搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单壁碳纳米管吸附氧分子的电子输运性质理论研究

赵佩 郑继明 陈有为 郭平 任兆玉

引用本文:
Citation:

单壁碳纳米管吸附氧分子的电子输运性质理论研究

赵佩, 郑继明, 陈有为, 郭平, 任兆玉

Theoretical investigation on electron transport properties of singlewall carbon nanotube with oxygen molecular absorption

Zheng Ji-Ming, Zhao Pei, Chen You-Wei, Ren Zhao-Yu, Guo Ping
PDF
导出引用
  • 用基于第一性原理的密度泛函理论和非平衡态格林函数方法对(4,4)单壁碳纳米管及其吸附氧气分子情况下的平衡态和非平衡态电导性质进行了研究. 发现在小于2 V的偏压下,系统对电压的增加呈现两种不同增长速率的电流响应,其中电压小于1.1 V时电流增加速率较大;而当电压大于该值后,电流对电压增加速率变缓. 吸附的氧分子提供双重的作用,一方面氧分子提供的能级有利于电子隧穿中心散射区;另一方面氧分子的电子态会破坏碳管的平移对称性,从而降低电子对系统的透射能力.
    Electron transport properties of (4,4) single wall carbon nanotube as well as the nanotube with oxygen molecule absorption, are investigated by using first principles analysis. The results show that electron current through the nanotube with oxygen molecule absorption system increases linearly under low bias ranging from 0 to 1.1 V, while the bias is larger than 1.1 V, the current through this system increases slowly. It is also shown that absorbed oxygen molecule brings two kinds of influence on the properties of electron transport: first, the oxygen molecular absorbed states afford new channels to electron transport and enhance the transmission. Second, the oxygen molecular absorbed states spoil the nanotube’s symmetry and enhance the electron scattering, so reduce the transmission.
    • 基金项目: 陕西省自然科学基金(批准号:2009JQ1004)、国家自然科学基金青年科学基金(批准号:10904123)和陕西省教育厅专项科研计划(批准号:08JK471)资助的课题.
    [1]

    Kroto H W, Heath J R, OBrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Huffman D R 1991 Phys. Today 44 22

    [4]

    Ouyang M, Huang J L, Cheung C L, Lieber C M 2001 Science 291 97

    [5]

    Liang W J, Bockrath M, Bozovic D, Hafner J H, Tinkham M, Park H 2001 Nature 411 665

    [6]

    Tans S J, Verschueren R M A, Ekke C D 1998 Nature 393 49

    [7]

    Martel R, Schmidt T, Shea H R, Hertel T, Avouris P 1998 Appl. Phys. Lett. 73 2447

    [8]

    Kong J, Franklin N R, Zhou C, Chapline M G, Peng S, Cho K, Dai H 2000 Science 287 622

    [9]

    Zhang LJ, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin. 59 527(in Chinese)[张丽娟、胡慧芳、王志勇、魏 燕、贾金凤 2010 物理学报 59 527]

    [10]

    Tang X P, Kleinhammes A, Shimoda H, Fleming L, Bennoune K Y, Sinha S, Bower C, Zhou O, Wu Y 2000 Science 288 492

    [11]

    Li Z, Wang C Y 2006 Chem. Phys. 330 417

    [12]

    Jhi S H, Louie S G, Cohen M L 2000 Phys. Rev. Lett. 85 1710

    [13]

    Liang J W, Hu H F, Wei J W,Peng P 2005 Acta Phys. Sin. 54 2877 (in Chinese)[梁君武、胡慧芳、韦建卫、彭 平 2005 物理学报 54 2877]

    [14]

    Zang Y F, Li Y, Jia G X, Li J J 2005 Acta Chim. Sin. 63 581 (in Chinese)[章永凡、李 奕、贾桂霄、李俊篯 2005 化学学报 63 581]

    [15]

    Chen G D, Wang L D, An B, Yang M, Cao D C, Liu G Q 2009 Acta Phys. Sin. 58 1190 (in Chinese)[陈国栋、王六定、安 博、杨 敏、曹得财、刘光清 2009 物理学报 58 1190]

    [16]

    Wang Y J, Wang L D, Yang M, Liu G Q,Yan C 2010 Acta Phys. Sin. 59 4950 (in Chinese) [王益军、王六定、杨 敏、刘光清、严 诚 2010 物理学报 59 4950]

    [17]

    Pati R, Zhang Y, Nayak S K, Ajayan P M 2002 Appl. Phys. Lett. 81 2638

    [18]

    Roland C, Meunier V, Larade B, Guo H 2002 Phys. Rev. B 66 035332

    [19]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge:Cambridge University Press) p20

    [20]

    Perder J P, Zunger A 1981 Phys. Rev. B 23 5048

    [21]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [22]

    Brandbyge M, Mozos J L, Ordejón P, Taylor1 J, Stokbro1 K 2002 Phys. Rev. B 65 165401

  • [1]

    Kroto H W, Heath J R, OBrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Huffman D R 1991 Phys. Today 44 22

    [4]

    Ouyang M, Huang J L, Cheung C L, Lieber C M 2001 Science 291 97

    [5]

    Liang W J, Bockrath M, Bozovic D, Hafner J H, Tinkham M, Park H 2001 Nature 411 665

    [6]

    Tans S J, Verschueren R M A, Ekke C D 1998 Nature 393 49

    [7]

    Martel R, Schmidt T, Shea H R, Hertel T, Avouris P 1998 Appl. Phys. Lett. 73 2447

    [8]

    Kong J, Franklin N R, Zhou C, Chapline M G, Peng S, Cho K, Dai H 2000 Science 287 622

    [9]

    Zhang LJ, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin. 59 527(in Chinese)[张丽娟、胡慧芳、王志勇、魏 燕、贾金凤 2010 物理学报 59 527]

    [10]

    Tang X P, Kleinhammes A, Shimoda H, Fleming L, Bennoune K Y, Sinha S, Bower C, Zhou O, Wu Y 2000 Science 288 492

    [11]

    Li Z, Wang C Y 2006 Chem. Phys. 330 417

    [12]

    Jhi S H, Louie S G, Cohen M L 2000 Phys. Rev. Lett. 85 1710

    [13]

    Liang J W, Hu H F, Wei J W,Peng P 2005 Acta Phys. Sin. 54 2877 (in Chinese)[梁君武、胡慧芳、韦建卫、彭 平 2005 物理学报 54 2877]

    [14]

    Zang Y F, Li Y, Jia G X, Li J J 2005 Acta Chim. Sin. 63 581 (in Chinese)[章永凡、李 奕、贾桂霄、李俊篯 2005 化学学报 63 581]

    [15]

    Chen G D, Wang L D, An B, Yang M, Cao D C, Liu G Q 2009 Acta Phys. Sin. 58 1190 (in Chinese)[陈国栋、王六定、安 博、杨 敏、曹得财、刘光清 2009 物理学报 58 1190]

    [16]

    Wang Y J, Wang L D, Yang M, Liu G Q,Yan C 2010 Acta Phys. Sin. 59 4950 (in Chinese) [王益军、王六定、杨 敏、刘光清、严 诚 2010 物理学报 59 4950]

    [17]

    Pati R, Zhang Y, Nayak S K, Ajayan P M 2002 Appl. Phys. Lett. 81 2638

    [18]

    Roland C, Meunier V, Larade B, Guo H 2002 Phys. Rev. B 66 035332

    [19]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge:Cambridge University Press) p20

    [20]

    Perder J P, Zunger A 1981 Phys. Rev. B 23 5048

    [21]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [22]

    Brandbyge M, Mozos J L, Ordejón P, Taylor1 J, Stokbro1 K 2002 Phys. Rev. B 65 165401

计量
  • 文章访问数:  8456
  • PDF下载量:  986
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-09
  • 修回日期:  2010-09-14
  • 刊出日期:  2011-03-05

/

返回文章
返回