Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of spectrally pure single-photon source at 3 μm mid-infrared band from lithium niobate crystal with domain sequence algorithm

Zhang Chen-Tao Shi Xiao-Tao Zhu Wen-Xin Zhu Jin-Long Hao Xiang-Ying Jin Rui-Bo

Citation:

Preparation of spectrally pure single-photon source at 3 μm mid-infrared band from lithium niobate crystal with domain sequence algorithm

Zhang Chen-Tao, Shi Xiao-Tao, Zhu Wen-Xin, Zhu Jin-Long, Hao Xiang-Ying, Jin Rui-Bo
PDF
HTML
Get Citation
  • The single-photon source in mid-infrared (MIR) band is very important for the next generation of quantum sensing, quantum communication and quantum imaging. At present, the commonly used method of generating MIR single-photon source is based on the spontaneous parametric down conversion (SPDC) process in the periodically poled lithium niobate (PPLN) crystal. However, the spectral purity of single-photon source based on the ordinary PPLN is not high, specifically, its maximum value is only about 0.82, which affects the fidelity of quantum information processing scheme. In this paper, 4000 polarized domains in a 30-mm-long LN crystal are customized by using the domain design theory. The sidelobes in the phase matching function are eliminated, and the Gaussian distribution is obtained. The calculated spectral purity of the single-photon source can reach 0.99, and its tunable range is 2.7–3.3 μm. The customized poled lithium niobate (CPLN) is expected to provide a single-photon source with excellent performance for the study of quantum information in the MIR band.
      Corresponding author: Hao Xiang-Ying, xyhao.321@163.com ; Jin Rui-Bo, jin@wit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074299, 91836102, 11704290)
    [1]

    郭光灿 2019 物理 48 464Google Scholar

    Guo G C 2019 Physics 48 464Google Scholar

    [2]

    郭光灿 2020 中国科学: 信息科学 50 1395

    Guo G C 2020 Sci. China Inf. Sci. 50 1395

    [3]

    Jaeger L 2018 Phys. World 26 40

    [4]

    Fernandez D C, Bhargava R, Hewitt S M, Levin I W 2005 Nat. Biotechnol. 23 469Google Scholar

    [5]

    Amrania H, Antonacci G, Chan C H, Drummond, Otto W R, Wright N A, Phillips C 2012 Opt. Express 20 7290Google Scholar

    [6]

    Shi J, Wong T T W, He Y, Li L, Wang L V 2019 Nat. Photonics 13 609Google Scholar

    [7]

    Bellei F, Cartwright A P, Mccaughan A N, Dane A E, Najafi F, Zhao Q, Berggren K K 2016 Opt. Express 24 3248Google Scholar

    [8]

    危语嫣, 高子凯, 王思颖, 朱雅静, 李涛 2022 物理学报 71 050302Google Scholar

    Wei Y Y, Gao Z K, Wang S Y, Zhu Y J, Li T 2022 Acta. Phys. Sin. 71 050302Google Scholar

    [9]

    Wang Q, Hao L, Zhang Y, Xu L, Yang C, Yang X, Zhao Y 2016 Opt. Express 24 5045Google Scholar

    [10]

    陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中 2021 物理学报 70 170601Google Scholar

    Tao Z W, Ren Y C, Abdukirim A, Liu S W, Rao R Z 2021 Acta Phys. Sin. 70 170601Google Scholar

    [11]

    Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601Google Scholar

    [12]

    Sua Y M, Fan H, Shahverdi A, Chen J Y, Huang Y P 2017 Sci. Rep. 7 17494Google Scholar

    [13]

    Mancinelli M, Trenti A, Piccione S, Fontana G, Pavesi L 2017 Nat. Commun. 8 15184Google Scholar

    [14]

    Mccracken R A, Graffitti F, Fedrizzi A 2018 J. Opt. Soc. Am. B 35 C38Google Scholar

    [15]

    Prabhakar S, Shields T, Dada A C, Ebrahim M, Clerici M 2020 Sci. Adv. 6 eaay5195Google Scholar

    [16]

    Wei B, Cai W H, Ding C, Deng G W, Shimizu R, Zhou Q, Jin R B 2021 Opt. Express 29 256Google Scholar

    [17]

    张越, 侯飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳 2018 物理学报 67 144204Google Scholar

    Zhang Y, Hou F Y, Liu T, Zhang X F, Zhang S G, Dong R F 2018 Acta Phys. Sin. 67 144204Google Scholar

    [18]

    Sun C W, Sun Y, Duan J C, Xue G T, Liu Y C, Lu L L, Zhang Q Y, Gong Y X, Xu P 2021 Chin. Phys. B 30 100312Google Scholar

    [19]

    Zhan M Y, Sun Q C, Xiang T, Chen X F 2015 Laser Phys. 25 125203Google Scholar

    [20]

    Mosley P J, Lundeen J S, Smith B J, Walmsley I A 2008 New J. Phys. 10 093011Google Scholar

    [21]

    Jin R B, Wakui K, Shimizu R, Benichi H, Miki S, Yamashita T, Terai H, Wang Z, Fujiwara M 2013 Phys. Rev. A 87 063801Google Scholar

    [22]

    Meyer-Scott E, Montaut N, Tiedau J, Sansoni L, Herrmann H, Bartley T J, Silberhorn C 2017 Phys. Rev. A 95 061803Google Scholar

    [23]

    Branczyk A M, Fedrizzi A, Stace T M, Ralph T C, White A G 2011 Opt. Express 19 55Google Scholar

    [24]

    Kaneda F, Oikawa J, Yabuno M, China F, Miki S, Terai H, Mitsumori Y, Edamatsu K 2021 arXiv: 2111.10981 [quant-ph]

    [25]

    Dixon P B, Shapiro J H, Wong F N 2013 Opt. Express 21 5879Google Scholar

    [26]

    Chen C C, Bo C, Niu M Y, Xu F, Zhang Z S, Shapiro J H, Wong F N C 2017 Opt. Express 25 7300Google Scholar

    [27]

    Cui C H, Arian R, Guha S, Peyghambarian N, Zhang Q, Zhang Z 2019 Phys. Rev. Appl. 12 034059Google Scholar

    [28]

    Cai W H, Tian Y, Wang S, You C, Zhou Q, Jin R B 2022 Adv. Quantum Tech. 5 2200028Google Scholar

    [29]

    Tambasco J, Boes A, Helt L G, Steel M J, Mitchell A 2016 Opt. Express 24 19616Google Scholar

    [30]

    Dosseva A, Cincio L, Brańczyk A M 2016 Phys. Rev. A 93 013801Google Scholar

    [31]

    Graffitti F, Kundys D, Reid D T, Branczyk A M, Fedrizzi A 2017 Quantum Sci. Technol. 2 035001Google Scholar

    [32]

    Graffitti F, Barrow P, Proietti M, Kundys D, Fedrizzi A 2018 Optica 5 514Google Scholar

    [33]

    Graffitti F, Barrow P, Pickston A, Brańczyk A M, Fedrizzi A 2020 Phys. Rev. Lett. 124 053603Google Scholar

    [34]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [35]

    田颖, 蔡吾豪, 杨子祥, 陈峰, 金锐博, 周强 2022 物理学报 71 054201Google Scholar

    Tian Y, Cai W H, Yang Z X, Chen F, Jin R B, Zhou Q 2022 Acta Phys. Sin. 71 054201Google Scholar

    [36]

    翟艺伟, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚 2021 物理学报 70 120302Google Scholar

    Zhai Y W, Dong R F, Quan R A, Xiang X, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 120302Google Scholar

    [37]

    Schlarb U, Betzler K 1994 Phys. Rev. B 50 751Google Scholar

    [38]

    Jin R B, Shimizu R, Wakui K, Benichi H, Sasaki M 2013 Opt. Express 21 10659Google Scholar

    [39]

    Zhu J L, Zhu W X, Shi X T, Zhang C T, Hao X, Yang Z X, Jin R B 2022 J. Opt. Soc. Am. B 40 0100A9Google Scholar

    [40]

    Pickston A, Graffitti F, Barrow P, Morrison C, Fedrizzi A 2021 Opt. Express 29 6991Google Scholar

    [41]

    金锐博, 田颖 2021 安徽大学学报: 自然科学版 45 10

    Jin R B, Tian Y 2021 J. Anhui Univ. Nat. Sci. 45 10

    [42]

    王玺, 叶庆, 董骁, 雷武虎, 吕桐林, 郭彦廷, 胡以华 2022 红外与毫米波学报 41 8

    Yu X, Ye Q, Dong X, Lei W H, Lv T L, Guo Y T, Hu Y H 2022 J. Infrared Millm. W. 45 10 (in Chinese)

    [43]

    胡舒武 2019 博士学位论文 (合肥: 中国科学技术大学)

    Hu S W 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [44]

    罗鸿禹 2019 博士学位论文 (成都: 电子科技大学)

    Luo H Y 2019 Ph. D. Dissertation (ChengDu: University of Electronic Science and Technology of China) (in Chinese)

  • 图 1  定制极化晶体的设计原理图

    Figure 1.  Principle of designing a customized poling crystal

    图 2  (a) 不同σ参数值对应的归一化的PMF, $\phi_0$表示$\phi(k)$的最大值; (b) 场振幅函数$A(z)$与目标场振幅函数$A_{{\rm{target}}}(z)$; (c) PMF与目标PMF; (d) 极化域分布g(z); (e)—(g) 泵浦包络函数, 相位匹配函数, 联合频谱分布, 对应纯度为99.99%

    Figure 2.  (a) The normalized PMF with different σ values, where $\phi_0$ is the maximal value of $\phi(k)$; (b) field amplitude function $A(z)$ and the amplitude of the target field $A_{{\rm{target}}}(z)$; (c) PMF and the PMF of the target; (d) poled domain distribution g(z); (e)–(g) pump-envelope function, phase matching function and joint spectral amplitude, purity = 99.99%

    图 3  (a) 在晶体不同位置处归一化的PMF, $\phi_0$表示$\phi(k)$的最大值; (b) 相邻同极向域合并后, 新的域位置与域宽度分布; (c) 不同泵浦光中心波长2倍对应的纯度分布

    Figure 3.  (a) Normalized PMF at different positions of the crystal, where $\phi_0$ is the maximal value of $\phi(k)$; (b) new location and width distribution after the same polarized domains are combined; (c) purity distribution at different pump central wavelengths (two times)

    图 A1  域排列算法中的4种情况

    Figure A1.  Four cases in the domain sequence algorithm

  • [1]

    郭光灿 2019 物理 48 464Google Scholar

    Guo G C 2019 Physics 48 464Google Scholar

    [2]

    郭光灿 2020 中国科学: 信息科学 50 1395

    Guo G C 2020 Sci. China Inf. Sci. 50 1395

    [3]

    Jaeger L 2018 Phys. World 26 40

    [4]

    Fernandez D C, Bhargava R, Hewitt S M, Levin I W 2005 Nat. Biotechnol. 23 469Google Scholar

    [5]

    Amrania H, Antonacci G, Chan C H, Drummond, Otto W R, Wright N A, Phillips C 2012 Opt. Express 20 7290Google Scholar

    [6]

    Shi J, Wong T T W, He Y, Li L, Wang L V 2019 Nat. Photonics 13 609Google Scholar

    [7]

    Bellei F, Cartwright A P, Mccaughan A N, Dane A E, Najafi F, Zhao Q, Berggren K K 2016 Opt. Express 24 3248Google Scholar

    [8]

    危语嫣, 高子凯, 王思颖, 朱雅静, 李涛 2022 物理学报 71 050302Google Scholar

    Wei Y Y, Gao Z K, Wang S Y, Zhu Y J, Li T 2022 Acta. Phys. Sin. 71 050302Google Scholar

    [9]

    Wang Q, Hao L, Zhang Y, Xu L, Yang C, Yang X, Zhao Y 2016 Opt. Express 24 5045Google Scholar

    [10]

    陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中 2021 物理学报 70 170601Google Scholar

    Tao Z W, Ren Y C, Abdukirim A, Liu S W, Rao R Z 2021 Acta Phys. Sin. 70 170601Google Scholar

    [11]

    Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601Google Scholar

    [12]

    Sua Y M, Fan H, Shahverdi A, Chen J Y, Huang Y P 2017 Sci. Rep. 7 17494Google Scholar

    [13]

    Mancinelli M, Trenti A, Piccione S, Fontana G, Pavesi L 2017 Nat. Commun. 8 15184Google Scholar

    [14]

    Mccracken R A, Graffitti F, Fedrizzi A 2018 J. Opt. Soc. Am. B 35 C38Google Scholar

    [15]

    Prabhakar S, Shields T, Dada A C, Ebrahim M, Clerici M 2020 Sci. Adv. 6 eaay5195Google Scholar

    [16]

    Wei B, Cai W H, Ding C, Deng G W, Shimizu R, Zhou Q, Jin R B 2021 Opt. Express 29 256Google Scholar

    [17]

    张越, 侯飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳 2018 物理学报 67 144204Google Scholar

    Zhang Y, Hou F Y, Liu T, Zhang X F, Zhang S G, Dong R F 2018 Acta Phys. Sin. 67 144204Google Scholar

    [18]

    Sun C W, Sun Y, Duan J C, Xue G T, Liu Y C, Lu L L, Zhang Q Y, Gong Y X, Xu P 2021 Chin. Phys. B 30 100312Google Scholar

    [19]

    Zhan M Y, Sun Q C, Xiang T, Chen X F 2015 Laser Phys. 25 125203Google Scholar

    [20]

    Mosley P J, Lundeen J S, Smith B J, Walmsley I A 2008 New J. Phys. 10 093011Google Scholar

    [21]

    Jin R B, Wakui K, Shimizu R, Benichi H, Miki S, Yamashita T, Terai H, Wang Z, Fujiwara M 2013 Phys. Rev. A 87 063801Google Scholar

    [22]

    Meyer-Scott E, Montaut N, Tiedau J, Sansoni L, Herrmann H, Bartley T J, Silberhorn C 2017 Phys. Rev. A 95 061803Google Scholar

    [23]

    Branczyk A M, Fedrizzi A, Stace T M, Ralph T C, White A G 2011 Opt. Express 19 55Google Scholar

    [24]

    Kaneda F, Oikawa J, Yabuno M, China F, Miki S, Terai H, Mitsumori Y, Edamatsu K 2021 arXiv: 2111.10981 [quant-ph]

    [25]

    Dixon P B, Shapiro J H, Wong F N 2013 Opt. Express 21 5879Google Scholar

    [26]

    Chen C C, Bo C, Niu M Y, Xu F, Zhang Z S, Shapiro J H, Wong F N C 2017 Opt. Express 25 7300Google Scholar

    [27]

    Cui C H, Arian R, Guha S, Peyghambarian N, Zhang Q, Zhang Z 2019 Phys. Rev. Appl. 12 034059Google Scholar

    [28]

    Cai W H, Tian Y, Wang S, You C, Zhou Q, Jin R B 2022 Adv. Quantum Tech. 5 2200028Google Scholar

    [29]

    Tambasco J, Boes A, Helt L G, Steel M J, Mitchell A 2016 Opt. Express 24 19616Google Scholar

    [30]

    Dosseva A, Cincio L, Brańczyk A M 2016 Phys. Rev. A 93 013801Google Scholar

    [31]

    Graffitti F, Kundys D, Reid D T, Branczyk A M, Fedrizzi A 2017 Quantum Sci. Technol. 2 035001Google Scholar

    [32]

    Graffitti F, Barrow P, Proietti M, Kundys D, Fedrizzi A 2018 Optica 5 514Google Scholar

    [33]

    Graffitti F, Barrow P, Pickston A, Brańczyk A M, Fedrizzi A 2020 Phys. Rev. Lett. 124 053603Google Scholar

    [34]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [35]

    田颖, 蔡吾豪, 杨子祥, 陈峰, 金锐博, 周强 2022 物理学报 71 054201Google Scholar

    Tian Y, Cai W H, Yang Z X, Chen F, Jin R B, Zhou Q 2022 Acta Phys. Sin. 71 054201Google Scholar

    [36]

    翟艺伟, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚 2021 物理学报 70 120302Google Scholar

    Zhai Y W, Dong R F, Quan R A, Xiang X, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 120302Google Scholar

    [37]

    Schlarb U, Betzler K 1994 Phys. Rev. B 50 751Google Scholar

    [38]

    Jin R B, Shimizu R, Wakui K, Benichi H, Sasaki M 2013 Opt. Express 21 10659Google Scholar

    [39]

    Zhu J L, Zhu W X, Shi X T, Zhang C T, Hao X, Yang Z X, Jin R B 2022 J. Opt. Soc. Am. B 40 0100A9Google Scholar

    [40]

    Pickston A, Graffitti F, Barrow P, Morrison C, Fedrizzi A 2021 Opt. Express 29 6991Google Scholar

    [41]

    金锐博, 田颖 2021 安徽大学学报: 自然科学版 45 10

    Jin R B, Tian Y 2021 J. Anhui Univ. Nat. Sci. 45 10

    [42]

    王玺, 叶庆, 董骁, 雷武虎, 吕桐林, 郭彦廷, 胡以华 2022 红外与毫米波学报 41 8

    Yu X, Ye Q, Dong X, Lei W H, Lv T L, Guo Y T, Hu Y H 2022 J. Infrared Millm. W. 45 10 (in Chinese)

    [43]

    胡舒武 2019 博士学位论文 (合肥: 中国科学技术大学)

    Hu S W 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [44]

    罗鸿禹 2019 博士学位论文 (成都: 电子科技大学)

    Luo H Y 2019 Ph. D. Dissertation (ChengDu: University of Electronic Science and Technology of China) (in Chinese)

  • [1] Li Ming-Zhou, Li Zhi-Yuan. Structure design and numerical simulation of chirped periodically polarized lithium niobate crystal for broadband mid-infrared laser generation. Acta Physica Sinica, 2022, 71(13): 134206. doi: 10.7498/aps.71.20220016
    [2] Zhang Yue, Hou Fei-Yan, Liu Tao, Zhang Xiao-Fei, Zhang Shou-Gang, Dong Rui-Fang. Generation and quantum characterization of miniaturized frequency entangled source in telecommunication band based on type-II periodically poled lithium niobate waveguide. Acta Physica Sinica, 2018, 67(14): 144204. doi: 10.7498/aps.67.20180329
    [3] Chen Xiao-Lan, Zhang Yun, Ran Qi-Yi. Photo-conductivity decay properties of Fe-doped congruent lithium niobate crystals. Acta Physica Sinica, 2013, 62(3): 037201. doi: 10.7498/aps.62.037201
    [4] Shi Li-Hong, Yan Wen-Bo, Shen Xu-Nan, Chen Gui-Feng, Chen Hong-Jian, Qiao Hui-Bin, Jia Fang-Fang, Lin Ai-Diao. Composition and temperature dependence of the light-induced scattering in Fe-doped lithium niobate. Acta Physica Sinica, 2012, 61(23): 234207. doi: 10.7498/aps.61.234207
    [5] Zhong Dong-Zhou, She Wei-Long. Linear electro-optic effect of ultrashort laser pulses in LiNbO3 crystal and its dispersion compensation. Acta Physica Sinica, 2012, 61(6): 064214. doi: 10.7498/aps.61.064214
    [6] Wang Xiao-Yan, Li Shu-Guang, Liu Shuo, Zhang Lei, Yin Guo-Bing, Feng Rong-Pu. Midinfrared As2 S3 chalcogenide glass broadband normal dispersion photonic crystal fiber with high birefringence and high nonlinearity. Acta Physica Sinica, 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [7] Zhang Yun. Periodically poled lithium niobate investigated by micro-Raman spectroscopy and luminescence. Acta Physica Sinica, 2010, 59(8): 5528-5532. doi: 10.7498/aps.59.5528
    [8] Shi Li-Hong, Yan Wen-Bo. Study on infrared absorption spectra of congruent lithium niobate crystals at low temperature. Acta Physica Sinica, 2009, 58(7): 4987-4991. doi: 10.7498/aps.58.4987
    [9] Wang Da-Lin, Sun Jun-Qiang, Wang Jian. High-speed data format conversion from non-return-to-zero to return-to-zero based on periodically poled lithium niobate waveguides. Acta Physica Sinica, 2008, 57(1): 252-259. doi: 10.7498/aps.57.252
    [10] Fu Bo, Zhang Guo-Quan, Liu Xiang-Ming, Shen Yan, Xu Qing-Jun, Kong Yong-Fa, Chen Shao-Lin, Xu Jing-Jun. Influence of dopants on nonvolatile holographic storage in lithium niobate. Acta Physica Sinica, 2008, 57(5): 2946-2951. doi: 10.7498/aps.57.2946
    [11] Wu Bo, Cai Shuang-Shuang, Shen Jian-Wei, Shen Yong-Hang. Widely tunable optical parametric oscillators base on periodically poled MgO doped LiNbO3. Acta Physica Sinica, 2007, 56(5): 2684-2688. doi: 10.7498/aps.56.2684
    [12] Magneto-photorefractive effect in lithium niobate crystals. Acta Physica Sinica, 2007, 56(12): 7015-7022. doi: 10.7498/aps.56.7015
    [13] Zhang Kai-Chun, Liu Sheng-Gang. THz wave radiation in periodically poled lithium niobate during on optical rectification. Acta Physica Sinica, 2007, 56(9): 5258-5262. doi: 10.7498/aps.56.5258
    [14] Gao Yuan-Mei, Liu Si-Min, Guo Ru, Huang Chun-Fu, Wang Da-Yun. Light coupling in Y-cut doped lithium niobate crystals. Acta Physica Sinica, 2004, 53(9): 2958-2963. doi: 10.7498/aps.53.2958
    [15] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Li Shi-Chen. . Acta Physica Sinica, 2002, 51(3): 565-572. doi: 10.7498/aps.51.565
    [16] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Li Shen-Chen. . Acta Physica Sinica, 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
    [17] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Tan Li, Li Shi-Chen. . Acta Physica Sinica, 2002, 51(11): 2528-2535. doi: 10.7498/aps.51.2528
    [18] Yao Jiang-Hong, Chen Ya-Hui, Xu Jing-Jun, Zhang Guang-Yin, Zhu Sheng-Xing. . Acta Physica Sinica, 2002, 51(1): 192-196. doi: 10.7498/aps.51.192
    [19] WANG JIN, YANG KUN, JIN CHAN. A STUDY ON THE STRUCTURE OF THE CRYSTAL LiNbO3:MgO. Acta Physica Sinica, 1999, 48(6): 1103-1106. doi: 10.7498/aps.48.1103
    [20] WANG YE-NING, CHU JING-SUNG, TAN YUN-PENG. THE STUDY OF SHG IN THE POLYDOMAIN STRIAE REGION OF LiNbO3 SINGLE CRYSTAL. Acta Physica Sinica, 1980, 29(12): 1629-1635. doi: 10.7498/aps.29.1629
Metrics
  • Abstract views:  3103
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2022
  • Accepted Date:  17 May 2022
  • Available Online:  09 October 2022
  • Published Online:  20 October 2022

/

返回文章
返回