Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microstructure building and thermal stability of cermet-based photothermal conversion coatings with layered structures

Kang Ya-Bin Yuan Xiao-Peng Wang Xiao-Bo Li Ke-Wei Gong Dian-Qing Cheng Xu-Dong

Citation:

Microstructure building and thermal stability of cermet-based photothermal conversion coatings with layered structures

Kang Ya-Bin, Yuan Xiao-Peng, Wang Xiao-Bo, Li Ke-Wei, Gong Dian-Qing, Cheng Xu-Dong
PDF
HTML
Get Citation
  • To enhance the thermal stability of cermet-based photothermal conversion coatings, the present paper proposes a novel strategy to replace the randomly distributed nanoparticles with layered structure. This kind of structure can not only suppress the agglomeration and rapid growth of nanoparticles, but also enhance the interaction between the absorber and sunlight. Thus, the thermal stability and selectivity can be simultaneously improved by this unique kind of structure. Then, a Cr/AlCrN/AlCrON/AlCrO multilayer cermet-based photothermal conversion coating is designed and fabricated by multi-arc ion plating. The microstructure, optical properties and thermal stability of the multilayer coating are studied in detail. The optical properties tests show that the absorptance and emittance of the as-deposited coating achieve 0.903 and 0.183, respectively. More importantly, after being annealed at 500 ℃ in air for 1000 h, the absorptance reaches 0.913 and the emittance arrives at 0.199, implying the enhanced selectivity and thermal stability, which are ascribed to the formation of nanolaminates, in which a series of alternating sublayers is observed in the AlCrON absorber. The nanolaminate is a two-phase composite structure composed of layered AlN and Cr2N nanoparticles distributed in amorphous dielectric matrix. According to the finite difference time domain (FDTD) simulations, this unique kind of microstructure can trap photons in the coating, which is beneficial to enhancing the interaction intensity and time between the sunlight and absorbing sublayer, and thus improving the absorption of sunlight. In addition, the reduction of particle spacing during annealing will lead to the red shift of extinction spectrum, which will better match the solar radiation spectrum. At the same time, this kind of structure can avoid the agglomeration of nanoparticles, which can simultaneously tune the optical properties and thermal stability.
      Corresponding author: Li Ke-Wei, likewei@tyut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 202103021224063), the Key Innovation Team Project of “1331 Project” of Jinzhong University, China (Grant No. jzxyjscxd202104), and the National Natural Science Foundation of China (Grant No. 52002159).
    [1]

    Moon J, Lu D, VanSaders B, Kim T K, Kong S D, Jin S H, Chen R K, Liu Z W 2014 Nano Energy 8 238Google Scholar

    [2]

    Rebouta L, Sousa A, Andritschky M, Cerqueira F, Tavares C J, Santilli P, Pischow K 2015 Appl. Surf. Sci. 356 203Google Scholar

    [3]

    田广科, 苗树翻, 马天国, 范多旺 2015 太阳能 3 50Google Scholar

    Tian G K, Miao S F, Ma T G, Fan D W 2015 Sol. Energy 3 50Google Scholar

    [4]

    Meng J P, Guo R R, Li H, Zhao L M, Liu X P, Li Z 2018 Appl. Surf. Sci. 440 932Google Scholar

    [5]

    Tsegay M G, Gebretinsae H G, Sackey J, Arendse C J, Nuru Z Y 2021 Mater. Today Proc. 36 571Google Scholar

    [6]

    Gao J H, Wang X Y, Yang B, Tu C J, Liang L Y, Zhang H L, Zhuge F, Cao H T, Zou Y S, Yu K, Xia F, Han Y Y 2016 Adv. Mater. Interfaces 3 1600248Google Scholar

    [7]

    Barshilia H C 2014 Sol. Energy Mater. Sol. Cells 130 322Google Scholar

    [8]

    Wang X Y, Gao J H, Hu H B, Zhang H L, Liang L Y, Javaid K, Zhuge F, Cao H T, Wang L 2017 Nano Energy 37 232Google Scholar

    [9]

    Kotilainen M, Mizohata K, Honkanen M, Vuoristo P 2014 Sol. Energy Mater. Sol. Cells 120 462Google Scholar

    [10]

    Liu H D, Wan Q, Lin B Z, Wang L L, Yang X F, Wang R Y, Gong D Q, Wang Y B, Ren F, Chen Y M, Cheng X D, Yang B 2014 Sol. Energy Mater. Sol. Cells 122 226Google Scholar

    [11]

    Nuru Z Y, Motaung D E, Kaviyarasu K, Maaza M 2016 J. Alloys Compd. 664 161Google Scholar

    [12]

    Zheng L Q, Zhou F Y, Zhou Z D, Song X W, Dong G B, Wang M, Diao X G 2015 Sol. Energy 115 341Google Scholar

    [13]

    Gao T, Jelle B P, Gustavsen A 2013 J. Nanopart. Res. 15 1370Google Scholar

    [14]

    Ke C Z, Zhang X M, Guo W Y, Li Y J, Gong D Q, Cheng X D 2018 Vacuum 152 114Google Scholar

    [15]

    Zhang Q C 2001 J. Phys. D: Appl. Phys. 34 3113Google Scholar

    [16]

    史月艳, 那鸿悦 2009 太阳光谱选择性吸收膜系设计、制备及测评(第1版) (北京: 清华大学出版社)第55—56页

    Shi Y Y, Na H Y 2009 Design, Preparation and Evalvation of Solar Spectrunm Selective Absorption Films (1st Ed.) (Beijing: Tsinghua University Press) pp55–56 (in Chinese)

    [17]

    Du M, Hao L, Mi J, Lv F, Liu X P, Jiang L J, Wang S M 2011 Sol. Energy Mater. Sol. Cells 95 1193Google Scholar

    [18]

    Rechberger W, Hohenau A, Leitner A, Krenn J R, Lamprecht B, Aussenegg F R 2003 Opt. Commun. 220 137Google Scholar

    [19]

    Su K H, Wei Q H, Zhang X, Mock J J, Smith D R, Schultz S 2003 Nano Lett. 3 1087Google Scholar

    [20]

    Kabiri A, Azarian A 2021 Int. J. Opt. Photonics 15 65Google Scholar

    [21]

    Valleti K, Krishna D M, Joshi S V 2014 Sol. Energy Mater. Sol. Cells 121 14Google Scholar

    [22]

    Liu H D, Fu T R, Duan M H, Wan Q, Luo C, Chen Y M, Fu D J, Ren F, Li Q Y, Cheng X D, Yang B, Hu X J 2016 Sol. Energy Mater. Sol. Cells 157 108Google Scholar

    [23]

    Daalder J E, Wielders P G E 1975 Angular Distribution of Charged and Neutral Species in Vacuum Arcs Eindhoven, The Netherlands, August 18–22, 1975 p232

    [24]

    Liu H D, Wan Q, Xu Y R, Luo C, Chen Y M, Fu D J, Ren F, Luo G, Cheng X D, Hu X J, Yang B 2015 Sol. Energy Mater. Sol. Cells 134 261Google Scholar

    [25]

    Wang X B, Ouyang T Y, Duan X H, Ke C Z, Zhang X M, Min J, Li A, Guo W Y, Cheng X D 2017 Metals 7 137Google Scholar

    [26]

    Gong D Q, Cheng X D, Ye W P, Zhang P, Luo G 2013 J. Wuhan Univ. Technol. , Mater. Sci. Ed. 28 256Google Scholar

    [27]

    Zhang K, Hao L, Du M, Mi J, Wang J N, Meng J P 2017 Renewable Sustainable Energy Rev. 67 1282Google Scholar

    [28]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [29]

    Haddad F, Chikouche A, Laour M 2011 Energy Procedia 6 413Google Scholar

    [30]

    Li Y, Lin C J, Wu Z X, Chen Z Y, Chi C, Cao F, Mei D Q, Yan H, Tso C Y, Chao C Y H, Huang B 2021 Adv. Mater. 33 2005074Google Scholar

    [31]

    Radhakrishnan A, Murugesan D V 2014 Am. Inst. Phys. 1620 52Google Scholar

    [32]

    Tsai T K, Li Y H, Fang J S 2016 Thin Solid Films 615 91Google Scholar

    [33]

    Liang L, Romo-De-La-Cruz C O, Carvilo P, Jackson B, Gemmen E, Paredes-Navia S A, Prucz J, Chen Y, Song X Y 2019 J. Solid State Chem. 277 427Google Scholar

    [34]

    Khan A, Al-Muhaish N, Mohamedkhair A K, Khan M Y, Qamar M, Yamani Z H, Drmosh Q A 2022 J. Non-Cryst. Solids 580 121409Google Scholar

    [35]

    Gong D Q, Niu R, Xu Y J, Min J, Liu H D, Cheng X D, Yang B, Ke C Z, Wang X B, Li Q Y, Li K W, Cui Z Q 2019 Sol. Energy 180 8Google Scholar

    [36]

    Wu Z X, Liu Y J, Wei D, Yin L, Bai F X, Liu X J, Zhang Q, Cao F 2019 Mater. Today Phys. 9 100089Google Scholar

    [37]

    Wang X B, Zhang X M, Li Q Y, Min J, Cheng X D 2018 Sol. Energy Mater. Sol. Cells 188 81Google Scholar

    [38]

    程怡婷, Andrey S Makarov, Gennadii V Afonin, Vitaly A Khonik, 乔吉超 2021 物理学报 70 146401Google Scholar

    Cheng Y T, Makarov A S, Afonin G V, Khonik V A, Qiao J C 2021 Acta Phys. Sin. 70 146401Google Scholar

    [39]

    Trelewicz J R, Schuh C A 2009 Phys. Rev. B 79 094112Google Scholar

  • 图 1  Cr/AlCrN/AlCrON/AlCrO多层金属陶瓷光热转换涂层结构示意图

    Figure 1.  Schematic diagram of the Cr/AlCrN/AlCrON/AlCrO multi-layer solar spectral selective absorbing coating.

    图 2  (a) 阴极电弧等离子体光学照片; (b) 靶面等离子体浓度空间分布示意图; (c) 分层化金属陶瓷光热转换涂层的构筑原理示意图

    Figure 2.  (a) Distribution of plasma injected into the chamber; (b) spatial distribution diagram of plasma concentration on target surface; (c) schematic diagram of construction principle of layered cermet photothermal conversion coating.

    图 3  沉积态与500 ℃、大气条件下退火1000 h后涂层的反射光谱曲线

    Figure 3.  Reflectance spectra of the coating before and after annealed at 500 ℃ for 1000 h in air.

    图 4  沉积态和500 ℃、大气条件下退火1000 h后涂层的GI-XRD图谱

    Figure 4.  GI-XRD patterns of the coating before and after annealed at 500 ℃ for 1000 h in air.

    图 5  500 ℃、大气条件下退火1000 h后涂层的TEM图 (a) AlCrON基光热转换涂层的TEM明场像; (b) AlCrON亚层的HRTEM图; (c), (e) 分别为图(b)中A, B处所对应的FFT图; (d), (f) 分别为图(b)中A, B处所对应的IFFT图

    Figure 5.  TEM image of the coating after annealed at 500℃ for 1000 h in air: (a) TEM bright field image of AlCrON based photothermal conversion coating; (b) HRTEM of the AlCrON low metal volume fraction absorbing layer; (c), (e) the FFT images of areas A, B denoted in Figure (b), respectively; (d), (f) the IFFT images of areas A, B denoted in b, respectively.

    图 6  涂层的表面形貌 (a) 沉积态; (b) 500 ℃、大气条件下退火1000 h后

    Figure 6.  Surface morphology of the coating: (a) The as-deposited coating; (b) the coating annealed at 500 ℃ for 1000 h.

    图 7  FDTD模拟的3D模型图 (a) 同半径颗粒分层化排列; (b) 同半径颗粒随机排列; (c)不同半径颗粒分层化排列; (d) 不同半径颗粒随机化排列

    Figure 7.  3D models of FDTD simulations: (a) Layered arrangement of particles with the same radius; (b) random arrangement of particles with the same radius; (c) particles with different radius are arranged in layers; (d) random arrangement of particles with different radius.

    图 8  FDTD模拟Cr2N纳米颗粒阵列电场分布图及其吸收、散射光谱图 (a) 同半径颗粒分层化排列; (b) 同半径颗粒随机排列; (c) 不同半径颗粒分层化排列; (d) 不同半径颗粒随机排列; (e) 4种结构的吸收光谱图; (f) 4种结构的散射光谱图

    Figure 8.  FDTD simulation of the Electric field distribution, absorption and scattering spectra of Cr2N nanoparticle array: (a) Layered arrangement of particles with the same radius; (b) random arrangement of particles with the same radius; (c) layered arrangement of particles with different radius; (d) random arrangement of particles with different radius; (e) absorption spectra of four models; (f) scattering spectra of four models.

    图 9  FDTD模拟结果 (a) AlN和Cr2N颗粒相同尺寸的消光光谱; (b) AlN和Cr2N颗粒相同间距的消光光谱; (c) Cr2N颗粒不同尺寸大小的吸收光谱; (d) Cr2N颗粒不同间距大小的消光光谱

    Figure 9.  FDTD simulation results: (a) Extinction spectra of AlN and Cr2N particles with the same size; (b) extinction spectra of AlN and Cr2N particles with the same spacing; (c) absorption spectra of Cr2N particles with different size; (d) extinction spectra of Cr2N particles with different spacing.

    图 10  分层化结构的光谱吸收机理示意图

    Figure 10.  Schematic diagram of spectra absorbing mechanism of layered structure.

    图 11  AlCrON吸收涂层退火过程微观结构演变示意图

    Figure 11.  Schematic diagram of microstructure evolution of AlCrON absorption coating during annealing.

    表 1  分层化金属陶瓷涂层的多弧离子镀制备工艺参数

    Table 1.  Detailed deposition parameters of layered cermet photothermal conversion coating.


    Ar/sccmN2/sccmO2/sccmTime/s
    Cr13000900
    AlCrN10030090
    AlCrON1203010120
    AlCrO00130120
    DownLoad: CSV

    表 2  500 ℃、大气条件下退火1000 h过程中涂层的吸收率、发射率和PC值

    Table 2.  Absorptivity, emissivity and PC value of the coating during annealing for 1000 h at 500 ℃ in atmosphere.

    Holding time/hαεα/εPC
    00.9030.1834.94
    1000.9090.2084.370.00655
    2000.9130.1904.81–0.00655
    3000.9130.2004.57–0.0014
    4000.9140.1944.71–0.0053
    5000.9140.2064.430.00065
    6000.9140.2014.55–0.0019
    7000.9140.1924.77–0.0065
    8000.9150.2124.310.0027
    9000.9160.2194.180.00505
    10000.9130.1994.60–0.0021
    DownLoad: CSV

    表 3  沉积态和500 ℃、大气条件下退火1000 h后涂层各层的EDS成分

    Table 3.  EDS composition of the coating before and after annealed at 500 ℃ for 1000 h in air.

    NOAlCr
    As-depositedAlCrN15.15063.0021.85
    AlCrON6.0043.0641.899.04
    AlCrO054.1336.998.88
    AnnealedAlCrN14.43064.6320.94
    AlCrON6.1444.2041.687.99
    AlCrO054.3036.728.98
    DownLoad: CSV
  • [1]

    Moon J, Lu D, VanSaders B, Kim T K, Kong S D, Jin S H, Chen R K, Liu Z W 2014 Nano Energy 8 238Google Scholar

    [2]

    Rebouta L, Sousa A, Andritschky M, Cerqueira F, Tavares C J, Santilli P, Pischow K 2015 Appl. Surf. Sci. 356 203Google Scholar

    [3]

    田广科, 苗树翻, 马天国, 范多旺 2015 太阳能 3 50Google Scholar

    Tian G K, Miao S F, Ma T G, Fan D W 2015 Sol. Energy 3 50Google Scholar

    [4]

    Meng J P, Guo R R, Li H, Zhao L M, Liu X P, Li Z 2018 Appl. Surf. Sci. 440 932Google Scholar

    [5]

    Tsegay M G, Gebretinsae H G, Sackey J, Arendse C J, Nuru Z Y 2021 Mater. Today Proc. 36 571Google Scholar

    [6]

    Gao J H, Wang X Y, Yang B, Tu C J, Liang L Y, Zhang H L, Zhuge F, Cao H T, Zou Y S, Yu K, Xia F, Han Y Y 2016 Adv. Mater. Interfaces 3 1600248Google Scholar

    [7]

    Barshilia H C 2014 Sol. Energy Mater. Sol. Cells 130 322Google Scholar

    [8]

    Wang X Y, Gao J H, Hu H B, Zhang H L, Liang L Y, Javaid K, Zhuge F, Cao H T, Wang L 2017 Nano Energy 37 232Google Scholar

    [9]

    Kotilainen M, Mizohata K, Honkanen M, Vuoristo P 2014 Sol. Energy Mater. Sol. Cells 120 462Google Scholar

    [10]

    Liu H D, Wan Q, Lin B Z, Wang L L, Yang X F, Wang R Y, Gong D Q, Wang Y B, Ren F, Chen Y M, Cheng X D, Yang B 2014 Sol. Energy Mater. Sol. Cells 122 226Google Scholar

    [11]

    Nuru Z Y, Motaung D E, Kaviyarasu K, Maaza M 2016 J. Alloys Compd. 664 161Google Scholar

    [12]

    Zheng L Q, Zhou F Y, Zhou Z D, Song X W, Dong G B, Wang M, Diao X G 2015 Sol. Energy 115 341Google Scholar

    [13]

    Gao T, Jelle B P, Gustavsen A 2013 J. Nanopart. Res. 15 1370Google Scholar

    [14]

    Ke C Z, Zhang X M, Guo W Y, Li Y J, Gong D Q, Cheng X D 2018 Vacuum 152 114Google Scholar

    [15]

    Zhang Q C 2001 J. Phys. D: Appl. Phys. 34 3113Google Scholar

    [16]

    史月艳, 那鸿悦 2009 太阳光谱选择性吸收膜系设计、制备及测评(第1版) (北京: 清华大学出版社)第55—56页

    Shi Y Y, Na H Y 2009 Design, Preparation and Evalvation of Solar Spectrunm Selective Absorption Films (1st Ed.) (Beijing: Tsinghua University Press) pp55–56 (in Chinese)

    [17]

    Du M, Hao L, Mi J, Lv F, Liu X P, Jiang L J, Wang S M 2011 Sol. Energy Mater. Sol. Cells 95 1193Google Scholar

    [18]

    Rechberger W, Hohenau A, Leitner A, Krenn J R, Lamprecht B, Aussenegg F R 2003 Opt. Commun. 220 137Google Scholar

    [19]

    Su K H, Wei Q H, Zhang X, Mock J J, Smith D R, Schultz S 2003 Nano Lett. 3 1087Google Scholar

    [20]

    Kabiri A, Azarian A 2021 Int. J. Opt. Photonics 15 65Google Scholar

    [21]

    Valleti K, Krishna D M, Joshi S V 2014 Sol. Energy Mater. Sol. Cells 121 14Google Scholar

    [22]

    Liu H D, Fu T R, Duan M H, Wan Q, Luo C, Chen Y M, Fu D J, Ren F, Li Q Y, Cheng X D, Yang B, Hu X J 2016 Sol. Energy Mater. Sol. Cells 157 108Google Scholar

    [23]

    Daalder J E, Wielders P G E 1975 Angular Distribution of Charged and Neutral Species in Vacuum Arcs Eindhoven, The Netherlands, August 18–22, 1975 p232

    [24]

    Liu H D, Wan Q, Xu Y R, Luo C, Chen Y M, Fu D J, Ren F, Luo G, Cheng X D, Hu X J, Yang B 2015 Sol. Energy Mater. Sol. Cells 134 261Google Scholar

    [25]

    Wang X B, Ouyang T Y, Duan X H, Ke C Z, Zhang X M, Min J, Li A, Guo W Y, Cheng X D 2017 Metals 7 137Google Scholar

    [26]

    Gong D Q, Cheng X D, Ye W P, Zhang P, Luo G 2013 J. Wuhan Univ. Technol. , Mater. Sci. Ed. 28 256Google Scholar

    [27]

    Zhang K, Hao L, Du M, Mi J, Wang J N, Meng J P 2017 Renewable Sustainable Energy Rev. 67 1282Google Scholar

    [28]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [29]

    Haddad F, Chikouche A, Laour M 2011 Energy Procedia 6 413Google Scholar

    [30]

    Li Y, Lin C J, Wu Z X, Chen Z Y, Chi C, Cao F, Mei D Q, Yan H, Tso C Y, Chao C Y H, Huang B 2021 Adv. Mater. 33 2005074Google Scholar

    [31]

    Radhakrishnan A, Murugesan D V 2014 Am. Inst. Phys. 1620 52Google Scholar

    [32]

    Tsai T K, Li Y H, Fang J S 2016 Thin Solid Films 615 91Google Scholar

    [33]

    Liang L, Romo-De-La-Cruz C O, Carvilo P, Jackson B, Gemmen E, Paredes-Navia S A, Prucz J, Chen Y, Song X Y 2019 J. Solid State Chem. 277 427Google Scholar

    [34]

    Khan A, Al-Muhaish N, Mohamedkhair A K, Khan M Y, Qamar M, Yamani Z H, Drmosh Q A 2022 J. Non-Cryst. Solids 580 121409Google Scholar

    [35]

    Gong D Q, Niu R, Xu Y J, Min J, Liu H D, Cheng X D, Yang B, Ke C Z, Wang X B, Li Q Y, Li K W, Cui Z Q 2019 Sol. Energy 180 8Google Scholar

    [36]

    Wu Z X, Liu Y J, Wei D, Yin L, Bai F X, Liu X J, Zhang Q, Cao F 2019 Mater. Today Phys. 9 100089Google Scholar

    [37]

    Wang X B, Zhang X M, Li Q Y, Min J, Cheng X D 2018 Sol. Energy Mater. Sol. Cells 188 81Google Scholar

    [38]

    程怡婷, Andrey S Makarov, Gennadii V Afonin, Vitaly A Khonik, 乔吉超 2021 物理学报 70 146401Google Scholar

    Cheng Y T, Makarov A S, Afonin G V, Khonik V A, Qiao J C 2021 Acta Phys. Sin. 70 146401Google Scholar

    [39]

    Trelewicz J R, Schuh C A 2009 Phys. Rev. B 79 094112Google Scholar

  • [1] Lu Yimin, Wang Yujie, Xu manman, Wang Hai, Xi Lin. Micro-structural and Optical Properties of Diamond-like Carbon Films Grown by Magnetic field-assisted Laser Deposition. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240145
    [2] Wang Xiao-Bo, Li Ke-Wei, Gao Li-Juan, Cheng Xu-Dong, Jiang Rong. Preparation and thermal stability of CrAlON based spectrally selective absorbing coatings. Acta Physica Sinica, 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [3] Jiang Mei-Yan, Zhu Zheng-Jie, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun. Microstructural and electrochemical properties of sulfur ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [4] He Xue-Min, Zhong Wei, Du You-Wei. Controllable synthesis and performance of magnetic nanocomposites with core/shell structure. Acta Physica Sinica, 2018, 67(22): 227501. doi: 10.7498/aps.67.20181027
    [5] Lu Shun-Shun, Zhang Jin-Min, Guo Xiao-Tian, Gao Ting-Hong, Tian Ze-An, He Fan, He Xiao-Jin, Wu Hong-Xian, Xie Quan. Thermal stability of compound stucture of silicon nanowire encapsulated in carbon nanotubes. Acta Physica Sinica, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [6] Wang Rui, Hu Xiao-Jun. The microstructural and electrochemical properties of oxygen ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [7] Zhang Zhang, Xiong Xian-Zhong, Yi Jiao-Jiao, Li Jin-Fu. Crystallization behavior and thermal stability of Al-Ni-RE metallic glasses. Acta Physica Sinica, 2013, 62(13): 136401. doi: 10.7498/aps.62.136401
    [8] Yu Li-Hua, Ma Bing-Yang, Cao Jun, Xu Jun-Hua. Structures, mechanical and tribological properties of (Zr,V)N composite films. Acta Physica Sinica, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [9] Gu Shan-Shan, Hu Xiao-Jun, Huang Kai. Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [10] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [11] Hu Heng, Hu Xiao-Jun, Bai Bo-Wen, Chen Xiao-Hu. Effects of annealing time on the microstructural and electrochemical properties of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [12] Yan Jian-Cheng, He Zhi-Bing, Yang Zhi-Lin, Zhang Ying, Tang Yong-Jian, Wei Jian-Jun. Influence of RF power on the structure and properties of glow discharge polymer. Acta Physica Sinica, 2011, 60(3): 036501. doi: 10.7498/aps.60.036501
    [13] Yuan Chang-Lai, Liu Xin-Yu, Ma Jia-Feng, Zhou Chang-Rong. Study on the microstructures and electrical properties of Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3 thermistor ceramic. Acta Physica Sinica, 2010, 59(6): 4253-4260. doi: 10.7498/aps.59.4253
    [14] Pan Jin-Ping, Hu Xiao-Jun, Lu Li-Ping, Yin Chi. Influence of annealing on the microstructure and electrochemical properties of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [15] Guo Quan-Sheng, Li Han, Su Xian-Li, Tang Xin-Feng. Microstructure and themoelectric properties of p-type filled skutterudite Ce0.3Fe1.5Co2.5Sb12 prepared by melt-spinning method. Acta Physica Sinica, 2010, 59(9): 6666-6672. doi: 10.7498/aps.59.6666
    [16] Su Xian-Li, Tang Xin-Feng, Li Han. Effects of melt spinning process on microstructure and thermoelectric properties of n-type InSb compounds. Acta Physica Sinica, 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [17] Yan Jian-Cheng, He Zhi-Bing, Yang Zhi-Lin, Chen Zhi-Mei, Tang Yong-Jian, Wei Jian-Jun. Thermal stability of glow discharge polymer coatings on glass microspheres. Acta Physica Sinica, 2010, 59(11): 8005-8009. doi: 10.7498/aps.59.8005
    [18] Zhang Kai-Wang, Meng Li-Jun, Li Jun, Liu Wen-Liang, Tang Yi, Zhong Jian-Xin. Structure and thermal stability of gold nanowire encapsulated in carbon nanotube. Acta Physica Sinica, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [19] Zhang Hong-Di, An Yu-Kai, Mai Zhen-Hong, Gao Ju, Hu Feng-Xia, Wang Yong, Jia Quan-Jie. Thickness effect on structure and magnetic properties of La0.8Ca0.2MnO3/SrTiO3 films. Acta Physica Sinica, 2007, 56(9): 5347-5352. doi: 10.7498/aps.56.5347
    [20] Zhu Ming-Gang, Pan Wei, Li Wei. . Acta Physica Sinica, 2002, 51(7): 1608-1611. doi: 10.7498/aps.51.1608
Metrics
  • Abstract views:  2828
  • PDF Downloads:  50
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2022
  • Accepted Date:  06 January 2023
  • Available Online:  13 January 2023
  • Published Online:  05 March 2023

/

返回文章
返回