搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管包裹的硅纳米线复合结构的热稳定性研究

卢顺顺 张晋敏 郭笑天 高廷红 田泽安 何帆 贺晓金 吴宏仙 谢泉

碳纳米管包裹的硅纳米线复合结构的热稳定性研究

卢顺顺, 张晋敏, 郭笑天, 高廷红, 田泽安, 何帆, 贺晓金, 吴宏仙, 谢泉
PDF
导出引用
导出核心图
  • 采用经典分子动力学方法模拟一定直径[111]晶向的硅纳米线填充不同扶手椅型单壁碳纳米管复合结构的加热过程, 通过可视化和能量分析的方法判断复合结构中硅纳米线和碳纳米管的热稳定性. 通过讨论碳纳米管的空间限制作用和分子间相互作用力的关系, 对碳纳米管和硅纳米线的热稳定性变化进行初步解释. 研究发现碳纳米管中硅纳米线的热稳定性和碳纳米管的直径关系密切: 当管径较小时, 硅纳米线的热稳定性有所提高, 当管径增大到一定大小时, 硅纳米线的热稳定性会突然显著地下降, 直到硅纳米线与管壁不存在分子间相互作用力, 硅纳米线的热稳定性才会恢复. 而硅纳米线填充到碳纳米管中对碳纳米管的热稳定性有着明显的降低作用.
      通信作者: 张晋敏, jmzhang@gzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61264004)、贵州省国际科技合作项目(批准号: 黔科合外G字[2012]7004)、贵州省高层次创新人才培养项目(批准号: 黔科合人才[2015]4015)和贵州省自然科学基金(批准号: 黔科合J字[2013]2119)资助的课题.
    [1]

    Sridhar S, Tiwary C, Vinod S, Taha-Tijerina J J, Sridhar S, Kalaga K, Sirota B, Hart A H C, Ozden S, Sinha R K, Harsh, Vajtai R, Choi W, Kordas K, Ajayan P M 2014 ACS Nano 8 7763

    [2]

    Yu W J, Liu C, Hou P X, Zhang L, Shan X Y, Li F, Cheng H M 2015 ACS Nano 9 5063

    [3]

    Cao Q, Han S-J, Tersoff J, Franklin A D, Zhu Y, Zhang Z, Tulevski G S, Tang J, Haensch W 2015 Science 350 68

    [4]

    Lusk M T, Hamm N 2007 Phys. Rev. B 76 125422

    [5]

    Fang R R, He Y Z, Zhang K, Li H 2014 J. Phys. Chem. C 118 7622

    [6]

    Sun F, Li H, Liew K M 2010 Carbon 48 1586

    [7]

    Esfarjani K, Farajian A A, Hashi Y, Kawazoe Y 1999 Appl. Phys. Lett. 74 79

    [8]

    Li S L, Zhang J M 2011 Acta Phys. Sin. 60 834 (in Chinese) [李姝丽, 张建民 2011 物理学报 60 834]

    [9]

    Koga K, Gao G, Tanaka H, Zeng X C 2001 Nature 412 802

    [10]

    Takaiwa D, Koga K, Tanaka H 2007 Molec. Simulat. 33 127

    [11]

    Mahdizadeh S J, Goharshadi E K 2013 J. Nanoparticle Res. 15 1393

    [12]

    Zhou Z, Wang J, Zhu X, Lu X, Guan W, Yang Y 2015 J. Mol. Model 21 2564

    [13]

    Hodak M, Girifalco L A 2003 Phys. Rev. B 67 075419

    [14]

    Nishio K, Ozaki T, Morishita T, Mikami M 2008 Phys. Rev. B 77 201401

    [15]

    Zhang X Q, Li H, Liew K M 2007 J. Appl. Phys. 102 073709

    [16]

    Zou X C, Wu M S, Liu G, Ouyang C Y, Xu B 2013 Acta Phys. Sin. 62 347 (in Chinese) [邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波 2013 物理学报 62 347]

    [17]

    Jeong N, Yeo J G 2012 Nanotechnology 23 285604

    [18]

    Liu Q, Zou R, Bando Y, Golberg D, Hu J 2015 Prog. Mater. Sci. 70 1

    [19]

    Zhang X, Zeng X, Zhang S, Liu F 2016 Mater. Sci. Semicond. Process. 41 457

    [20]

    Tsai J Y, Hu H H, Wu Y C, Jhan Y R, Chen K M, Huang G W 2014 IEEE Electron Device Lett. 35 366

    [21]

    Li J, Pud S, Petrychuk M, Offenhausser A, Vitusevich S 2014 Nano Lett. 14 3504

    [22]

    Nishio K, Morishita T, Shinoda W, Mikami M 2006 J. Chem. Phys. 125 074712

    [23]

    Vo T, Williamson A J, Galli G 2006 Phys. Rev. B 74 045116

    [24]

    Hever A, Bernstein J, Hod O 2012 J. Chem. Phys. 137 214702

    [25]

    Meng L J, Xiao H P, Tang C, Zhang K W, Zhong J X 2009 Acta Phys. Sin. 58 7781 (in Chinese) [孟利军, 肖化平, 唐超, 张凯旺, 钟建新 2009 物理学报 58 7781]

    [26]

    Stukowski A 2010 Modell. Simulat. Mater. Sci. Engineer. 18 015012

    [27]

    Tersoff J 1986 Phys. Rev. Lett. 56 632

    [28]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [29]

    Zhang K, Stocks G M, Zhong J 2007 Nanotechnology 18 285703

    [30]

    Belonoshko A B, Skorodumova N V, Rosengren A, Johansson B 2006 Phys. Rev. B 73 012201

    [31]

    Marsen B, Sattler K 1999 Phys. Rev. B 60 11593

  • [1]

    Sridhar S, Tiwary C, Vinod S, Taha-Tijerina J J, Sridhar S, Kalaga K, Sirota B, Hart A H C, Ozden S, Sinha R K, Harsh, Vajtai R, Choi W, Kordas K, Ajayan P M 2014 ACS Nano 8 7763

    [2]

    Yu W J, Liu C, Hou P X, Zhang L, Shan X Y, Li F, Cheng H M 2015 ACS Nano 9 5063

    [3]

    Cao Q, Han S-J, Tersoff J, Franklin A D, Zhu Y, Zhang Z, Tulevski G S, Tang J, Haensch W 2015 Science 350 68

    [4]

    Lusk M T, Hamm N 2007 Phys. Rev. B 76 125422

    [5]

    Fang R R, He Y Z, Zhang K, Li H 2014 J. Phys. Chem. C 118 7622

    [6]

    Sun F, Li H, Liew K M 2010 Carbon 48 1586

    [7]

    Esfarjani K, Farajian A A, Hashi Y, Kawazoe Y 1999 Appl. Phys. Lett. 74 79

    [8]

    Li S L, Zhang J M 2011 Acta Phys. Sin. 60 834 (in Chinese) [李姝丽, 张建民 2011 物理学报 60 834]

    [9]

    Koga K, Gao G, Tanaka H, Zeng X C 2001 Nature 412 802

    [10]

    Takaiwa D, Koga K, Tanaka H 2007 Molec. Simulat. 33 127

    [11]

    Mahdizadeh S J, Goharshadi E K 2013 J. Nanoparticle Res. 15 1393

    [12]

    Zhou Z, Wang J, Zhu X, Lu X, Guan W, Yang Y 2015 J. Mol. Model 21 2564

    [13]

    Hodak M, Girifalco L A 2003 Phys. Rev. B 67 075419

    [14]

    Nishio K, Ozaki T, Morishita T, Mikami M 2008 Phys. Rev. B 77 201401

    [15]

    Zhang X Q, Li H, Liew K M 2007 J. Appl. Phys. 102 073709

    [16]

    Zou X C, Wu M S, Liu G, Ouyang C Y, Xu B 2013 Acta Phys. Sin. 62 347 (in Chinese) [邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波 2013 物理学报 62 347]

    [17]

    Jeong N, Yeo J G 2012 Nanotechnology 23 285604

    [18]

    Liu Q, Zou R, Bando Y, Golberg D, Hu J 2015 Prog. Mater. Sci. 70 1

    [19]

    Zhang X, Zeng X, Zhang S, Liu F 2016 Mater. Sci. Semicond. Process. 41 457

    [20]

    Tsai J Y, Hu H H, Wu Y C, Jhan Y R, Chen K M, Huang G W 2014 IEEE Electron Device Lett. 35 366

    [21]

    Li J, Pud S, Petrychuk M, Offenhausser A, Vitusevich S 2014 Nano Lett. 14 3504

    [22]

    Nishio K, Morishita T, Shinoda W, Mikami M 2006 J. Chem. Phys. 125 074712

    [23]

    Vo T, Williamson A J, Galli G 2006 Phys. Rev. B 74 045116

    [24]

    Hever A, Bernstein J, Hod O 2012 J. Chem. Phys. 137 214702

    [25]

    Meng L J, Xiao H P, Tang C, Zhang K W, Zhong J X 2009 Acta Phys. Sin. 58 7781 (in Chinese) [孟利军, 肖化平, 唐超, 张凯旺, 钟建新 2009 物理学报 58 7781]

    [26]

    Stukowski A 2010 Modell. Simulat. Mater. Sci. Engineer. 18 015012

    [27]

    Tersoff J 1986 Phys. Rev. Lett. 56 632

    [28]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [29]

    Zhang K, Stocks G M, Zhong J 2007 Nanotechnology 18 285703

    [30]

    Belonoshko A B, Skorodumova N V, Rosengren A, Johansson B 2006 Phys. Rev. B 73 012201

    [31]

    Marsen B, Sattler K 1999 Phys. Rev. B 60 11593

  • [1] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性. 物理学报, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [2] 朱亚波, 鲍振, 杨玉杰, 蔡存金. 模拟研究碳纳米管的热稳定性质. 物理学报, 2009, 58(11): 7833-7837. doi: 10.7498/aps.58.7833
    [3] 张杨, 宋晓艳, 徐文武, 张哲旭. SmCo7纳米晶合金晶粒组织热稳定性的热力学分析与计算机模拟. 物理学报, 2012, 61(1): 016102. doi: 10.7498/aps.61.016102
    [4] 李论雄, 苏江滨, 吴燕, 朱贤方, 王占国. 电子束诱导单壁碳纳米管不稳定的新观察. 物理学报, 2012, 61(3): 036401. doi: 10.7498/aps.61.036401
    [5] 陈有为, 郑继明, 任兆玉, 赵佩, 郭平. 单壁碳纳米管吸附氧分子的电子输运性质理论研究. 物理学报, 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [6] 沈超, 胡雅婷, 周硕, 马晓兰, 李华. 单壁碳纳米管低温及常温下储氢行为的模拟计算研究. 物理学报, 2013, 62(3): 038801. doi: 10.7498/aps.62.038801
    [7] 姚小虎, 韩 强, 辛 浩. 单壁碳纳米管非线性力学行为的数值模拟. 物理学报, 2008, 57(1): 329-338. doi: 10.7498/aps.57.329
    [8] 许蓉, 贾光一, 刘昌龙. Cu, Zn离子注入SiO2纳米颗粒合成及氧气氛围下的热稳定性研究. 物理学报, 2014, 63(7): 078501. doi: 10.7498/aps.63.078501
    [9] 朱小芹, 胡益丰. Ge50Te50/Zn15Sb85纳米复合多层薄膜在高热稳定性和低功耗相变存储器中的应用. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200502
    [10] 张娇娇, 辛子华, 张计划, 颜笑, 邓密海. α-碳锗炔稳定性及性质模拟. 物理学报, 2014, 63(20): 207303. doi: 10.7498/aps.63.207303
    [11] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [12] 张玮祎, 胡明, 刘星, 李娜, 闫文君. 硅纳米线/氧化钒纳米棒复合材料的制备与气敏性能研究. 物理学报, 2016, 65(9): 090701. doi: 10.7498/aps.65.090701
    [13] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [14] 谢 芳, 张 林, 朱亚波, 张兆慧. 碳纳米管振荡的分子动力学模拟. 物理学报, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [15] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [16] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究. 物理学报, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [17] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [18] 彭 平, 梁君武, 胡慧芳, 韦建卫. 氧吸附对单壁碳纳米管的电子结构和光学性能的影响. 物理学报, 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
    [19] 李振华, 马燕萍, 尚学府, 顾智企, 王 淼, 徐亚伯. 单壁碳纳米管在场发射显示器中的应用研究. 物理学报, 2007, 56(11): 6701-6704. doi: 10.7498/aps.56.6701
    [20] 牛志强, 方 炎. 催化剂组分对制备单壁碳纳米管的影响. 物理学报, 2007, 56(3): 1796-1801. doi: 10.7498/aps.56.1796
  • 引用本文:
    Citation:
计量
  • 文章访问数:  641
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-06
  • 修回日期:  2016-03-10
  • 刊出日期:  2016-06-05

碳纳米管包裹的硅纳米线复合结构的热稳定性研究

  • 1. 贵州大学大数据与信息工程学院, 新型光电子材料与技术研究所, 贵阳 550025
  • 通信作者: 张晋敏, jmzhang@gzu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 61264004)、贵州省国际科技合作项目(批准号: 黔科合外G字[2012]7004)、贵州省高层次创新人才培养项目(批准号: 黔科合人才[2015]4015)和贵州省自然科学基金(批准号: 黔科合J字[2013]2119)资助的课题.

摘要: 采用经典分子动力学方法模拟一定直径[111]晶向的硅纳米线填充不同扶手椅型单壁碳纳米管复合结构的加热过程, 通过可视化和能量分析的方法判断复合结构中硅纳米线和碳纳米管的热稳定性. 通过讨论碳纳米管的空间限制作用和分子间相互作用力的关系, 对碳纳米管和硅纳米线的热稳定性变化进行初步解释. 研究发现碳纳米管中硅纳米线的热稳定性和碳纳米管的直径关系密切: 当管径较小时, 硅纳米线的热稳定性有所提高, 当管径增大到一定大小时, 硅纳米线的热稳定性会突然显著地下降, 直到硅纳米线与管壁不存在分子间相互作用力, 硅纳米线的热稳定性才会恢复. 而硅纳米线填充到碳纳米管中对碳纳米管的热稳定性有着明显的降低作用.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回