J B, Dong W P, Wang H T 2021 Mater. Res. Lett 9 437Google Scholar

    [12]

    Li X Y, Sun S J, Zou Y 2022 Mater. Res. Lett 10 385Google Scholar

    [13]

    Zhao W R, Han J K, Kuzminova Y O 2021 Mater. Sci. Eng. , A 807 140898Google Scholar

    [14]

    Laplanche G, Kostka K, Horst O M, Eggeler G, George E P 2016 Acta Mater 118 152Google Scholar

    [15]

    Schuh B, Mendez-Martin F, Völker B, George E P, Clemens H, Pippan R 2015 Acta Mater 96 258Google Scholar

    [16]

    He J Y, Zhu C, Zhou D Q 2014 Intermetallics 55 9Google Scholar

    [17]

    Otto F, Dlouhy A, Somsen C, Bei H, Eggeler G, George E P 2013 Acta Mater 61 5743Google Scholar

    [18]

    Yu Y, Wang J, Li J S, Yang J, Kou H C, Liu W M 2016 J. Mater. Sci. Technol 32 470Google Scholar

    [19]

    Plimpton S 1995 J. Comput. Phys 117 1Google Scholar

    [20]

    Guo J, Chen J J, Wang Y Q 2020 Ceram. Int 46 12686Google Scholar

    [21]

    Xiang H G, Li H T, Fu T 2017 Acta Materialia 138 131Google Scholar

    [22]

    Xiang H G, Li H T, Fu T, Huang C, Peng X H 2017 Acta Mater. 138 131

    [23]

    Lee B J, Shim J H, Baskes M I 2003 Phys. Rev. B 68 144112Google Scholar

    [24]

    董斌, 王雪梅, 朱子亮 2020 原子与分子物理学报 37 591

    Dong B, Wang X M, Zhu Z L 2020 J. At. Mol. Phys. 37 591

    [25]

    Fang Q H, Chen Y, Li J 2019 Int. J. Plast 114 161Google Scholar

    [26]

    Foiles, S M, Baskes, M I, Daw M S 1988 Phys. Rev. B 33 7983

    [27]

    Qian Y, Shang F, Wan Q 2018 J. Phys. D 24 115102

    [28]

    Qian Y, Shang F, Wan Q 2018 Comput. Mater. Sci 149 230Google Scholar

    [29]

    Goel S, Luo X, Reuben R L 2012 Appl. Phys. Lett 100 231

    [30]

    Shimizu F, Ogata S, Li J 2007 Mater. Trans 48 2923Google Scholar

    [31]

    Oliver W C, Pharr G M 1992 J. Mater. Sci 7 1564

    [32]

    Fan X, Rui Z, Cao H, Fu R, Feng R 2019 Materials 12 770Google Scholar

    [33]

    Belak J, Boercker D B, Stowers I F 1993 MRS Bull 18 55

  • [1] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [2] Han Rui-Qi, Song Hai-Yang, An Min-Rong, Li Wei-Wei, Ma Jia-Li. Simulation of interaction behavior between dislocation and graphene during nanoindentation of graphene/aluminum matrix nanocomposites. Acta Physica Sinica, 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [3] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [4] Liang Yi-Ran, Liang Qing. Molecular simulation of interaction between charged nanoparticles and phase-separated biomembranes containning charged lipids. Acta Physica Sinica, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [5] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [6] Li Rui, Liu Teng, Chen Xiang, Chen Si-Cong, Fu Yi-Hong, Liu Lin. Influence of interface structure on nanoindentation behavior of Cu/Ni multilayer film: Atomic scale simulation. Acta Physica Sinica, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [7] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [8] Li Li-Li, Zhang Xiao-Hong, Wang Yu-Long, Guo Jia-Hui, Zhang Shuang. Simulation of mechanical properties based on microstructure in polyethylene/montmorillonite nanocomposites. Acta Physica Sinica, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [9] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [10] Hu Xing-Jian, Zheng Bai-Lin, Yang Biao, Yu Jin-Gui, He Peng-Fei, Yue Zhu-Feng. Influence of initial indentation point on nanoindentation of Ni-based single crystal line alloys. Acta Physica Sinica, 2015, 64(7): 076201. doi: 10.7498/aps.64.076201
    [11] Fan Qian, Xu Jian-Gang, Song Hai-Yang, Zhang Yun-Guang. Effects of layer thickness and strain rate on mechanical properties of copper-gold multilayer nanowires. Acta Physica Sinica, 2015, 64(1): 016201. doi: 10.7498/aps.64.016201
    [12] Ma Bing-Yang, Zhang An-Ming, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Amorphizing and mechanical properties of co-sputtered Al-Zr alloy films. Acta Physica Sinica, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [13] Liu Xue-Mei, Liu Guo-Quan, Li Ding-Peng, Wang Hai-Bin, Song Xiao-Yan. Preparation and properties of polycrystalline and nanocrystalline Sm3Co alloys. Acta Physica Sinica, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
    [14] Hu Xing-Jian, Zheng Bai-Lin, Hu Teng-Yue, Yang Biao, He Peng-Fei, Yue Zhu-Feng. Nanoindentation simulation of Ni-base single-crystal superalloy with the consideration of interface effect. Acta Physica Sinica, 2014, 63(17): 176201. doi: 10.7498/aps.63.176201
    [15] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [16] Su Jin-Fang, Song Hai-Yang, An Min-Rong. Molecular dynamics simulation on mechanical properties of gold nanotubes. Acta Physica Sinica, 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [17] Luo Qing-Hong, Lu Yong-Hao, Lou Yan-Zhi. Microstructure and mechanical properties of Ti-B-C-N nanocomposite coatings. Acta Physica Sinica, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [18] Wang Hua-Tao, Qin Zhao-Dong, Ni Yu-Shan, Zhang Wen. Multi-scale simulation of the deformation in nano-indentation under different crystal orientations. Acta Physica Sinica, 2009, 58(2): 1057-1063. doi: 10.7498/aps.58.1057
    [19] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [20] Wei Lun, Mei Fang-Hua, Shao Nan, Dong Yun-Shan, Li Ge-Yang. The coherent growth and mechanical properties of non-isostructural TiN/TiB2 nanomultilayers. Acta Physica Sinica, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
Metrics
  • Abstract views:  3345
  • PDF Downloads:  101
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2022
  • Accepted Date:  20 May 2022
  • Available Online:  20 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回